JPH0565990B2 - - Google Patents

Info

Publication number
JPH0565990B2
JPH0565990B2 JP63253894A JP25389488A JPH0565990B2 JP H0565990 B2 JPH0565990 B2 JP H0565990B2 JP 63253894 A JP63253894 A JP 63253894A JP 25389488 A JP25389488 A JP 25389488A JP H0565990 B2 JPH0565990 B2 JP H0565990B2
Authority
JP
Japan
Prior art keywords
nickel
chromium
particles
powder
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63253894A
Other languages
Japanese (ja)
Other versions
JPH02103861A (en
Inventor
Satoshi Kawamura
Norio Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP63253894A priority Critical patent/JPH02103861A/en
Publication of JPH02103861A publication Critical patent/JPH02103861A/en
Publication of JPH0565990B2 publication Critical patent/JPH0565990B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、溶融炭酸塩型燃料電池用のアノード
の製造法に係り、特にニツケル・クロム合金製の
アノードの製造法に関する。 〔従来の技術〕 従来から、溶融炭酸塩型燃料電池は化学反応の
エネルギを電気エネルギに変換するものとして知
られており、溶融炭酸塩の電解質をはさんで、カ
ソードとアノードを配置し、カソード側には酸化
剤ガスを、アノード側には燃料ガスを供給する構
成になつている。 電極部でガスと炭酸塩の反応を効率よく行わせ
るために、電極は多孔質構造であることが必要と
され、今までは、主にニツケル粉末の焼結体が使
用されている。 この場合、酸化剤ガス側のカソードは電池運転
中に酸化雰囲気により表面に酸化物層を形成する
ので、ニツケル粒子のシンクリングは進行しな
い。ところが、燃料ガス側のアノードは電池運転
中に水素を含む還元雰囲気により、ニツケル粒子
の表面が金属状態を維持している。このため、
600〜700℃の電池作動温度において電極はシンタ
リングし易く、シンタリングが進行すると当初の
気孔率が低下する。さらに、電極には常に、電池
として組み込んだ際の締めつけ圧力が付加されて
おり、これが原因でアノードはクリーブ変形を起
こし、当初の気孔率が低下する。このようなアノ
ードの気孔率低下は電池性能の劣化をもたらすこ
とになる。 これらを防止する方法として、アノードには、
ニツケルに第2元素を添加した素材を用いる方法
が広く行われており、特にクロムの添加は有効で
あることが知られている。 そして、この種のアノードを製造する場合、 第1の方法として、ニツケルと第2元素の合金
粉末を作製し、この粉末を成形、焼結する方法が
ある。しかし、一般にこれらの合金粉末は、アト
マイズ法によつて製造されるので、粒子が球状に
なり、焼結した際に多孔度の高いものが得られな
い。また、通常使用されている電極素材用ニツケ
ル粉末はカーボニル法によつて製造されるため、
平均粒径数μm以下のものが容易に得られるのに
対して、アトマイズ法では数10μm以上の粗粒子
が大部分を占め、数μm以下の粉末を得るには歩
留まりが悪かつた。 第2の方法として、発砲ニツケルやニツケル粉
末焼結体などの多孔体を予め作製し、これに第二
元素を金属塩などの形で含浸した後、化学的に還
元熱処理する方法があるが、製造工程が複雑であ
るとともに、第二元素を多量に添加する場合には
多数回にわたる含浸処理が必要であり、工業上の
効率が悪い。 第3の方法として、基材ニツケル粉末と第二元
素の粉末とを混合し、これを成形、焼結する方法
があり、前記二種の方法に比べて、最も単純で容
易である。しかし、本方法では第二元素成分の偏
析が避けられず、第二元素を含有しない部分を生
じる可能性があるとともに、偏析によつて、焼結
時に局部的な合金化反応がすすみ、焼結反応に伴
う収縮が不均一になり、割れや変形を起こす場合
があつた。また、たとえ、構造的欠陥が生じなか
つたとしても、第二元素の偏析を少なくするには
高温で長時間の熱処理が必要とされ、この場合に
は焼結体の多孔度が低下することになり好ましく
ない。 〔発明が解決しようとする課題〕 前記したように、従来法において今だ種々の問
題があり満足すべき方法はなかつた。 本発明は、従来法の問題点を解決し、ニツケ
ル・クロム合金製アノードを簡易な方法で得るこ
とを目的とする。 〔課題を解決するための手段〕 本発明者らは、前記の目的を達成するために鋭
意検討の結果、ニツケル・クロム合金製アノード
の製造において、第二元素たるクロムを純金属の
形で、しかも蒸発法によつて作製したクロム超微
粒子の形で用いることによつて、偏析することが
なく、均一に分散したアノードを製造し得ること
を見出し本発明を完成した。 すなわち、本発明は、溶融炭酸塩型燃料電池用
ニツケル・クロム合金製アノードを製造する方法
において、ニツケル粉末と蒸発法で製造されたク
ロム超微粒子とを混合し、成形、焼結することを
特徴とするニツケル・クロム合金製アノードの製
造法に関する。 次に本発明を更に詳しく説明する。 本発明では、第二元素なるクロムを純金属の形
で添加するが、その特徴は第二元素に蒸発法によ
つて作製したクロム超微粒子を用いるところにあ
る。ところで、蒸発法は材料の固体を加熱して蒸
気にし、それを冷媒中で冷却して超微粒子に凝結
させるもので、クロムの場合は平均粒径約500Å
のものが得られる。ここで得られる金属超微粒子
自体は、粒径が非常に小さいので、単独では焼結
用素材に適さないが、第二元素添加用物質として
はその効果を発揮する。すなわち、得られたクロ
ム超微粒子は粒径が基材ニツケル粉末より2桁小
さいので、ニツケル粉体間に均一に分散すること
が容易であり、大きく偏析することはない。ま
た、該超微粒子は焼結熱処理時に容易にニツケル
中に拡散し、添加量の殆んどがニツケルと合金化
するので、所望の合金組成に相当する量を添加す
るだけでよい。 また、本発明の場合は、純金属単体を第二元素
添加物として用いているにもかかわらず、分散の
効果は金属塩などと同等であり、しかも、一度の
焼結処理で所望の第二元素成分を含有する合金焼
結体を得ることができる。 また、更に拡散を良くするためには、原料の段
階で基材ニツケル粉末とクロム超微粒子を所定量
だけ秤量した後混合し、電極製造時の焼結温度よ
り低い温度で予備的に熱処理することによつて、
よりよくニツケル中にクロムを拡散させることが
可能である。この予備熱処理後の粉末を原料にし
て焼結体を作製すれば、焼結体中のクロムの分布
はさらに均一化される利点がある。 〔作用〕 焼結反応の主な駆動力は粉体粒子の表面エネル
ギである。このエネルギを減少させるように物質
移動が起こり、粉体粒子の表面積が減少するよう
に焼結がすすむ。本発明では焼結すべき素材が2
種類の金属粉末の混合物であり、前記物質移動に
ともなつて、2種の金属の合金化が進行する。す
なわち、基材ニツケル粉末は相互の融着によつて
多孔体の物理的性状を決定する多孔体構造を形成
するが、その際に各部に分散したクロム超微粒子
と合金化する。この場合、クロム超微粒子の代わ
りに、ミクロンオーダのクロム粉末を用いた場合
でも同様の反応は起こるが、超微粒子の場合の方
が粒子の表面エネルギが大きく、またニツケル粉
末間への分散性もよいので、焼結反応がすすみや
すい。 本発明の方法は、燃料電池用電極のような合金
多孔体の製造法として特に効果がある。すなわ
ち、単にち密質の合金焼結体を製造する場合には
焼結温度を高くしたり、成形あるいは焼結時の加
圧力付加によつて粒子同志を密着したりして、ニ
ツケルとクロムを容易に合金化できるが多孔質焼
結体を製造する場合には、高い焼結温度や加圧力
の付加は多孔度を低下させるので好ましくない。
ところが本発明に依れば多孔度を低下させること
なくニツケルとクロムを合金化することができる
のである。 〔実施例〕 以下に実施例にもとづき本発明を説明するが、
本発明はこれらの実施例に限定されるものではな
い。 実施例 1 基材として平均粒径2.2〜2.8μmのニツケル粉末
(INCO製 Type255)を90g、第二元素添加物と
して、ガス中蒸発法によつて作製された平均粒径
500Åのクロム超微粒子(真空治金製)を10g、
有機質バインダとしてポリビニルブチラールを
8g、可塑剤としてヒドロキシプルメチルセルロ
ースを2g、溶剤としてエタノールとトリクレン
の重量比1対1の混合溶液を80g、それぞれ秤量
しこれらをボールミル中で100時間混練してスラ
リを作製した。 このスラリをドクターブレード装置により、補
強材のニツケル金網(線径0.2mm,20メツシユ)
以上に塗布して薄板に成形した。乾燥後の成形体
を真空中で950℃に1時間加熱保持して焼結し、
厚さ0.8mmで90mm角のアノードを得た。この電極
から約1gの試験片を採取し、補強材を含んだ状
態での多孔度を測定したところ、64%の値を示し
た。 実施例 2 実施例1に用いたと同じニツケル粉末、クロム
超微粒子をそれぞれ合計重量の90重量%、10重量
%になるように秤量した。粉体総重量100重量部
として50重量部にあたるエタノールと上記2種の
金属粉体とをボールミル中で100時間混合した。
混合後のスラリを乾燥した後、アルミナルツボに
入れ、予備熱処理として真空中、650℃で4時間
加熱保持し、ニツケル中へクロムを拡散させた。
予備熱処理後の粉末を乳鉢で粉砕した後、35メツ
シユのふるいで粗粒をとり除いた。 このようにして作製した予備熱処理後の粉末
100gに、実施例1と同種、同量の有機バインダ、
可塑剤、溶剤を加え、実施例1と同じ条件で、混
合、成形した。 乾燥後の成形体を真空中で1020℃に1時間加熱
保持して焼結し、実施例1と同様形状のアノード
を得た。また、実施例1と同様にして多孔度を測
定したところ、65%の多孔度を示した。 比較例 基材として、実施例で用いたと同じニツケル粉
末90g、第二元素添加物として粉砕法によつて作
製した平均粒径2μmmのカロム粉末(淵川金属事
務所製)10g、実施例と同種、同量の有機バイン
ダ、可塑剤、溶剤とを実施例と同じ条件で混合、
成形した。 乾燥後の成形体を真空中で1080℃に1時間加熱
保持して焼結し、実施例と同様形状のアノードを
得た。また、実施例と同様にして多孔度を測定し
たところ、59%の多孔度を示した。 〔実施例1および2と比較例の比較〕 第1−イ図、第2−イ図及び第3−イ図は、そ
れぞれ実施例1および2と比較例についての電極
の人工破壊面の粒子構造を示す走査電子顕微鏡写
真であり、また、第1−ロ,ハ図、第2−ロ,ハ
図、第3−ロ,ハ図は、それぞれEPMA(X線マ
イクロアナライザー)による当該部分のニツケル
とクロムの特性X線写真を示す。 これらの図面から分かるように、比較例1には
約20μmmのクロムの偏析部が見られるのに対し
て、実施例1および2ではクロムは若干の偏析は
見られるものの概ね均一に分布している。また実
施例1よりも実施例2の方がクロムの偏析は少な
い。 前記各図面に示した各電極の人工破壊面のう
ち、クロムの偏析がなく、均一に分布していると
思われる部分について、EPMAによるクロムの
定量分析を行つた。結果を表1に示す。なお、表
中には、参考として前出の焼結温度および多孔度
もあわせて記した。
[Industrial Field of Application] The present invention relates to a method for manufacturing an anode for a molten carbonate fuel cell, and more particularly to a method for manufacturing an anode made of a nickel-chromium alloy. [Prior Art] Molten carbonate fuel cells have traditionally been known to convert the energy of chemical reactions into electrical energy. The structure is such that oxidant gas is supplied to the anode side and fuel gas is supplied to the anode side. In order for the reaction between gas and carbonate to occur efficiently in the electrode portion, the electrode needs to have a porous structure, and up to now, sintered bodies of nickel powder have been mainly used. In this case, since an oxide layer is formed on the surface of the cathode on the oxidizing gas side by the oxidizing atmosphere during battery operation, sinking of the nickel particles does not proceed. However, in the anode on the fuel gas side, the surface of the nickel particles maintains a metallic state due to the reducing atmosphere containing hydrogen during cell operation. For this reason,
At battery operating temperatures of 600 to 700°C, the electrodes are likely to sinter, and as sintering progresses, the initial porosity decreases. Furthermore, clamping pressure is always applied to the electrode when it is assembled into a battery, and this causes cleave deformation of the anode, reducing the initial porosity. Such a decrease in the porosity of the anode results in deterioration of battery performance. As a way to prevent these, the anode is
A method using a material in which a second element is added to nickel is widely used, and the addition of chromium is known to be particularly effective. When manufacturing this type of anode, the first method is to prepare an alloy powder of nickel and a second element, and then mold and sinter this powder. However, since these alloy powders are generally manufactured by an atomization method, the particles become spherical, and a product with high porosity cannot be obtained when sintered. In addition, the commonly used nickel powder for electrode materials is manufactured by the carbonyl method.
While particles with an average particle diameter of several micrometers or less can be easily obtained, in the atomization method, coarse particles with an average diameter of several tens of micrometers or more account for the majority, and the yield is poor to obtain powder with an average particle diameter of several micrometers or less. The second method is to prepare a porous body such as nickel foam or sintered nickel powder in advance, impregnate it with a second element in the form of a metal salt, and then chemically heat-treat it for reduction. The manufacturing process is complicated, and when a large amount of the second element is added, multiple impregnation treatments are required, resulting in poor industrial efficiency. The third method is to mix the base nickel powder and the second element powder, mold and sinter the mixture, and is the simplest and easiest method compared to the above two methods. However, in this method, segregation of the second element component is unavoidable, and there is a possibility that some parts do not contain the second element. The shrinkage caused by the reaction became uneven, sometimes causing cracks and deformation. Furthermore, even if no structural defects occur, long-term heat treatment at high temperatures is required to reduce the segregation of the second element, and in this case, the porosity of the sintered body may decrease. I don't like it. [Problems to be Solved by the Invention] As mentioned above, there are still various problems in the conventional methods and no satisfactory method has been found. The present invention aims to solve the problems of the conventional method and to obtain a nickel-chromium alloy anode by a simple method. [Means for Solving the Problems] In order to achieve the above-mentioned object, the present inventors have made extensive studies and found that in the production of a nickel-chromium alloy anode, chromium, which is a second element, is used in the form of a pure metal. Furthermore, the present invention was completed by discovering that by using chromium in the form of ultrafine particles produced by an evaporation method, it is possible to produce an anode that is uniformly dispersed without segregation. That is, the present invention is characterized in that, in a method for manufacturing a nickel-chromium alloy anode for a molten carbonate fuel cell, nickel powder and ultrafine chromium particles manufactured by an evaporation method are mixed, molded, and sintered. This invention relates to a method for manufacturing a nickel-chromium alloy anode. Next, the present invention will be explained in more detail. In the present invention, the second element, chromium, is added in the form of a pure metal, and its feature lies in the use of ultrafine chromium particles produced by an evaporation method as the second element. By the way, the evaporation method heats the solid material to vaporize it, cools it in a refrigerant, and condenses it into ultrafine particles.In the case of chromium, the average particle size is about 500Å.
You can get the following. The ultrafine metal particles obtained here have a very small particle size, so they are not suitable as a sintering material alone, but they are effective as a material for adding a second element. That is, since the obtained ultrafine chromium particles have a particle size two orders of magnitude smaller than the base nickel powder, they can easily be uniformly dispersed between the nickel powders and do not segregate to a large extent. Further, the ultrafine particles easily diffuse into nickel during the sintering heat treatment, and most of the added amount is alloyed with nickel, so it is only necessary to add an amount corresponding to the desired alloy composition. Furthermore, in the case of the present invention, although a pure metal element is used as the second element additive, the dispersion effect is equivalent to that of a metal salt, and moreover, the desired second element additive can be obtained by a single sintering process. An alloy sintered body containing elemental components can be obtained. In order to further improve diffusion, it is necessary to weigh and mix a predetermined amount of base nickel powder and chromium ultrafine particles at the raw material stage, and then preliminarily heat-treat the mixture at a temperature lower than the sintering temperature during electrode manufacturing. According to
It is possible to better diffuse chromium into nickel. If a sintered body is produced using the powder after this preliminary heat treatment as a raw material, there is an advantage that the distribution of chromium in the sintered body can be made more uniform. [Operation] The main driving force for the sintering reaction is the surface energy of the powder particles. Mass transfer occurs to reduce this energy, and sintering proceeds such that the surface area of the powder particles is reduced. In the present invention, there are two materials to be sintered.
It is a mixture of different types of metal powders, and alloying of the two types of metals progresses with the above-mentioned mass transfer. That is, the base nickel powder forms a porous body structure that determines the physical properties of the porous body by mutual fusion, and at that time, it is alloyed with the ultrafine chromium particles dispersed in various parts. In this case, a similar reaction occurs even if micron-order chromium powder is used instead of ultrafine chromium particles, but ultrafine particles have a higher particle surface energy and are less dispersible between nickel powders. The sintering reaction progresses easily. The method of the present invention is particularly effective as a method for producing porous alloy bodies such as electrodes for fuel cells. In other words, when simply producing a dense alloy sintered body, nickel and chromium can be easily separated by increasing the sintering temperature or by applying pressure during molding or sintering to bring the particles into close contact with each other. However, when producing a porous sintered body, high sintering temperature and application of pressure are not preferable because they reduce the porosity.
However, according to the present invention, nickel and chromium can be alloyed without reducing the porosity. [Examples] The present invention will be explained below based on Examples.
The present invention is not limited to these examples. Example 1 90g of nickel powder (Type 255 manufactured by INCO) with an average particle size of 2.2 to 2.8 μm was used as the base material, and the average particle size was prepared by an in-gas evaporation method as a second element additive.
10g of 500Å ultrafine chromium particles (made by vacuum metallurgy),
Polyvinyl butyral as an organic binder
8 g of hydroxypurmethylcellulose as a plasticizer, and 80 g of a mixed solution of ethanol and trichlene at a weight ratio of 1:1 as a solvent were weighed, respectively, and kneaded in a ball mill for 100 hours to prepare a slurry. This slurry is applied to a reinforcing material using nickel wire mesh (wire diameter 0.2 mm, 20 meshes) using a doctor blade device.
The above coating was applied and formed into a thin plate. The dried molded body is heated and held at 950°C for 1 hour in a vacuum to sinter it.
A 90 mm square anode with a thickness of 0.8 mm was obtained. Approximately 1 g of a test piece was taken from this electrode and its porosity was measured with the reinforcing material included, and it showed a value of 64%. Example 2 The same nickel powder and ultrafine chromium particles used in Example 1 were weighed so that they accounted for 90% by weight and 10% by weight of the total weight, respectively. Ethanol corresponding to 50 parts by weight based on 100 parts by weight of the total powder weight and the above two types of metal powders were mixed in a ball mill for 100 hours.
After drying the slurry after mixing, it was placed in an aluminium crucible and heated and held at 650°C in vacuum for 4 hours as a preliminary heat treatment to diffuse chromium into the nickel.
After the preheated powder was ground in a mortar, coarse particles were removed using a 35-mesh sieve. Powder prepared in this way after preheat treatment
To 100g, the same kind and amount of organic binder as in Example 1,
A plasticizer and a solvent were added, and the mixture was mixed and molded under the same conditions as in Example 1. The dried molded body was heated and held at 1020° C. for 1 hour in a vacuum to sinter it to obtain an anode having the same shape as in Example 1. Further, when the porosity was measured in the same manner as in Example 1, the porosity was 65%. Comparative Example As a base material, 90 g of the same nickel powder as used in the example, and as a second element additive, 10 g of carom powder (manufactured by Fuchigawa Metal Office) with an average particle size of 2 μm prepared by a pulverization method, the same type as in the example. , the same amount of organic binder, plasticizer, and solvent were mixed under the same conditions as in the example.
Molded. The dried molded body was heated and held at 1080° C. for 1 hour in a vacuum to sinter it to obtain an anode having the same shape as in the example. Further, when the porosity was measured in the same manner as in the example, the porosity was 59%. [Comparison of Examples 1 and 2 and Comparative Example] Figure 1-A, Figure 2-A, and Figure 3-A show the particle structure of the artificially fractured surface of the electrode for Examples 1 and 2 and Comparative Example, respectively. Figures 1-B and C, 2-B and C, and 3-B and C are scanning electron micrographs showing the nickel and A characteristic X-ray photograph of chromium is shown. As can be seen from these drawings, a chromium segregation area of about 20 μm is seen in Comparative Example 1, whereas in Examples 1 and 2, although some segregation is seen, chromium is generally uniformly distributed. . Further, the segregation of chromium is smaller in Example 2 than in Example 1. Of the artificially fractured surfaces of each electrode shown in the drawings, a quantitative analysis of chromium was performed using EPMA on a portion where chromium was thought to be uniformly distributed without segregation. The results are shown in Table 1. In addition, the above-mentioned sintering temperature and porosity are also listed in the table for reference.

〔発明の効果〕〔Effect of the invention〕

本発明のニツケル・クロム合金製アノードの製
造法によれば、ニツケル粉末中にクロム超微粒子
が均一に分散し偏析することがなく、また、その
製造工程も、ニツケル粉末単独で焼結する場合と
同様の工程で、任意組成のニツケル・クロム合金
多孔体を容易に製造できる。
According to the method for manufacturing a nickel-chromium alloy anode of the present invention, ultrafine chromium particles are uniformly dispersed in nickel powder without segregation, and the manufacturing process is also different from sintering nickel powder alone. A nickel-chromium alloy porous body of any composition can be easily manufactured using a similar process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1−イ図、第2−イ図及び第3−イ図は、そ
れぞれ、実施例1,2及び比較例の電極の人工破
壊面における粒子構造を示す電子顕微鏡写真であ
り、第1−ロ図、第2−ロ図及び第3−ロ図は、
それぞれのイ図部分のNiの特性X線写真であり、
また、第1−ハ図、第2−ハ図及び第3−ハ図
は、それぞれイ図部分のCrの特性X線写真であ
る。
Figure 1-A, Figure 2-A, and Figure 3-A are electron micrographs showing the particle structures on the artificially fractured surfaces of the electrodes of Examples 1 and 2 and Comparative Example, respectively. Figures 2-B and 3-B are
These are characteristic X-ray photographs of Ni in each part shown in A.
Furthermore, Fig. 1-C, Fig. 2-C, and Fig. 3-C are characteristic X-ray photographs of Cr in the part shown in Fig. A, respectively.

Claims (1)

【特許請求の範囲】 1 溶融炭酸塩型燃料電池用ニツケル・クロム合
金製アノードを製造する方法において、ニツケル
粉末と蒸発法で製造されたクロム超微粒子とを混
合し、成形、焼結することを特徴とするニツケ
ル・クロム合金製アノードの製造法。 2 前記ニツケル粉末とクロム超微粒子との混合
物を、電極の焼結温度より低い温度で熱処理した
後、成形、焼結することを特徴とする請求項1記
載のニツケル・クロム合金製アノードの製造法。
[Claims] 1. A method for producing a nickel-chromium alloy anode for a molten carbonate fuel cell, which includes mixing nickel powder and ultrafine chromium particles produced by an evaporation method, and then molding and sintering the mixture. Characteristic method for manufacturing nickel-chromium alloy anodes. 2. The method for manufacturing a nickel-chromium alloy anode according to claim 1, characterized in that the mixture of the nickel powder and ultrafine chromium particles is heat-treated at a temperature lower than the sintering temperature of the electrode, and then molded and sintered. .
JP63253894A 1988-10-11 1988-10-11 Manufacture of electrode for fused carbonate fuel cell Granted JPH02103861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63253894A JPH02103861A (en) 1988-10-11 1988-10-11 Manufacture of electrode for fused carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63253894A JPH02103861A (en) 1988-10-11 1988-10-11 Manufacture of electrode for fused carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPH02103861A JPH02103861A (en) 1990-04-16
JPH0565990B2 true JPH0565990B2 (en) 1993-09-20

Family

ID=17257577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63253894A Granted JPH02103861A (en) 1988-10-11 1988-10-11 Manufacture of electrode for fused carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH02103861A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080157419A1 (en) * 2006-12-29 2008-07-03 Doosan Heavy Industries & Construction Co., Ltd. Wet method of manufacturing electrolyte-impregnated electrodes for molten carbonate fuel cell

Also Published As

Publication number Publication date
JPH02103861A (en) 1990-04-16

Similar Documents

Publication Publication Date Title
JP3003163B2 (en) Method for producing electrode for molten carbonate fuel cell
EP2415543B1 (en) Process for producing porous sintered aluminum, and porous sintered aluminum
JP5465883B2 (en) Porous material
US20060263232A1 (en) Process for the manufacture of gas diffusion electrodes
JP2723216B2 (en) Anode wafer for thermal battery and method for producing the same
JPH0584032B2 (en)
JPH05198307A (en) Composite active electrolyte matrix for molten carbonate fuel cell and laminated component tape
EP0259226B1 (en) Powdery raw material for manufacturing anodes of fuel cells
CN105803283A (en) Nb-Si-Ti-W-Cr alloy bar and production method thereof
JPH0565990B2 (en)
EP0443683B1 (en) Powdered starting material for a nickel-based alloy for manufacturing a porous anode of a fuel cell, method producing such a material, method for manufacturing an anode for fuel cells, the anode obtained and also a fuel cell which contains such an anode
JPS60150558A (en) Production method of fuel electrode for melted carbonate type fuel cell
JP2001140004A (en) Method for producing metallic alloy porous body
JP3216150B2 (en) Method for producing cathode electrode for molten carbonate fuel cell
JP2014109049A (en) Method for producing titanium porous body
JPH02301966A (en) Manufacture of electrode for fuel cell
JPH0520872B2 (en)
KR20230139079A (en) Silicon Nano-composite Structured Powders for Anode Materials Using Ternary Si Alloys and Method for Producing the Same
JPH0272558A (en) Manufacture of fuel cell electrode
JPS63218163A (en) Anode for molten carbonate type fuel cell
JP3013412B2 (en) Negative electrode for metal hydride battery and method for producing the same
JPS62165864A (en) Electrode for fused carbonate type fuel cell
JPS6376833A (en) Manufacture of porous cu-alloy sintered sheet for anode of fused carbonate fuel cell
JPH11189802A (en) Nickel super fine powder
JPH03233863A (en) Electrode for molten carbonate fuel cell and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees