JPH0566917B2 - - Google Patents

Info

Publication number
JPH0566917B2
JPH0566917B2 JP33311187A JP33311187A JPH0566917B2 JP H0566917 B2 JPH0566917 B2 JP H0566917B2 JP 33311187 A JP33311187 A JP 33311187A JP 33311187 A JP33311187 A JP 33311187A JP H0566917 B2 JPH0566917 B2 JP H0566917B2
Authority
JP
Japan
Prior art keywords
substrate
melt
cavity
slider
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33311187A
Other languages
Japanese (ja)
Other versions
JPH0222197A (en
Inventor
Kyotaka Benzaki
Hideo Kususawa
Masaaki Sakata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stanley Electric Co Ltd
Original Assignee
Stanley Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stanley Electric Co Ltd filed Critical Stanley Electric Co Ltd
Priority to JP33311187A priority Critical patent/JPH0222197A/en
Publication of JPH0222197A publication Critical patent/JPH0222197A/en
Publication of JPH0566917B2 publication Critical patent/JPH0566917B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液相結晶成長に関し、特に溶質を溶解
したメルト内に一定の温度差を設け、高温部より
低温部に連続的に溶質を搬送して低温部で結晶を
成長させる温度差法連続液相成長に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to liquid phase crystal growth, and in particular to a process in which a certain temperature difference is created in a melt containing dissolved solute, and the solute is continuously transported from a high temperature area to a low temperature area. This paper relates to continuous liquid phase growth using a temperature difference method to grow crystals in a low-temperature region.

[従来の技術] 液相結晶成長は特に化合物半導体の結晶成長技
術として広く用いられている。液相結晶成長法と
して徐冷法や温度差法等が知られている。
[Prior Art] Liquid phase crystal growth is widely used as a crystal growth technique, especially for compound semiconductors. A slow cooling method, a temperature difference method, and the like are known as liquid phase crystal growth methods.

徐冷法は、たとえば、結晶材料をルツボ内で加
熱して溶融し、徐々に冷却して結晶化させる方法
である。冷却方法、ルツボ形状等によりストツク
バーガ法、ブリツジマン法等に分かれる。
The slow cooling method is, for example, a method in which a crystalline material is heated and melted in a crucible, and then gradually cooled and crystallized. It is divided into the Stockburger method, Bridgeman method, etc. depending on the cooling method, crucible shape, etc.

温度差法は一定の温度差(ないし温度勾配)を
持つ高温部低温部を形成し、高温部から原料を供
給して低温部で結晶を析出させる方法であり、広
義にはフローテイングゾーン法等も含むが、狭義
には溶液(メルト)内に温度差を設け、高温部で
溶質を溶解(供給)すると共に低温部で過飽和溶
液から溶質を析出させる方法をさす、すなわち、
温度差法液相結晶成長法は、成長用材料(溶質)
を溶解した溶液(メルト)に温度差をつけ、温度
勾配と拡散によつて溶質を基板方向に輸送し、基
板上に結晶を成長させる方法で、一定温度で成長
できるため均一な不純物濃度や組成をもつ結晶性
の良い結晶が多数枚連続して得られる方法であ
る。例えば、GaAlAs系結晶の場合、グラフアイ
トからなるメルト槽にGa溶液からなるメルトを
入れ、800℃−1000℃で10℃−200℃の温度差を設
けて結晶成長を行う。この方法により、特性の優
れた発光ダイオードやレーザー音等が製作されて
いる。
The temperature difference method is a method in which a high-temperature zone and a low-temperature zone are formed with a certain temperature difference (or temperature gradient), and raw materials are supplied from the high-temperature zone and crystals are precipitated in the low-temperature zone. However, in a narrow sense, it refers to a method in which a temperature difference is created in a solution (melt), and the solute is dissolved (supplied) in the high temperature part, and the solute is precipitated from a supersaturated solution in the low temperature part, that is,
In the temperature difference method liquid phase crystal growth method, the growth material (solute)
A method in which crystals are grown on the substrate by applying a temperature difference to a solution (melt) in which the solute is dissolved and transporting the solute toward the substrate by temperature gradient and diffusion. Because it can grow at a constant temperature, it can achieve a uniform impurity concentration and composition. This method allows a large number of crystals with good crystallinity to be obtained in succession. For example, in the case of a GaAlAs-based crystal, a melt made of a Ga solution is placed in a melt bath made of graphite, and crystal growth is performed at 800°C-1000°C with a temperature difference of 10°C-200°C. Using this method, light emitting diodes, laser sounds, etc. with excellent characteristics have been manufactured.

[発明が解決しようとする問題点] 溶質を基板に向けて輸送するための基板面に垂
直の方向に温度差をつける。しかし基板面内にわ
たり均一に成長させるためには面内方向に均一な
温度分布を設けることが必要である。しかし面に
垂直な温度差と面内の均一な温度との両者を両立
させることは容易ではない。
[Problems to be Solved by the Invention] A temperature difference is created in the direction perpendicular to the substrate surface for transporting solute toward the substrate. However, in order to grow uniformly over the substrate surface, it is necessary to provide a uniform temperature distribution in the in-plane direction. However, it is not easy to achieve both a temperature difference perpendicular to the surface and a uniform temperature within the surface.

従来は、特公昭59−43087号公報に示されてい
るように、加熱用炉体や冷却源のバランスをとる
ことにより基板面内の温度分布を均一にしようと
していた。しかし、これらの方法で均一な温度分
布を実現するのは困難であり、第11図に示すよ
うな均一でない厚み分布の成長結果が多く、ま
た、炉体の成長システムのわずかな相違、変動に
より厚み分布が変動してしまう。
Conventionally, as shown in Japanese Patent Publication No. 59-43087, attempts have been made to make the temperature distribution within the substrate surface uniform by balancing the heating furnace and the cooling source. However, it is difficult to achieve a uniform temperature distribution using these methods, and the growth results often have an uneven thickness distribution as shown in Figure 11. Also, due to slight differences and fluctuations in the growth system of the furnace body, The thickness distribution will fluctuate.

このような均一でない厚み分布は、発光ダイオ
ードの製造においては発光効率のバラツキに直結
しており、製造歩留まりの低下の主要な原因であ
る そこで、本発明の目的は均一な面内温度分布を
実現できる温度差法液相結晶成長技術を提供する
ことである。
Such non-uniform thickness distribution is directly linked to variations in luminous efficiency in the manufacturing of light emitting diodes, and is a major cause of decreased manufacturing yield.Therefore, the purpose of the present invention is to realize uniform in-plane temperature distribution. The purpose of this invention is to provide a temperature difference method liquid phase crystal growth technology that can be used.

[問題点を解決するためにおこなつた検討] 上記の問題点を解決するために、温度差法液相
結晶成長での結晶成長メカニズムを検討した。
[Studies conducted to solve the problems] In order to solve the above problems, the crystal growth mechanism in temperature difference method liquid phase crystal growth was investigated.

第4図に温度差法液相成長装置の例を概略的に
示す。入口側予備室51内には半導体基板を載せ
たスライダ53が収められており、スライダ押上
機構55により順次ゲートバルブ62を通つて押
し上げられる。入口側予備室51は予備加熱炉5
9で予熱されているのが好ましい。押し上げられ
たスライダはスライダ駆動機構61により成長室
57内にゲートバルブ63を通つて送られる。成
長室57内にはメルト槽64が設けられ、主ヒー
タ67がメルト槽64を加熱している。スライダ
53上の基板69はメルト槽64の下部でメルト
と接触し結晶成長を行う。結晶成長の終わつた基
板を載せたスライダはゲートバルブ73を介して
成長室57の外に送られ、スライダ受取機構77
によつてゲートバルブ74を介して出口側予備室
79に収められる。
FIG. 4 schematically shows an example of a temperature difference method liquid phase growth apparatus. A slider 53 carrying a semiconductor substrate is housed in the entrance side preliminary chamber 51 and is successively pushed up through the gate valve 62 by the slider push-up mechanism 55 . The entrance side preliminary chamber 51 is a preliminary heating furnace 5
Preferably, it is preheated at 9. The pushed-up slider is sent into the growth chamber 57 through the gate valve 63 by the slider drive mechanism 61. A melt tank 64 is provided in the growth chamber 57, and the main heater 67 heats the melt tank 64. The substrate 69 on the slider 53 comes into contact with the melt at the bottom of the melt tank 64 to cause crystal growth. The slider carrying the substrate on which the crystal growth has been completed is sent out of the growth chamber 57 via the gate valve 73, and is sent to the slider receiving mechanism 77.
is stored in the outlet side preliminary chamber 79 via the gate valve 74.

第5図はメルト槽64部分の1例の拡大説明図
である。溶媒であるGaの中に溶質のAl、GaAs
が溶解されて、Pメルト槽65とNメルト槽66
に収容されている。さらに不純物としてPメルト
槽65にはZnがNメルト槽にはTeが溶解されて
いる。後から成長するN型領域のバンドギヤツプ
をP型領域のバンドギヤツプより大きくするため
Nメルト槽66中のAlの量はPメルト槽65中
のAlの量よりり大きくするのがよい。たとえば、
赤色発光のGa1-xAlxAs発光ダイオードを得るに
は、AlAsの組成割合xをp型領域で約0.35、n
型領域で約0.6−0.85となるようにAlとGaAsの量
を決める。両メルト槽65,66内には図中右に
示すような垂直方向の温度差が設定される。たと
えば、800℃−1000℃の温度で温度差を10℃−200
℃設ける。溶質を連続的に供給するには高温部で
あるメルト上部に溶質を浮かせておくか溶質収容
部を作つてメルトを接触させる。溶質は高温部で
飽和溶解度まで溶解し、拡散で低温部に輸送され
る。通常溶解度は温度と共に増加するので、低温
部では過飽和溶液となつて析出できる状態とな
る。このようなメルト低温部へ多数枚の基板69
を順次接触される。たとえば、成長時間約60分で
50−60μmの成長層が得られる。
FIG. 5 is an enlarged explanatory view of one example of the melt tank 64 portion. Solutes Al and GaAs in the solvent Ga
is melted, and the P melt tank 65 and the N melt tank 66
is housed in. Further, as impurities, Zn is dissolved in the P melt tank 65 and Te is dissolved in the N melt tank. In order to make the bandgap of the N-type region that will grow later larger than that of the P-type region, the amount of Al in the N-melt tank 66 is preferably made larger than the amount of Al in the P-melt tank 65. for example,
To obtain a red-emitting Ga 1-x Al x As light-emitting diode, the AlAs composition ratio x should be approximately 0.35 in the p-type region and n
The amounts of Al and GaAs are determined to be approximately 0.6−0.85 in the mold region. A vertical temperature difference is set in both melt tanks 65 and 66 as shown on the right side of the figure. For example, at a temperature of 800℃−1000℃, the temperature difference is 10℃−200℃.
℃ set. To continuously supply the solute, either float the solute above the melt, which is a high-temperature area, or create a solute storage area and bring the melt into contact with it. The solute dissolves to saturation solubility in the high temperature section and is transported to the low temperature section by diffusion. Since the solubility usually increases with temperature, it becomes a supersaturated solution in a low temperature region and is in a state where it can precipitate. A large number of substrates 69 are transferred to such a melt low temperature section.
will be contacted sequentially. For example, with a growth time of about 60 minutes,
A growth layer of 50-60 μm is obtained.

第6図は温度と時間との関係を示す。図から判
るように温度分布は一定に保たれる。初め1番目
の基盤がPメルトの下に接し、P型層を成長させ
る。次にスライダを移動させて1番目の基板がN
メルトの下に接し、2番目の基板がPメルトの下
に接するようにする。そこで、それぞれの成長層
を形成する。これで1番目の基板上には下にP型
層、上にN型層が成長され、ダイオードが形成さ
れる。このようにして多数枚の基板上にエピタキ
シヤル成長を行う。
FIG. 6 shows the relationship between temperature and time. As can be seen from the figure, the temperature distribution remains constant. Initially, the first base contacts the bottom of the P melt and grows a P type layer. Next, move the slider so that the first board is
The second substrate should touch the bottom of the P-melt. Therefore, respective growth layers are formed. Now, on the first substrate, a P-type layer is grown on the bottom and an N-type layer is grown on top, forming a diode. In this way, epitaxial growth is performed on a large number of substrates.

さて、結晶成長を行えるのはメルト下部の低温
部であるが、メルトと通常グラフアイトであるメ
ルト槽を作つている耐熱材とは熱伝導率等の熱的
特性が異なる。メルト下部で面内均一な温度分布
を実現するために解明すべき問題の1つはグラフ
アイトに囲まれたメルトと基板との関係であろ
う。そこで、以下の場合に分けて検討した。
Now, crystal growth can occur in the low-temperature area at the bottom of the melt, but the melt and the heat-resistant material that makes up the melt tank, which is usually graphite, have different thermal properties such as thermal conductivity. One of the issues that must be solved in order to achieve uniform in-plane temperature distribution at the bottom of the melt is the relationship between the melt surrounded by graphite and the substrate. Therefore, we considered the following cases separately.

[A メルトの底面の大きさと基板の大きさがほ
ぼ等しい場合](第7図、第8図参照) 基板中心付近81に比べて周辺部83の成長速
度が遅い。これはメルト槽の内壁からは溶質の供
給がないことが1つの原因と考えられる。またメ
ルト槽の側壁(グラフアイト)の熱伝導率はメル
ト(Ga)の熱伝導率より大きい。このため、基
板中心付近81に比べて周辺部83の温度勾配が
小さい。したがつて濃度勾配が小さく周辺部83
の成長速度が遅いと考えられる。
[A: When the size of the bottom surface of the melt and the size of the substrate are almost equal] (see FIGS. 7 and 8) The growth rate of the peripheral portion 83 is slower than that of the vicinity 81 of the substrate center. One reason for this is thought to be that no solute is supplied from the inner wall of the melt tank. Further, the thermal conductivity of the side wall of the melt tank (graphite) is higher than that of the melt (Ga). Therefore, the temperature gradient in the peripheral portion 83 is smaller than that in the vicinity 81 of the substrate center. Therefore, the concentration gradient is small and the peripheral area 83
It is thought that the growth rate is slow.

[B メルトの底面の大きさが基板の大きさより
大きい場合](第9図、第10図参照) 基板の大きさがメルトの底面の大きさより小さ
いため、基板周辺部87もメルト槽の側壁から離
れ基板中心付近85と基板の周辺部87との温度
勾配の差は[A]に比べ大きくない。また基板面
内の温度分布も[A]に比べより均一である。し
たがつて成長速度は[A]より面内で比較的均一
になる。
[B: When the size of the bottom of the melt is larger than the size of the substrate] (See Figures 9 and 10) Since the size of the substrate is smaller than the size of the bottom of the melt, the peripheral part 87 of the substrate is also separated from the side wall of the melt tank. The difference in temperature gradient between the center area 85 of the separated substrate and the peripheral area 87 of the substrate is not large compared to [A]. Furthermore, the temperature distribution within the substrate surface is also more uniform than in [A]. Therefore, the growth rate becomes relatively uniform within the plane than in [A].

しかし、基板より外の周辺部89のメルト底面
が、基板より熱伝導率が大きくかつその上に結晶
をエピタキシヤル成長させることのできないグラ
フアイトからなるスライダ53に接している。し
たがつて基板外の周辺部89において基板面内8
5,87においてと同等またはそれ以上の熱がメ
ルトからスライダに向かつて流れる。すなわち、
この領域においても、拡散による溶質の輸送は常
に行われている。しかし基板結晶がないため輸送
された溶質は過飽和状態となり、メルト内のスラ
イダ表面近傍において微結晶を析出させる。溶質
の輸送が常に行われているため、この微結晶が種
となりさらに連続して微結晶への析出が行われ
る。この基板外の周辺部89のメルト内での微結
晶析出のために、基板内周辺部87での溶質の輸
送が影響され、中心部85に比べ基板内周辺部8
7の成長速度が小さくなる。
However, the bottom surface of the melt in the peripheral portion 89 outside the substrate is in contact with the slider 53 made of graphite, which has a higher thermal conductivity than the substrate and on which crystals cannot be epitaxially grown. Therefore, in the peripheral part 89 outside the board, the inside of the board 8
5, 87, or more heat flows from the melt toward the slider. That is,
Even in this region, solute transport by diffusion is always occurring. However, since there are no substrate crystals, the transported solute becomes supersaturated, causing microcrystals to precipitate in the melt near the slider surface. Since the solute is constantly being transported, these microcrystals serve as seeds and are continuously precipitated into microcrystals. Due to the precipitation of microcrystals within the melt in the peripheral area 89 outside the substrate, solute transport in the internal peripheral area 87 of the substrate is affected, and compared to the central area 85 , the transport of solutes in the internal peripheral area 87 of the substrate is affected.
7 growth rate becomes smaller.

[A][B]いずれの場合も均一な厚み分布の
成長が実現されず、たとえば、第11図に示すよ
うに周辺部の成長厚が中心部より小さくなりやす
い。さらに[A][B]いずれの場合もスライダ
の移動により温度変動が起こると、その影響を十
分吸収出来ず、連続して多数枚成長させたときの
厚みや分布の変動を生ずる。
[A] [B] In either case, growth with a uniform thickness distribution is not achieved, and for example, as shown in FIG. 11, the growth thickness at the periphery tends to be smaller than at the center. Furthermore, in both [A] and [B], if temperature fluctuation occurs due to slider movement, the effect cannot be sufficiently absorbed, resulting in variations in thickness and distribution when a large number of sheets are grown in succession.

以上の検討に基ずいたとき、[B]において基
板外周辺部89のメルト内での微結晶の析出を抑
制するならばより均一な厚みの結晶成長が可能に
なるものと考えられる。
Based on the above study, it is considered that if the precipitation of microcrystals in the melt in the outer peripheral portion 89 of the substrate is suppressed in [B], crystal growth with a more uniform thickness will be possible.

[問題点を解決するための手段] 本発明によれば、成長用材料を溶解した溶液
(メルト)を底部に開口を有するメルト槽に収容
し、上部が下部より高温となるように温度差をつ
け、メルト槽の開口の位置で基板をメルトと接触
させ、基板上にメルトから結晶をエピタキシヤル
成長させ温度差法液相結晶成長において、基板を
メルト槽開口部より小さくし、基板の外側下部の
スライダの内部に基板上面側より見て基板を囲む
ように空洞を設け、この空洞の内周が作る面積が
基板とほぼ同じ面積として基板外側の熱抵抗を大
きくしこの領域を流れる熱を抑制する。
[Means for Solving the Problems] According to the present invention, a solution (melt) in which a growth material is dissolved is stored in a melt tank having an opening at the bottom, and a temperature difference is created so that the upper part is higher than the lower part. The substrate is brought into contact with the melt at the opening of the melt tank, and crystals are epitaxially grown from the melt on the substrate. A cavity is provided inside the slider so as to surround the board when viewed from the top surface of the board, and the area created by the inner periphery of this cavity is approximately the same area as the board, increasing the thermal resistance on the outside of the board and suppressing the heat flowing through this area. do.

さらに、この空洞に成長温度で液状となる金属
(液状金属)を0−100%充填するのが好ましい。
Furthermore, it is preferable to fill this cavity with 0-100% of a metal that becomes liquid at the growth temperature (liquid metal).

この方法はGaAlAsの他GaP GaAsInP
InGaAsPある意は、ZnSeZnTe、HgCdTeその他
の温度差法液相エピタキシヤル結晶成長法による
結晶の成長に適用できる。
This method is applicable to GaAlAs as well as GaP GaAsInP.
InGaAsP can be applied to the growth of ZnSeZnTe, HgCdTe, and other crystals by temperature difference liquid phase epitaxial crystal growth.

[作用] 第1図、第2図で例示すると、スライダ21の
中央部27を囲んで空洞25を作り、空洞には気
体および液体を入れる。たとえば、グラフアイト
のスライダ21の基板19とほぼ同断面積の中央
部27を囲むように25を作り、Ga等成長温度
で液体となる金属31を部分的に充填し、上部空
間33にはH2、Arなどの雰囲気ガスが入るよう
にする。熱伝導率は スライダの材質>液体金属≫ガス となるので熱流は空洞部分では制限され、主とし
て空洞で囲まれた中央部27を通る。この部分は
基板とほぼ同一面積であるので基板外側の周辺部
の熱抵抗を高くし、そこでのメルト内の微結晶の
析出を抑制し、かる基板面内の熱的条件を均一に
保ち易くする。
[Function] As illustrated in FIGS. 1 and 2, a cavity 25 is formed surrounding the central portion 27 of the slider 21, and gas and liquid are filled in the cavity. For example, a graphite slider 21 is made so as to surround a central portion 27 having approximately the same cross-sectional area as the substrate 19, and is partially filled with a metal 31 that becomes liquid at the growth temperature, such as Ga, and the upper space 33 is filled with H 2 , to allow atmospheric gas such as Ar to enter. Since the thermal conductivity is as follows: material of slider>liquid metal>>gas, heat flow is restricted in the cavity and mainly passes through the central part 27 surrounded by the cavity. Since this area has almost the same area as the substrate, it increases the thermal resistance of the peripheral area outside the substrate, suppresses the precipitation of microcrystals in the melt there, and makes it easier to maintain uniform thermal conditions within the substrate plane. .

さらにこの空洞に成長温度において液状となる
金属(例Ga)をいれると液体金属は熱対流によ
つて移動する。基板面内に不均一温度分布があつ
ても均熱化される。局部的な不均一温度分布は液
体金属内の対流などにより均一化されるので基板
面内の均一温度分布がさらに得易くなる。
Furthermore, when a metal (eg Ga) that becomes liquid at the growth temperature is placed in this cavity, the liquid metal moves by thermal convection. Even if there is non-uniform temperature distribution within the substrate surface, the temperature can be equalized. Since the locally non-uniform temperature distribution is made uniform by convection within the liquid metal, it becomes easier to obtain a uniform temperature distribution within the substrate surface.

さらにこの液体金属の量を調節することにより
空間の容積を変え基板外周辺の熱抵抗を変えるこ
とができるので、加熱用炉体が冷却源などの成長
システムのわずかな相違による成長結果の相違を
調節補償することができる。
Furthermore, by adjusting the amount of this liquid metal, it is possible to change the volume of the space and change the thermal resistance around the outside of the substrate. Adjustment can be compensated.

基板の下方には空洞がなく、熱抵抗は大きく影
響されないので、成長速度は従来例とほぼ同様で
あり、高輝度発光ダイオードに必要な成長厚みが
確保される。
Since there is no cavity under the substrate and the thermal resistance is not greatly affected, the growth rate is almost the same as in the conventional example, and the growth thickness necessary for high brightness light emitting diodes is ensured.

[実施例] 第1図、第2図に本発明の1実施例による液相
結晶成長装置を部分的に示す。
[Embodiment] FIGS. 1 and 2 partially show a liquid phase crystal growth apparatus according to an embodiment of the present invention.

メルト槽11の中には結晶成長用のメルト13
が収容されている。メルト槽11の底は開いてい
てスライダ21が底の開口を塞ぐようになつてい
る。スライダ21の中央部には凹部17が設けら
れ、成長下地となる半導体基板19が収められて
いる。従つて半導体基板19の上面はメルト13
の底部中央部と接する。スライダは支持部材の凹
状レール(図示せず)を摺動し、図面の紙面と垂
直の方向に動く、スライダの内部には基板に対応
する領域を囲むようにメルト槽の周辺部下方に空
洞部25が形成されている。空洞の外周寸法は本
実施例ではメルト13よりいく分大きめとしてあ
るが、これに限らない。但しメルト13の横断面
積とほぼ同じかそれ以上の横断面積をもつことが
好ましい。空洞部25の内側壁は中央部27が基
板19ないしスライダの凹部17とほぼ同じ横断
面積をもつよう設計される。さらにこの空洞部2
5と外部とを結ぶ連絡孔29が形成され、液体金
属や雰囲気ガスの出入りを可能にしている。空洞
部25に液体金属(例えばGa)31を入れてい
くと液とスライダの中央部27の側面とが接す
る。この時も中央部27の周囲では液面上に空間
33が残つている。液面を上げでいくと空間33
は次第に小さくなり、中央部27は液体金属31
の中になかば没する。
Inside the melt tank 11 is a melt 13 for crystal growth.
is accommodated. The bottom of the melt tank 11 is open, and the slider 21 closes the bottom opening. A recess 17 is provided in the center of the slider 21, and a semiconductor substrate 19 serving as a growth base is housed therein. Therefore, the upper surface of the semiconductor substrate 19 is covered with the melt 13.
It touches the center of the bottom. The slider slides on a concave rail (not shown) of the support member and moves in a direction perpendicular to the paper plane of the drawing. 25 is formed. Although the outer circumferential dimension of the cavity is somewhat larger than that of the melt 13 in this embodiment, it is not limited thereto. However, it is preferable that the cross-sectional area is approximately the same as or larger than the cross-sectional area of the melt 13. The inner wall of the cavity 25 is designed such that the central part 27 has approximately the same cross-sectional area as the substrate 19 or the recess 17 of the slider. Furthermore, this cavity 2
A communication hole 29 is formed to connect 5 and the outside, allowing liquid metal and atmospheric gas to enter and exit. When a liquid metal (for example, Ga) 31 is poured into the cavity 25, the liquid comes into contact with the side surface of the center portion 27 of the slider. Also at this time, a space 33 remains above the liquid level around the central portion 27. When the liquid level is raised, space 33
gradually becomes smaller, and the central part 27 becomes liquid metal 31
I'm half-dead inside.

メルト槽11、スライダ21はグラフアイトの
ような耐熱材料で作られている。メルト13は通
常成長すべき半導体材料の構成元素の1つを溶媒
としている。GaAs、GaAlAs、GaAlAsP、
GaP、GaSb等の場合はGa、InAs、InAsP等の場
合はInを用いる。液体金属31は使用常温(ほぼ
結晶成長温度)で液体であれば良く、Ga、In、
Hg等が用いられる。メルト13の主成分と液体
金属の主成分とを一致させておくのが不純物防
止、熱的設計等の面から好ましいことが多い。均
一な厚さの結晶成長を得るには基板19上での温
度分布が面内均一でかつ温度勾配も面内均一であ
り、さらに基板19より外側の部分89では微結
晶が発生しないことが望ましい。そのためには基
板19の断面積内において均一な熱流が上から下
に流れ、その外側では熱流が制限されることが望
ましい。
The melt tank 11 and slider 21 are made of a heat-resistant material such as graphite. The melt 13 normally uses one of the constituent elements of the semiconductor material to be grown as a solvent. GaAs, GaAlAs, GaAlAsP,
Ga is used for GaP, GaSb, etc., and In is used for InAs, InAsP, etc. The liquid metal 31 may be a liquid at room temperature (approximately the crystal growth temperature), and may be Ga, In,
Hg etc. are used. It is often preferable to match the main components of the melt 13 and the liquid metal from the viewpoint of impurity prevention, thermal design, etc. In order to obtain crystal growth with a uniform thickness, it is desirable that the temperature distribution on the substrate 19 be uniform within the plane and the temperature gradient be uniform within the plane, and furthermore, it is desirable that microcrystals do not occur in the portion 89 outside the substrate 19. . For this purpose, it is desirable that a uniform heat flow flows from top to bottom within the cross-sectional area of the substrate 19, and that the heat flow is restricted outside the cross-sectional area.

基板19の断面積内では上からメルト13、基
板19、スライダ21の上部、スライダの中央部
27、スライダ21の下部と熱が流れる。その外
側ではスライダ21の内部に空洞25(気体空間
33ないし液体金属31)が存在する。
Within the cross-sectional area of the substrate 19, heat flows from above to the melt 13, the substrate 19, the upper part of the slider 21, the center part 27 of the slider, and the lower part of the slider 21. Outside thereof, inside the slider 21 there is a cavity 25 (gas space 33 or liquid metal 31).

基板19の断面積内では構造が面内で均一であ
り均一な熱流を作り易くしている。
The structure is uniform within the cross-sectional area of the substrate 19, making it easy to create a uniform heat flow.

基板19の外側では熱回路中に空洞25(気体
空間33ないし液体金属31)が入る。気体の熱
伝導率はグラフアイト等の耐熱材料の熱伝導率よ
り各段に少ないので熱流は大きく制限される。こ
のため、基板19より外側の部分89での微結晶
析出は抑制される。
Outside the substrate 19 a cavity 25 (gas space 33 or liquid metal 31) enters the thermal circuit. Since the thermal conductivity of gas is much lower than that of heat-resistant materials such as graphite, heat flow is greatly restricted. Therefore, precipitation of microcrystals in the portion 89 outside the substrate 19 is suppressed.

たとえば、構成材料の熱伝導率(300゜K)
[W/cm・deg]の代表例は以下の通りである。
For example, the thermal conductivity of the constituent materials (300°K)
Representative examples of [W/cm·deg] are as follows.

H2 0.0018 Ga 0.335 グラフアイト 1.2 GaAs 0.54 さらに空洞部25内の液体金属31は熱伝導の
みでなく熱対流によつても熱を輸送できるので、
温度分布に不均一が生じた場合対流によつて均熱
化する役割を果たす。
H 2 0.0018 Ga 0.335 Graphite 1.2 GaAs 0.54 Furthermore, since the liquid metal 31 in the cavity 25 can transport heat not only by thermal conduction but also by thermal convection,
If uneven temperature distribution occurs, convection plays a role in equalizing the temperature.

この液体金属31の熱対流による均熱化と基板
外周辺領域89における微結晶析出の抑制によ
り、均一な厚さの成長結晶が得られる。
By equalizing the temperature by heat convection of the liquid metal 31 and suppressing the precipitation of microcrystals in the outer peripheral region 89 of the substrate, a grown crystal with a uniform thickness can be obtained.

期待される膜厚分布の例を第3図に示す。 An example of the expected film thickness distribution is shown in FIG.

基板の下方の構成は従来と同様であるので熱抵
抗は大きく影響されない。従つて、成長速度は従
来例とほぼ同様であり、高輝度発光ダイオードに
必要な成長厚みが確保される。
Since the structure below the substrate is the same as the conventional one, thermal resistance is not greatly affected. Therefore, the growth rate is almost the same as that of the conventional example, and the growth thickness necessary for a high-brightness light emitting diode is ensured.

また液体金属の上面に設けられた空間は、細孔
により外部雰囲気と連結されているので、高温に
なつても内部圧力が上昇する危険はない。
Furthermore, since the space provided on the upper surface of the liquid metal is connected to the outside atmosphere through the pores, there is no risk of internal pressure increasing even at high temperatures.

さらに周辺部での液体金属の上面の空間33の
容積を調節することにより、基板外周辺領域89
における基板面に垂直方向の熱抵抗を調節するこ
ともでき、加熱用炉体や冷却源等の成長システム
のわずかな相違による、成長条件の相違を調節補
償することもできる。
Furthermore, by adjusting the volume of the space 33 on the upper surface of the liquid metal in the peripheral area, the outer peripheral area 89 of the substrate can be adjusted.
It is also possible to adjust the thermal resistance in the direction perpendicular to the substrate plane, and to compensate for differences in growth conditions due to slight differences in growth systems such as heating furnaces and cooling sources.

この方法は、GaAlAsのみならず、
GaPGaAsInP、InP、InGaAsP、あるいは、
ZnSe、ZnTe、HgCdTeその他の温度差法液相エ
ピタキシヤル成長法による結晶の成長に適用でき
る。
This method is applicable not only to GaAlAs but also to
GaPGAAsInP, InP, InGaAsP, or
It can be applied to the growth of ZnSe, ZnTe, HgCdTe, and other crystals by temperature difference liquid phase epitaxial growth.

この構成により、基板19上に均一な熱流をつ
くり、その外側での結晶析出を抑制し、特性の良
い発光ダイオードを高歩留まりで製造できる。
With this configuration, a uniform heat flow is created on the substrate 19, crystal precipitation on the outside thereof is suppressed, and light emitting diodes with good characteristics can be manufactured at a high yield.

[発明の効果] 以上のように、基板外の周辺部の熱抵抗を大き
くし、液体金属を用いる場合はその熱対流による
均熱化を加え、基板外周辺のメルト内での微結晶
の析出を抑制し、均一な厚みの成長結晶が得られ
る。
[Effects of the invention] As described above, by increasing the thermal resistance in the peripheral area outside the substrate, and when using liquid metal, by adding equalization through thermal convection, it is possible to increase the precipitation of microcrystals in the melt around the outside of the substrate. growth crystals with uniform thickness can be obtained.

従つて、均一な発光効率の発光ダイオード用エ
ピタキシヤルウエハが高歩留まりで製造され、安
価に大量に高発光効率の発光ダイオードを供給す
ることができる。
Therefore, epitaxial wafers for light emitting diodes with uniform luminous efficiency can be manufactured at a high yield, and light emitting diodes with high luminous efficiency can be supplied in large quantities at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の1実施例による液相結晶成長
装置の部分概略図、第2図は第1図の部分横断面
図、第3図は成長層の膜厚分布の例、第4図は従
来の液相結晶成長装置の概略図、第5図は第4図
の部分拡大図、第6図は成長操作を説明する温度
対時間のグラフ、第7図は従来技術の液相結晶装
置の部分拡大図、第8図は第7図の横断面図、第
9図は従来技術の液相結晶装置の部分拡大図、第
10図は第9図の横断面図、第11図は従来技術
による成長層の膜厚測定例である。 符号の説明、11……メルト槽、13……メル
ト、17……スライダの凹部、19……基板、2
1……スライダ、25……空洞、27……スライ
ダの中央部、29……連絡孔、31……液体金
属、33……空間。
FIG. 1 is a partial schematic diagram of a liquid phase crystal growth apparatus according to an embodiment of the present invention, FIG. 2 is a partial cross-sectional view of FIG. 1, FIG. 3 is an example of the film thickness distribution of the grown layer, and FIG. 4 is a schematic diagram of a conventional liquid phase crystal growth apparatus, FIG. 5 is a partially enlarged view of FIG. 4, FIG. 6 is a temperature versus time graph explaining the growth operation, and FIG. 7 is a conventional liquid phase crystal growth apparatus. 8 is a cross-sectional view of FIG. 7, FIG. 9 is a partially enlarged view of a conventional liquid phase crystallization device, FIG. 10 is a cross-sectional view of FIG. 9, and FIG. 11 is a conventional This is an example of measuring the thickness of a grown layer using this technique. Explanation of symbols, 11...Melt tank, 13...Melt, 17...Slider recess, 19...Substrate, 2
1...Slider, 25...Cavity, 27...Center of slider, 29...Communication hole, 31...Liquid metal, 33...Space.

Claims (1)

【特許請求の範囲】 1 成長用材料を溶解したメルトを保持し底部に
開口を有し耐熱材料で作られたメルト槽と結晶基
板を上に保持しメルト槽の開口側に摺動可能に接
触する耐熱材料で作られたスライダとを用い、メ
ルト内に上部が下部より高温となるように温度差
をつけ基板をメルト槽の開口と接するようにスラ
イダを移動し、メルト槽の開口の位置で基板をメ
ルトと接触させ基板上にメルトから結晶をエピタ
キシヤル成長させる温度差法の液相の結晶成長の
方法において、基板をメルト槽開口部より小さく
し、基板の外側下方のスライダの内部に、基板面
に垂直な方向から見て基板を囲むように空洞を設
け、この空洞の内周壁が作る面積が基板とほぼ同
じ面積とし、この空洞で囲まれた面積の真上に基
板を配置し、メルトから結晶をエピタキシヤル成
長させることを特徴とする液相の結晶成長の方
法。 2 前記空洞が結晶成長温度で液体となる金属を
収めている特許請求の範囲第1項記載の液相の結
晶成長の方法。 3 成長用材料を溶解したメルトを保持するため
の、底部に開口を有し耐熱材料で作られたメルト
槽と結晶基板を上に保持しメルト槽の開口側に摺
動可能に接触する耐熱材料で作られたスライダと
を有し、メルト内に上部が下部より高温と成るよ
うに温度差をつけ基板をメルト槽の開口と接する
ようにスライダを移動し、メルト槽の開口の位置
で基板をメルトと接触させ基板上にメルトから結
晶をエピタキシヤル成長させるための温度差法の
液相の結晶成長の装置において、基板の外側下方
のスライダの内部に、基板面に垂直な方向から見
て基板を囲むように空洞を設け、この空洞の内周
壁が作る面積を基板とほぼ同じ面積とし、この空
洞で囲まれた面積の真上に基板を配置し、メルト
から結晶をエピタキシヤル成長させるようにした
ことを特徴とする液相の結晶成長の装置。 4 前記空洞が結晶成長温度で液体となる金属を
収めている特許請求の範囲第3項記載の液相の結
晶成長の装置。
[Scope of Claims] 1. A melt tank made of a heat-resistant material that holds a melt containing a growth material and has an opening at the bottom and a crystal substrate is held on top and is slidably in contact with the open side of the melt tank. Using a slider made of heat-resistant material, create a temperature difference in the melt so that the upper part is hotter than the lower part, move the slider so that the substrate is in contact with the opening of the melt tank, and place the slider at the opening of the melt tank. In a temperature difference liquid phase crystal growth method in which a substrate is brought into contact with a melt and crystals are epitaxially grown from the melt on the substrate, the substrate is made smaller than the melt tank opening, and inside the slider below the outside of the substrate, A cavity is provided to surround the substrate when viewed from a direction perpendicular to the substrate surface, the area created by the inner peripheral wall of this cavity is approximately the same area as the substrate, and the substrate is placed directly above the area surrounded by this cavity, A liquid phase crystal growth method characterized by epitaxially growing crystals from a melt. 2. The liquid phase crystal growth method according to claim 1, wherein the cavity contains a metal that becomes liquid at the crystal growth temperature. 3. A melt tank made of a heat-resistant material and having an opening at the bottom to hold the melt containing the growth material, and a heat-resistant material that holds the crystal substrate on top and slidably contacts the open side of the melt tank. Create a temperature difference in the melt so that the upper part is hotter than the lower part, move the slider so that the substrate is in contact with the opening of the melt tank, and place the substrate at the opening of the melt tank. In a liquid phase crystal growth apparatus using a temperature difference method for epitaxially growing crystals from a melt on a substrate in contact with the melt, the substrate is placed inside a slider below the outside of the substrate when viewed from a direction perpendicular to the substrate surface. A cavity is provided surrounding the cavity, the area created by the inner circumferential wall of this cavity is approximately the same as that of the substrate, the substrate is placed directly above the area surrounded by this cavity, and crystals are grown epitaxially from the melt. A liquid phase crystal growth apparatus characterized by: 4. The liquid phase crystal growth apparatus according to claim 3, wherein the cavity contains a metal that becomes liquid at the crystal growth temperature.
JP33311187A 1987-12-29 1987-12-29 Method for liquid-phase crystal growth and apparatus therefor Granted JPH0222197A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33311187A JPH0222197A (en) 1987-12-29 1987-12-29 Method for liquid-phase crystal growth and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33311187A JPH0222197A (en) 1987-12-29 1987-12-29 Method for liquid-phase crystal growth and apparatus therefor

Publications (2)

Publication Number Publication Date
JPH0222197A JPH0222197A (en) 1990-01-25
JPH0566917B2 true JPH0566917B2 (en) 1993-09-22

Family

ID=18262407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33311187A Granted JPH0222197A (en) 1987-12-29 1987-12-29 Method for liquid-phase crystal growth and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH0222197A (en)

Also Published As

Publication number Publication date
JPH0222197A (en) 1990-01-25

Similar Documents

Publication Publication Date Title
US3632431A (en) Method of crystallizing a binary semiconductor compound
US4315796A (en) Crystal growth of compound semiconductor mixed crystals under controlled vapor pressure
US4918029A (en) Method for liquid-phase thin film epitaxy
JPH0566917B2 (en)
JPH0566915B2 (en)
JPH0566914B2 (en)
JP4248276B2 (en) Group III nitride crystal manufacturing method
JPH0566916B2 (en)
JP4784095B2 (en) Compound semiconductor single crystal and method and apparatus for manufacturing the same
JP2008300603A (en) Semiconductor production apparatus
JPS60176995A (en) Preparation of single crystal
Zhang et al. GaN Substrate Material for III–V Semiconductor Epitaxy Growth
JP2599767B2 (en) Solution growth equipment
JP2003267794A (en) Method and apparatus for growing crystal
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JPH01164792A (en) Method for growing liquid phase crystal by temperature difference
Plaskett The Synthesis of Bulk GaP from Ga Solutions
JP2538009B2 (en) Liquid phase epitaxial growth method
JPS5820795A (en) Growing method of single crystal
JPS6381918A (en) Manufacture of mixed crystal
JPH08333193A (en) Production of semiconductor crystal and apparatus therefor
JPH0572359B2 (en)
JPH0563235A (en) Manufacture of semiconductor element
JPS5929416A (en) Manufacture of semiconductor device
JPH02120298A (en) Semi-insulating gallium arsenide single crystal and production thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees