JPH0566114A - Thickness measuring device for transparent material - Google Patents

Thickness measuring device for transparent material

Info

Publication number
JPH0566114A
JPH0566114A JP22688591A JP22688591A JPH0566114A JP H0566114 A JPH0566114 A JP H0566114A JP 22688591 A JP22688591 A JP 22688591A JP 22688591 A JP22688591 A JP 22688591A JP H0566114 A JPH0566114 A JP H0566114A
Authority
JP
Japan
Prior art keywords
mirror
rotating
measured
light
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22688591A
Other languages
Japanese (ja)
Inventor
Satoru Takahashi
悟 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Akita Electronics Systems Co Ltd
Original Assignee
Hitachi Ltd
Akita Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Akita Electronics Co Ltd filed Critical Hitachi Ltd
Priority to JP22688591A priority Critical patent/JPH0566114A/en
Publication of JPH0566114A publication Critical patent/JPH0566114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To measure the one-dimensional thickness distribution of a transparent sheet at high speed by conducting scanning in such a manner as to move an optical beam on the surface of a material to be measured by a rotating mirror and an optical system, and imaging each of the surface reflected light and bottom reflected light obtained by the scanning onto an image sensor through the rotating mirror. CONSTITUTION:A semiconductor laser 7, a rotating flat mirror 9 receiving the laser beam from the semiconductor laser 7 and emitting it according to rotation, and a projecting lens 10 and reflecting mirror 11 for radiating the optical beam from the rotating flat mirror 9 to a material 6 to be measured of a transparent sheet are provided. Further, a reflecting mirror 12 and converging lens 13 for guiding again the surface reflected light 15 and bottom reflected light 16 of the material 6 to be measured to the laser beam from the reflecting mirror 11 to the rotating flat mirror 9, and an image sensor 14 for receiving each of the two reflected lights from the rotating flat mirror 9 to the optical beam from the converging lens 13 are provided to form a thickness measuring device for transparent material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は透明シートなどの透明な
物の厚みを測定する技術、特に、レーザビームを被測定
物の表面に照射して得られる反射レーザ光のスポットの
移動から厚みを測定するために用いて効果のある技術に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technique for measuring the thickness of a transparent object such as a transparent sheet, and more particularly, to the thickness of a reflected laser beam obtained by irradiating the surface of the object to be measured with a laser beam. It relates to effective techniques used to make measurements.

【0002】[0002]

【従来の技術】例えば、スペーサとして用いる透明シー
ト、光学系に用いる透明ガラスなどは、その厚みが厳重
に管理されなければならない。この種の製品の厚みを測
定するための装置は、現在市販されているもののすべて
がスポット測定を行っている。
2. Description of the Related Art For example, the thickness of transparent sheets used as spacers, transparent glass used in optical systems, etc. must be strictly controlled. As for the device for measuring the thickness of this type of product, all the devices currently on the market perform spot measurement.

【0003】そのために、一次元または二次元的な表面
状態すなわち厚み分布を測定するためには、機械的なス
ライド機構を必要としている。
Therefore, in order to measure the one-dimensional or two-dimensional surface condition, that is, the thickness distribution, a mechanical slide mechanism is required.

【0004】図3は従来の厚み測定装置の概略構成を示
す斜視図である。
FIG. 3 is a perspective view showing a schematic structure of a conventional thickness measuring device.

【0005】厚み測定装置1はL字型をなしたアーム2
の一端に取り付けられ、その他端はX−Yステージ3に
固定されている。このX−Yステージ3は、モータ4,
5によって駆動され、直交する2方向に厚み測定装置1
を移動させることができる。
The thickness measuring device 1 has an L-shaped arm 2
Is attached to one end of the XY stage 3 and the other end is fixed to the XY stage 3. This XY stage 3 includes a motor 4,
The thickness measuring device 1 is driven by 5 in two orthogonal directions.
Can be moved.

【0006】厚み測定装置1の直下には、被測定物であ
る被測定物6(透明シート)が配設されている。
An object to be measured 6 (transparent sheet), which is an object to be measured, is arranged immediately below the thickness measuring device 1.

【0007】測定に際しては、被測定物6を固定してお
き、モータ4,5によってX−Yステージ3を駆動し、
被測定物6の測定開始点上に厚み測定装置1を位置決め
する。ここで厚み測定装置1から光ビームを発して被測
定物6の表面に照射し、その反射レーザ光を厚み測定装
置1の光検出器(例えば、CCDセンサ)に入射させ
る。光検出器には、透明シートの表面で反射した光と透
明シートの底面で反射した光とが同時に検出され、その
2つの結像点のセンサ上の距離から透明シートの厚みを
測定することができる。
At the time of measurement, the DUT 6 is fixed, and the XY stage 3 is driven by the motors 4 and 5,
The thickness measuring device 1 is positioned on the measurement starting point of the DUT 6. Here, a light beam is emitted from the thickness measuring device 1 to irradiate the surface of the DUT 6, and the reflected laser light is made incident on the photodetector (for example, CCD sensor) of the thickness measuring device 1. The light detector simultaneously detects the light reflected on the surface of the transparent sheet and the light reflected on the bottom surface of the transparent sheet, and can measure the thickness of the transparent sheet from the distance between the two image formation points on the sensor. it can.

【0008】この状態で厚み測定装置1をX−Yステー
ジ3によって一方向(例えば、X方向)へ連続的に移動
させることにより、一次元の走査が行われる。被測定物
6の一端から他端への走査が終了したら、厚み測定装置
1を所定ピッチだけY方向へ移動し、再び厚み測定装置
1をX方向へ移動させる。以下、同様にして被測定物6
の全面を走査することにより、一次元的な厚み分布が測
定できる。
In this state, the thickness measuring device 1 is continuously moved in one direction (for example, the X direction) by the XY stage 3 to perform one-dimensional scanning. When scanning from one end to the other end of the DUT 6 is completed, the thickness measuring device 1 is moved in the Y direction by a predetermined pitch, and the thickness measuring device 1 is moved again in the X direction. Thereafter, the DUT 6 is similarly measured.
A one-dimensional thickness distribution can be measured by scanning the entire surface of.

【0009】[0009]

【発明が解決しようとする課題】本発明者の検討によれ
ば、厚み測定装置を機械的に移動して変位測定を行う表
面変位測定技術は、スライド機構を必要とするために、
測定に時間を要し(すなわち、高速化が図れない)、イ
ンラインでは使えず、また、装置が大型化ならびに大重
量化するという問題がある。
According to the study by the present inventor, the surface displacement measuring technique for mechanically moving the thickness measuring device to measure the displacement requires a slide mechanism.
There is a problem that the measurement takes time (that is, high speed cannot be achieved), it cannot be used in-line, and the device becomes large and heavy.

【0010】そこで、本発明の目的は、透明シートの一
次元的な厚み分布の測定を高速に行うことのできる技術
を提供することにある。
Therefore, an object of the present invention is to provide a technique capable of rapidly measuring the one-dimensional thickness distribution of a transparent sheet.

【0011】本発明の前記ならびに他の目的と新規な特
徴は、本明細書の記述及び添付図面から明らかになるで
あろう。
The above and other objects and novel features of the present invention will be apparent from the description of this specification and the accompanying drawings.

【0012】[0012]

【課題を解決するための手段】本願において開示される
発明のうち、代表的なものの概要を簡単に説明すれば、
以下の通りである。
Among the inventions disclosed in the present application, a brief description will be given to the outline of typical ones.
It is as follows.

【0013】すなわち、回転可能に設置されると共にそ
の回転に応じて入射された光ビームを出射する回転鏡
と、該回転鏡からの光ビームをシート状の被測定物へ照
射する第1の光学系と、前記被測定物からの表面反射光
及び底面反射光を前記回転鏡へ導く第2の光学系と、該
第2の光学系からの光ビームに対する前記回転鏡からの
2つの反射光の各々を受光するイメージセンサとを設け
るようにしている。
That is, a rotating mirror that is rotatably installed and that emits a light beam that is incident according to the rotation, and a first optical device that irradiates a sheet-like object to be measured with the light beam from the rotating mirror. A system, a second optical system that guides the surface reflected light and the bottom surface reflected light from the object to be measured to the rotating mirror, and two reflected light from the rotating mirror with respect to the light beam from the second optical system. An image sensor for receiving each light is provided.

【0014】[0014]

【作用】上記した手段によれば、回転鏡を介して光ビー
ムが被測定物へ回転鏡の回転速度に応じて走査するよう
に照射され、この走査に伴う被測定物表面からの表面反
射光及び底面反射光が同一の回転鏡の鏡面に入射し、こ
れがイメージセンサ上に2点のスポットとして各々が結
像される。したがって、一次元的な厚み分布測定を高速
に行うことができる。しかも、装置の小型化及びローコ
スト化も図ることができる。
According to the above-mentioned means, the light beam is radiated through the rotary mirror to the object to be measured so as to scan according to the rotation speed of the rotary mirror, and the surface reflected light from the surface of the object to be measured accompanying this scanning. And the bottom reflected light are incident on the mirror surface of the same rotating mirror, and each of them is imaged as two spots on the image sensor. Therefore, one-dimensional thickness distribution measurement can be performed at high speed. Moreover, it is possible to reduce the size and cost of the device.

【0015】[0015]

【実施例】図1は本発明による透明物体の厚み測定装置
の一実施例の概略構成を示す斜視図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a perspective view showing the schematic construction of an embodiment of the thickness measuring apparatus for transparent objects according to the present invention.

【0016】測定用光源である半導体レーザ7のレーザ
ビームの出射光路上には、コリメートレンズ8及び回転
平面鏡9(回転鏡)が順次配設されている。回転平面鏡
9は、横長の平面鏡の中心に回転軸9aが平行に固定さ
れ、回転できるように構成されている。この回転平面鏡
9の反射光路上には、被測定物6(例えば、透明シー
ト)にレーザビームを結像させる投光レンズ10が配設
されている。この出射光路上には、投光レンズ10から
のレーザビームを被測定物6上に斜め方向(その角度
は、被測定物6に対して臨界角以上にする)から照射す
るための反射鏡11(平面鏡)が配設されている。この
反射鏡11と投光レンズ10とにより第1の光学系を形
成している。
A collimator lens 8 and a rotating plane mirror 9 (rotating mirror) are sequentially arranged on an emission optical path of a laser beam of a semiconductor laser 7 which is a measuring light source. The rotating plane mirror 9 is configured such that the rotating shaft 9a is fixed in parallel to the center of the horizontally long plane mirror and can rotate. On the reflection optical path of the rotating plane mirror 9, a light projecting lens 10 for forming an image of a laser beam on the DUT 6 (for example, a transparent sheet) is arranged. A reflecting mirror 11 for irradiating the laser beam from the light projecting lens 10 onto the DUT 6 in an oblique direction (the angle is set to be a critical angle or more with respect to the DUT 6) on the outgoing optical path. (Plane mirror) is provided. The reflecting mirror 11 and the light projecting lens 10 form a first optical system.

【0017】反射鏡11から照射されたレーザビーム
は、被測定物6上で反射するが、その反射レーザ光の光
路上には該反射レーザ光を垂直方向へ反射させるための
反射鏡12(平面鏡)が配設されている。この出射光路
上には、検出位置上に結像させるための集光レンズ13
が配設され(この集光レンズ13と反射鏡12により第
2の光学系を形成)、その出射光は回転平面鏡9上へ導
かれ、さらにイメージセンサ14上に結像される。
The laser beam emitted from the reflecting mirror 11 is reflected on the object 6 to be measured, and the reflecting mirror 12 (planar mirror) for reflecting the reflected laser light in the vertical direction is present on the optical path of the reflected laser light. ) Is provided. A condenser lens 13 for forming an image on the detection position is provided on the exit optical path.
Is arranged (the second optical system is formed by the condenser lens 13 and the reflecting mirror 12), and the emitted light is guided to the rotating plane mirror 9 and further imaged on the image sensor 14.

【0018】以上の構成において、そのレーザビームの
経路の形成について、図2を参照して説明する。なお、
図2においては、説明の便宜上、回転平面鏡9の図示を
省いている。
The formation of the path of the laser beam in the above structure will be described with reference to FIG. In addition,
In FIG. 2, the rotary plane mirror 9 is not shown for convenience of description.

【0019】半導体レーザ7から発したレーザビーム
は、投光レンズ10を介して反射鏡11に垂直方向から
入射される。反射鏡11の出射光は、被測定物6の表面
に対して臨界角以上の角度θ(例えば、被測定物6がガ
ラス材である場合は、41.5°>θ)で投光される。
この投光に対して生じる反射レーザ光は、被測定物6の
表面の表面反射レーザ光15と底面の底面反射レーザ光
16の2つであり、底面では全反射をする。表面反射レ
ーザ光15及び底面反射レーザ光16の各々の反射レー
ザ光は、反射鏡12及び集光レンズ13を介して独自の
光路を経てイメージセンサ14の異なる位置へスポット
として結像される。したがって、2つのスポット間の距
離から被測定物6の厚みを測定することができる。
The laser beam emitted from the semiconductor laser 7 is incident on the reflecting mirror 11 from the vertical direction via the light projecting lens 10. The light emitted from the reflecting mirror 11 is projected onto the surface of the DUT 6 at an angle θ equal to or greater than the critical angle (for example, 41.5 °> θ when the DUT 6 is a glass material). ..
The reflected laser light generated in response to this projection is two, that is, the surface reflected laser light 15 on the surface of the DUT 6 and the bottom surface reflected laser light 16 on the bottom surface, and the bottom surface is totally reflected. The reflected laser light of each of the surface-reflected laser light 15 and the bottom-reflected laser light 16 is imaged as a spot on a different position of the image sensor 14 via its own optical path through the reflecting mirror 12 and the condenser lens 13. Therefore, the thickness of the DUT 6 can be measured from the distance between the two spots.

【0020】以上の説明では、説明の便宜上、回転平面
鏡9が回転しないものとしたが、実際には矢印方向へ回
転しており、半導体レーザ7からのレーザビームに対す
る回転平面鏡9の出射角度は、この回転平面鏡9の回転
に応じて変化する。その出射光は反射鏡11によって、
被測定物6に対してθの角度で入射するように反射す
る。したがって、反射鏡11の出射光は、回転平面鏡9
の回転に応じて被測定物6の表面上を矢印方向へ連続に
移動、すなわち一元的な走査が行われる。これに伴っ
て、反射鏡11の出射光の移動と共に反射レーザ光(表
面反射レーザ光15及び底面反射レーザ光16)も同一
方向へ移動し、その反射レーザ光は反射鏡12及び集光
レンズ13を介して回転平面鏡9へ入射し、さらに回転
平面鏡9の出射光が表面反射レーザ光15及び底面反射
レーザ光16のスポットとしてイメージセンサ14上の
離間した位置へ結像する。この結像位置間隔は、厚みの
変化に応じて変化するものの、回転平面鏡9の回転状態
には無関係であり、回転平面鏡9が回転することによ
り、常にイメージセンサ14へ向けて出射される。
In the above description, the rotary plane mirror 9 is not rotated for the sake of convenience of description, but it is actually rotated in the direction of the arrow, and the emitting angle of the rotary plane mirror 9 to the laser beam from the semiconductor laser 7 is It changes according to the rotation of the rotating plane mirror 9. The emitted light is reflected by the reflecting mirror 11.
It is reflected so that it enters the DUT 6 at an angle of θ. Therefore, the light emitted from the reflecting mirror 11 is reflected by the rotating plane mirror 9
In accordance with the rotation, the object 6 is continuously moved in the direction of the arrow on the surface of the object 6, that is, a unitary scanning is performed. Along with this, the reflected laser light (the surface reflected laser light 15 and the bottom reflected laser light 16) also moves in the same direction along with the movement of the light emitted from the reflecting mirror 11, and the reflected laser light is reflected by the reflecting mirror 12 and the condenser lens 13. The light emitted from the rotary plane mirror 9 is imaged as spots of the front surface reflection laser light 15 and the bottom surface reflection laser light 16 on the image sensor 14 at positions separated from each other. Although this image forming position interval changes according to the change in thickness, it is irrelevant to the rotating state of the rotary plane mirror 9, and is always emitted toward the image sensor 14 when the rotary plane mirror 9 rotates.

【0021】以上のように、上記実施例によれば、厚み
測定装置を機械的に移動させる必要がなく、走査速度は
回転平面鏡9の回転速度で決まるので、厚み測定を高速
に行うことが可能になる。また、駆動の対象になる部分
は回転平面鏡9のみであり、他は光学素子を固定できる
ので、装置の小型化を図ることができると共に移動テー
ブルなどのスライド機構が不要になるのでローコスト化
も可能になる。
As described above, according to the above-described embodiment, it is not necessary to mechanically move the thickness measuring device, and the scanning speed is determined by the rotation speed of the rotary flat mirror 9, so that the thickness measurement can be performed at high speed. become. Further, since only the rotary plane mirror 9 is the target to be driven and the other optical elements can be fixed, the size of the apparatus can be reduced, and a slide mechanism such as a moving table is not required, so that the cost can be reduced. become.

【0022】以上、本発明者によってなされた発明を実
施例に基づき具体的に説明したが、本発明は前記実施例
に限定されるものではなく、その要旨を逸脱しない範囲
で種々変更可能であることは言うまでもない。例えば、
走査スピードを更に高速化するために、回転平面鏡9に
代えて回転多面鏡を用いることもできる。
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the embodiments and various modifications can be made without departing from the scope of the invention. Needless to say. For example,
In order to further increase the scanning speed, a rotary polygon mirror may be used instead of the rotary flat mirror 9.

【0023】また、図1の構成において、反射鏡12を
除去した構成にすることもできる。
Further, in the structure of FIG. 1, the structure in which the reflecting mirror 12 is removed may be adopted.

【0024】この場合、被測定物6からの反射レーザ光
の光路に対し一直線上に集光レンズ13及びイメージセ
ンサ14を配設することになる。
In this case, the condenser lens 13 and the image sensor 14 are arranged in a straight line with respect to the optical path of the reflected laser light from the DUT 6.

【0025】以上の説明では、主として本発明者によっ
てなされた発明をその利用分野である半導体装置のシー
ト状部品に適用した場合について説明したが、これに限
定されるものではなく、透明な物体の全てに適用するこ
とができ、また、シート状の物体に限定されるものでも
ない。
In the above description, the case where the invention made by the present inventor is mainly applied to the sheet-shaped component of the semiconductor device which is the field of application of the invention has been described. It can be applied to all, and is not limited to a sheet-like object.

【0026】[0026]

【発明の効果】本願において開示される発明のうち、代
表的なものによって得られる効果を簡単に説明すれば、
下記の通りである。
The effects obtained by the typical ones of the inventions disclosed in the present application will be briefly described as follows.
It is as follows.

【0027】すなわち、回転可能に設置されると共にそ
の回転に応じて入射された光ビームを出射する回転鏡
と、該回転鏡からの光ビームをシート状の被測定物へ照
射する第1の光学系と、前記被測定物からの表面反射光
及び底面反射光を前記回転鏡へ導く第2の光学系と、該
第2の光学系からの光ビームに対する前記回転鏡からの
2つの反射光の各々を受光するイメージセンサとを設け
るようにしたので、一次元的な厚み分布測定を高速に行
うことができる。しかも、装置の小型化及びローコスト
化も図ることができる。
That is, a rotating mirror that is rotatably installed and that emits a light beam that is incident according to the rotation, and a first optical that irradiates a sheet-shaped object to be measured with the light beam from the rotating mirror. A system, a second optical system that guides the surface reflected light and the bottom surface reflected light from the object to be measured to the rotating mirror, and two reflected light from the rotating mirror with respect to the light beam from the second optical system. Since the image sensor for receiving each light is provided, the one-dimensional thickness distribution measurement can be performed at high speed. Moreover, it is possible to reduce the size and cost of the device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による透明物体の厚み測定装置の一実施
例の概略構成を示す斜視図である。
FIG. 1 is a perspective view showing a schematic configuration of an embodiment of a transparent object thickness measuring apparatus according to the present invention.

【図2】本発明による透明物体の厚み測定装置の測定原
理を示す説明図である。
FIG. 2 is an explanatory diagram showing the measurement principle of the thickness measuring device for a transparent object according to the present invention.

【図3】従来の厚み測定装置の概略構成を示す斜視図で
ある。
FIG. 3 is a perspective view showing a schematic configuration of a conventional thickness measuring device.

【符号の説明】[Explanation of symbols]

1 厚み測定装置 2 アーム 3 X−Yステージ 4 モータ 5 モータ 6 被測定物(透明シート) 7 半導体レーザ 8 コリメートレンズ 9 回転平面鏡 9a 回転軸 10 投光レンズ 11 反射鏡(平面鏡) 12 反射鏡(平面鏡) 13 集光レンズ 14 イメージセンサ 15 表面反射レーザ光 16 底面反射レーザ光 1 Thickness Measuring Device 2 Arm 3 XY Stage 4 Motor 5 Motor 6 Object to be Measured (Transparent Sheet) 7 Semiconductor Laser 8 Collimating Lens 9 Rotating Flat Mirror 9a Rotating Axis 10 Projection Lens 11 Reflecting Mirror (Plane Mirror) 12 Reflecting Mirror (Plane Mirror) ) 13 condensing lens 14 image sensor 15 surface reflection laser light 16 bottom reflection laser light

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 回転可能に設置されると共にその回転に
応じて入射された光ビームを出射する回転鏡と、該回転
鏡からの光ビームを透明な被測定物へ照射する第1の光
学系と、前記被測定物からの表面反射光及び底面反射光
を前記回転鏡へ導く第2の光学系と、該第2の光学系か
らの光ビームに対する前記回転鏡からの2つの反射光の
各々を受光するイメージセンサとを具備することを特徴
とする透明物体の厚み測定装置。
1. A rotating mirror which is rotatably installed and emits a light beam incident in response to the rotation, and a first optical system which irradiates a transparent object to be measured with the light beam from the rotating mirror. A second optical system for guiding the surface reflected light and the bottom surface reflected light from the object to be measured to the rotary mirror; and two reflected lights from the rotary mirror with respect to the light beam from the second optical system. An apparatus for measuring the thickness of a transparent object, comprising: an image sensor for receiving light.
【請求項2】 前記回転鏡は、回転する平面鏡または多
面鏡であることを特徴とする請求項1記載の透明物体の
厚み測定装置。
2. The thickness measuring device for a transparent object according to claim 1, wherein the rotating mirror is a rotating plane mirror or a polygon mirror.
【請求項3】 前記被測定物へ照射する光ビームの入射
角度は、前記被測定物の臨界角度以上にすることを特徴
とする透明物体の厚み測定装置。
3. An apparatus for measuring the thickness of a transparent object, wherein the incident angle of the light beam with which the object to be measured is irradiated is not less than the critical angle of the object to be measured.
JP22688591A 1991-09-06 1991-09-06 Thickness measuring device for transparent material Pending JPH0566114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22688591A JPH0566114A (en) 1991-09-06 1991-09-06 Thickness measuring device for transparent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22688591A JPH0566114A (en) 1991-09-06 1991-09-06 Thickness measuring device for transparent material

Publications (1)

Publication Number Publication Date
JPH0566114A true JPH0566114A (en) 1993-03-19

Family

ID=16852110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22688591A Pending JPH0566114A (en) 1991-09-06 1991-09-06 Thickness measuring device for transparent material

Country Status (1)

Country Link
JP (1) JPH0566114A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012083428A1 (en) * 2010-12-20 2012-06-28 Honeywell Acsa Lnc. Single-sided infrared sensor for thickness or weight measurement of products containing a reflective layer
CN103528528A (en) * 2013-10-18 2014-01-22 苏州精创光学仪器有限公司 Compact type precise laser triangular range finder
CN104316022A (en) * 2014-11-04 2015-01-28 苏州精创光学仪器有限公司 Improved compact precision laser triangulation rangefinder
CN106643528A (en) * 2016-09-28 2017-05-10 铜陵市铜创电子科技有限公司 Metalized film thickness observation device
CN108398102A (en) * 2018-01-22 2018-08-14 江苏珩图智能科技有限公司 Image collecting device and acquisition method when a kind of Curved screen detection

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012083428A1 (en) * 2010-12-20 2012-06-28 Honeywell Acsa Lnc. Single-sided infrared sensor for thickness or weight measurement of products containing a reflective layer
US8314388B2 (en) 2010-12-20 2012-11-20 Honeywell Asca Inc. Single-sided infrared sensor for thickness or weight measurement of products containing a reflective layer
CN103415757A (en) * 2010-12-20 2013-11-27 霍尼韦尔阿斯卡公司 Single-sided infrared sensor for thickness or weight measurement of products containing a reflective layer
CN103415757B (en) * 2010-12-20 2016-01-20 霍尼韦尔阿斯卡公司 For the one-sided infrared sensor of the thickness or weight of measuring the product comprising reflection horizon
CN103528528A (en) * 2013-10-18 2014-01-22 苏州精创光学仪器有限公司 Compact type precise laser triangular range finder
CN104316022A (en) * 2014-11-04 2015-01-28 苏州精创光学仪器有限公司 Improved compact precision laser triangulation rangefinder
CN106643528A (en) * 2016-09-28 2017-05-10 铜陵市铜创电子科技有限公司 Metalized film thickness observation device
CN108398102A (en) * 2018-01-22 2018-08-14 江苏珩图智能科技有限公司 Image collecting device and acquisition method when a kind of Curved screen detection

Similar Documents

Publication Publication Date Title
US3866038A (en) Apparatus for measuring surface flatness
US6862097B2 (en) Three-dimensional shape measuring method, and three-dimensional shape measuring apparatus
US4689480A (en) Arrangement for improved scanned 3-D measurement
JPH0566114A (en) Thickness measuring device for transparent material
JP2701639B2 (en) Height measuring device
JPH0626842A (en) One-dimensional scanning type surface displacement meter
JPH0626841A (en) One-dimensional scanning type surface displacement meter
JPH04356010A (en) Apparatus for generating telecentric light ray
KR20070015267A (en) Light displacement measuring apparatus
JPH03127191A (en) Optical scanner
JPH07190735A (en) Optical measuring device and its measuring method
JPH05215526A (en) Surface-shape measuring apparatus
JP2597711B2 (en) 3D position measuring device
JPH0861927A (en) Contour measuring method and device therefor
JPH06102020A (en) Surface shape measuring apparatus
JPH03111707A (en) Detecting method of shape of object
JPH0661115A (en) Gap detection and setting device
JPH05322529A (en) Surface shape measuring device
JPH0344504A (en) Method and apparatus for measuring three-dimensional shape of surface
JP2536821Y2 (en) 3D position measuring device
JPH02276908A (en) Three-dimensional position recognizing device
JPH10318883A (en) Method and device for measuring lens
JPH05264236A (en) Device for measuring outside dimension
JPH10281721A (en) Displacement measuring device
JPH07120217A (en) Distance measurement method and device