JP3216150B2 - Method for producing cathode electrode for molten carbonate fuel cell - Google Patents

Method for producing cathode electrode for molten carbonate fuel cell

Info

Publication number
JP3216150B2
JP3216150B2 JP15955091A JP15955091A JP3216150B2 JP 3216150 B2 JP3216150 B2 JP 3216150B2 JP 15955091 A JP15955091 A JP 15955091A JP 15955091 A JP15955091 A JP 15955091A JP 3216150 B2 JP3216150 B2 JP 3216150B2
Authority
JP
Japan
Prior art keywords
cathode electrode
sintering
powder
intermetallic compound
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15955091A
Other languages
Japanese (ja)
Other versions
JPH04359869A (en
Inventor
義和 山桝
貞夫 中庭
哲行 森田
稔智 太田
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP15955091A priority Critical patent/JP3216150B2/en
Publication of JPH04359869A publication Critical patent/JPH04359869A/en
Application granted granted Critical
Publication of JP3216150B2 publication Critical patent/JP3216150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は燃料の有する化学エネル
ギーを直接電気エネルギーに変換させるエネルギー部門
で用いる溶融炭酸塩型燃料電池の電極、特に、カソード
電極を製造するための溶融炭酸塩型燃料電池用カソード
電極の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for a molten carbonate fuel cell used in the energy sector which directly converts chemical energy of a fuel into electric energy, in particular, a molten carbonate fuel cell for producing a cathode electrode. The present invention relates to a method for manufacturing a cathode electrode.

【0002】[0002]

【従来の技術】現在までに提案されている燃料電池のう
ち、溶融炭酸塩型燃料電池は、電解質として溶融炭酸塩
を多孔質物質にしみ込ませてなる電解質板(タイル)を
カソード(酸素極)とアノード(燃料極)の両電極で両
面から挟み、カソード側に酸化ガスを供給すると共にア
ノード側に燃料ガスを供給することによりカソードとア
ノードの間で発生する電位差により発電が行われるよう
にしたものを1セルとし、各セルをセパレータを介して
多層に積層した構成のものとしてある。
2. Description of the Related Art Among the fuel cells proposed so far, a molten carbonate fuel cell uses an electrolyte plate (tile) formed by impregnating a molten porous material with a porous material as an electrolyte as a cathode (oxygen electrode). The anode and the anode (fuel electrode) are sandwiched from both sides, and an oxidizing gas is supplied to the cathode side and a fuel gas is supplied to the anode side, so that electric power is generated by a potential difference generated between the cathode and the anode. Each cell is a single cell, and each cell is laminated in multiple layers via a separator.

【0003】上記溶融炭酸塩型燃料電池の電極の成形方
法としては、成形精度、表面平滑度に優れ、且つ量産
化、大型化が可能であることから、近年、電解質板の製
造方法として用いられていたドクターブレード法による
テープ成形法により製造されるようになってきている。
かかるドクターブレード法によるテープ成形法を用いた
従来のカソード電極の製造方法は、図3に一例を示す如
く、最初に原料粉としてのカルボニルNi粉aの単体
と、分散剤b、有機溶剤cをボールミル等で粉砕し(粉
砕工程d)てNi粉aを1次粒子まで分散させた後、有
機物の結合剤fと可塑剤gを添加して混合する(混合工
程e)ことによりスラリーhとし、これをドクターブレ
ード装置でテープ状(シート状)に成形し(テープ成形
工程i)、最後に、電気炉や還元雰囲気炉、真空炉等に
て800〜900℃の温度で焼成を行う(焼成工程j)
ことにより多孔質(空隙率:70±5%)のカソード電
極を得るようにしたものである。
[0003] As a method for forming an electrode of the above-mentioned molten carbonate fuel cell, in recent years, it has been used as a method for manufacturing an electrolyte plate because of its excellent molding accuracy and surface smoothness, and mass production and size increase. It has been manufactured by a tape forming method using a doctor blade method.
As shown in an example in FIG. 3, a conventional method for manufacturing a cathode electrode using a tape forming method by such a doctor blade method is as follows. First, a simple substance of carbonyl Ni powder a as a raw material powder, a dispersant b, and an organic solvent c are used. After pulverizing with a ball mill or the like (pulverizing step d) to disperse the Ni powder a into the primary particles, an organic binder f and a plasticizer g are added and mixed (mixing step e) to form a slurry h, This is formed into a tape shape (sheet shape) by a doctor blade device (tape forming step i), and finally fired at a temperature of 800 to 900 ° C. in an electric furnace, a reducing atmosphere furnace, a vacuum furnace, or the like (a firing step). j)
Thus, a porous (porosity: 70 ± 5%) cathode electrode is obtained.

【0004】[0004]

【発明が解決しようとする課題】ところが、上記製造方
法によって製造されたNi多孔質体であるカソード電極
は電池性能上高い空隙率が要求され、Ni粉a同士が図
4(A)に示すような構造で結合しているものであるた
め、Ni粉同士の結合の度合いは弱い。又、上記従来の
カソード電極は、電池として組み込まれて運転中に、酸
化剤のガスにより酸化処理温度500〜600℃で酸化
されてNiO多孔質体となるが、酸化されてNiOにな
った電極の粉同士の結合は図4の(B)に示す如くであ
り、NiO(a´)同士の結合力も弱く、電池作動中の
締め付け応力によって圧縮変形し易く、その結果、電極
のミクロ構造(空孔分布、空隙率)が変化して電池性能
の劣化を招く問題がある。又、酸化される前のNi自体
もクリープ強度が低いことから、容易に変形し易いとい
う欠点がある。
However, the cathode electrode, which is a Ni porous body manufactured by the above manufacturing method, is required to have a high porosity in terms of battery performance, and the Ni powders a are as shown in FIG. 4 (A). Since the Ni powders are bonded in a simple structure, the degree of bonding between the Ni powders is weak. In addition, the above-mentioned conventional cathode electrode is oxidized by an oxidizing gas at an oxidizing temperature of 500 to 600 ° C. to form a NiO porous body during operation as a battery, but the oxidized NiO electrode. As shown in FIG. 4 (B), the bonding force between the NiO (a ′) particles is weak, and the powder is easily compressed and deformed by the tightening stress during the operation of the battery. (Pore distribution, porosity) is changed, and there is a problem that battery performance is deteriorated. In addition, since Ni itself before being oxidized also has a low creep strength, it has a disadvantage that it is easily deformed.

【0005】そこで、本発明は、Ni粉同士の結合力を
強め、変形しにくくて耐クリープ性の高いカソード電極
が得られるようにしようとするものである。
[0005] Therefore, the present invention is intended to increase the bonding force between Ni powders and to obtain a cathode electrode which is hardly deformed and has high creep resistance.

【0006】[0006]

【課題を解決するための手段】本発明は、上記課題を解
決するために、2〜5μのNi粉に、予め粉砕して3〜
8μの粒径とするよう微粉化させたAl金属間化合物の
微粉を、強化材として0.1〜5%混合し、次に、該混
合物に焼結防止剤を最大20%添加してスラリー化し、
該スラリーをテープ状に成形した後、真空中あるいは還
元雰囲気中で950〜1050℃の高温で焼結し、且つ
上記焼結防止剤に、焼結処理時にAl、MgOの
如く熱分解して微粉化するものを用いて多孔質のカソー
ド電極を製造することを特徴とする溶融炭酸塩型燃料電
池用カソード電極の製造方法とする。
According to the present invention, in order to solve the above-mentioned problems, 3 to 5 μm Ni powder is preliminarily pulverized to 3 to 5 μm.
0.1-5% of a fine powder of Al intermetallic compound finely ground to have a particle size of 8μ is mixed as a reinforcing material, and then a sintering inhibitor is added to the mixture at a maximum of 20% to form a slurry. ,
After the slurry is formed into a tape, the slurry is sintered at a high temperature of 950 to 1050 ° C. in a vacuum or a reducing atmosphere, and the sintering inhibitor is thermally decomposed at the time of sintering, such as Al 2 O 3 or MgO. The method for producing a cathode electrode for a molten carbonate fuel cell is characterized in that a porous cathode electrode is produced by using a material which is then pulverized.

【0007】[0007]

【作用】強化材として用いるAl金属間化合物は硬く脆
いので容易に微粉化(3〜8μ)でき、このAl金属間
化合物の微粉を2〜5μのNi粉に0.1〜5%混合し
て真空中あるいは還元雰囲気中で950〜1050℃の
高温で焼結させると、Al金属間化合物とNi粉との焼
結を促進させることができてNi粉にAl金属間化合物
が固溶し易く且つ固溶して強化材として機能させること
ができ、Ni粉同士の結合力が強められると共にNi自
体の高温強度も向上する。又、上記混合物に焼結処理時
にAl、MgOの如く熱分解して微粉化するもの
を用いた焼結防止剤を添加することから、高温焼結によ
っても電極としての空隙率が低下することがない。
Since the Al intermetallic compound used as a reinforcing material is hard and brittle, it can be easily pulverized (3 to 8 µm). The fine powder of this Al intermetallic compound is mixed with 2 to 5 µm Ni powder by 0.1 to 5%. When sintering at a high temperature of 950 to 1050 ° C. in a vacuum or a reducing atmosphere, sintering of the Al intermetallic compound and the Ni powder can be promoted, and the Al intermetallic compound is easily dissolved in the Ni powder, and It can form a solid solution to function as a reinforcing material, strengthening the bonding force between Ni powders and improving the high-temperature strength of Ni itself. In addition, since a sintering inhibitor using a material which thermally decomposes and becomes finer during the sintering process, such as Al 2 O 3 or MgO, is added to the above mixture, the porosity as an electrode is lowered even by high-temperature sintering. Never do.

【0008】[0008]

【実施例】以下、本発明の実施例を図面を参照して説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0009】図1は本発明の製造方法のプロセスフロー
を示すもので、Iはニッケルカルボニルを熱分解して製
造した原料粉としてのNi粉1に、強化材としてのAl
金属間化合物2、分散剤3、溶媒4を添加して混合する
混合工程であり、IIは上記混合工程で得られた混合物に
焼結防止剤5と結合剤6とを添加してスラリー化された
スラリー7をテープ成形するテープ成形工程であり、II
I はテープ成形工程IIで成形されたテープを焼成して多
孔質のカソード電極8を得るための焼成工程である。
FIG. 1 shows a process flow of the production method of the present invention, where I is Ni powder 1 as a raw material powder produced by pyrolyzing nickel carbonyl and Al as a reinforcing material.
II is a mixing step in which the intermetallic compound 2, the dispersant 3, and the solvent 4 are added and mixed, and II is a slurry obtained by adding the sintering inhibitor 5 and the binder 6 to the mixture obtained in the mixing step. This is a tape forming process for forming the slurry 7 into a tape.
I is a firing step for firing the tape formed in the tape forming step II to obtain the porous cathode electrode 8.

【0010】詳述すると、Ni粉1への強化用のAl金
属間化合物2として、たとえば、50Cr−50Alの
微粉(粒径3〜8μ)を予め作成しておき、これを粒径
2〜5μのNi粉1に0.1〜5%添加し、更に、分散
剤3として、たとえば、非イオン系の界面活性剤0.5
〜2部と水等の溶媒4を添加して混合工程Iで混合す
る。続いて、この混合物に、焼結防止(助)剤5を体積
比で最大20%添加すると共に、結合剤6を全粉体に対
して2〜10部添加してスラリー7とする。次に、上記
スラリー7をテープ成形工程IIにてドクターブレード法
によりテープ状(シート状)に成形した後、乾燥させて
グリーンテープを作る。しかる後、上記グリーンテープ
を焼成工程III にて真空中、あるいは、還元雰囲気中に
おいて950〜1050℃の高温で焼結させ、これによ
り多孔質のカソード電極8を得る。
More specifically, as the Al intermetallic compound 2 for strengthening the Ni powder 1, for example, 50Cr-50Al fine powder (particle diameter 3 to 8 μm) is prepared in advance, and this is mixed with the particle diameter 2 to 5 μm. 0.1 to 5% of Ni powder 1 and further, as a dispersant 3, for example, a nonionic surfactant 0.5
~ 2 parts and a solvent 4 such as water are added and mixed in the mixing step I. Subsequently, a sintering preventive (assistant) agent 5 is added to the mixture at a maximum of 20% by volume, and a binder 6 is added in an amount of 2 to 10 parts with respect to the whole powder to form a slurry 7. Next, the slurry 7 is formed into a tape (sheet) by a doctor blade method in a tape forming step II, and then dried to form a green tape. Thereafter, the green tape is sintered at a high temperature of 950 to 1050 ° C. in a vacuum or in a reducing atmosphere in a firing step III, whereby a porous cathode electrode 8 is obtained.

【0011】なお、上記Al金属間化合物2としては、
Al−Ni系(NiAl,Ni2 Al,Ni2 Al3
Al3 Ni2 )、Al−Fe系(Al2 Fe,Al3
e,AlFe)、Al−Co系(AlCo,Al5 Co
2 ,Al9 Co2 )、Al−Cr系(AlCr2 ,Al
4 Cr,Al9 Cr4 )、Al−Ti系(AlTi,A
3 Ti2 )等の組成をもつものであれば使用可能であ
る。又、上記焼結防止剤5としては、焼結処理時(高温
時)に熱分解して微粉化する(0.5〜2μ程度)もの
として、Al、Mg、Caの酸化物、水酸化物やMg、
Caの炭酸塩等を用いる。この場合、たとえば、Al
(OH)3 →Al2 3 、MgCO3 →MgO、CaC
3 →CaOの如く変化して微粉化して金属表面に均一
に付着するものが望ましく、且つ水系のスラリーを使用
する場合には水に不溶、難溶な物質が望ましい。更に、
上記結合剤6としては、水系の場合、ポリビニールアル
コールやメチルセルロースを、又、有機溶剤系の場合、
ポリビニールブチラールを用いる。
The Al intermetallic compound 2 includes:
Al-Ni system (NiAl, Ni 2 Al, Ni 2 Al 3,
Al 3 Ni 2 ), Al—Fe system (Al 2 Fe, Al 3 F)
e, AlFe), Al—Co system (AlCo, Al 5 Co)
2 , Al 9 Co 2 ), Al—Cr-based (AlCr 2 , Al
4 Cr, Al 9 Cr 4 ), Al-Ti (AlTi, A
Any material having a composition such as l 3 Ti 2 ) can be used. Examples of the sintering inhibitor 5 include oxides and hydroxides of Al, Mg, and Ca that are thermally decomposed and pulverized (about 0.5 to 2 μm) during sintering (at a high temperature). And Mg,
Ca carbonate or the like is used. In this case, for example, Al
(OH) 3 → Al 2 O 3 , MgCO 3 → MgO, CaC
It is desirable that the material changes like O 3 → CaO and becomes finely divided and adheres uniformly to the metal surface, and when an aqueous slurry is used, a substance that is insoluble or hardly soluble in water is desirable. Furthermore,
As the binder 6, in the case of an aqueous system, polyvinyl alcohol or methylcellulose, or in the case of an organic solvent system,
Use polyvinyl butyral.

【0012】本発明においては、Ni粉1に微量のAl
金属間化合物2を添加した混合物を、テープ成形した後
に高温焼結させるので、図2の(A)に示す如く、Ni
粉1同士の結合部分もなくなり、且つNi粉1にAl金
属間化合物2が固溶して強化材としての機能を発揮する
ことができ、これによりNi粉1同士の結合力を強める
ことができると共に、Ni自体の高温強度を向上させる
ことができる。又、図2の(B)に示す如く、酸化して
NiOに変化した後もNiO(1´)同士の結合力が強
い。(2´)は酸化したAl金属間化合物を示す。した
がって、変形しにくく耐クリープ性の高いカソード電極
8を得ることができる。なお、上記Al金属間化合物2
は、Ni粉1に対して0.1〜5%の範囲で混合させた
が、これは、0.1%以下では耐クリープ性が低く、5
%以上では電気抵抗が大きくなり過ぎるからである。A
l金属間化合物2は添加量が少ない方がよく、上記のよ
うに微量とするが、Al金属間化合物2が少ないと、高
温焼結時に、Ni粉1同士の焼結が進んで電極としての
空隙率が低下する虞があるが、本発明では、かかる点を
防止するために、Ni粉1とAl金属間化合物2の混合
物に対して高温時に熱分解して微粉化する焼結防止剤5
を添加するようにしたので、空隙率が低下するようなこ
とはなく、ミクロ構造を安定化させることができる。な
お、上記において、焼結防止剤5の添加量は最大20%
としたが、これは、20%以上だと金属粉同士の焼結を
阻害してしまうからである。又、焼結温度は950〜1
050℃としたが、これは、950℃以下だと空隙率が
大きくなり、1050℃以上だと空隙率が小さくなるか
らである。
In the present invention, a small amount of Al
Since the mixture to which the intermetallic compound 2 has been added is tape-formed and then sintered at a high temperature, as shown in FIG.
There is no bonding portion between the powders 1 and the Al intermetallic compound 2 forms a solid solution in the Ni powder 1 to exhibit a function as a reinforcing material, whereby the bonding force between the Ni powders 1 can be strengthened. At the same time, the high-temperature strength of Ni itself can be improved. Further, as shown in FIG. 2B, the bonding force between NiO (1 ') is strong even after being oxidized and changed to NiO. (2 ′) indicates an oxidized Al intermetallic compound. Therefore, it is possible to obtain the cathode electrode 8 which is not easily deformed and has high creep resistance. The above Al intermetallic compound 2
Was mixed in the range of 0.1 to 5% with respect to Ni powder 1. However, when the content was 0.1% or less, the creep resistance was low and the
%, The electrical resistance becomes too large. A
l It is preferable that the amount of the intermetallic compound 2 is small, and the amount is small as described above. Although the porosity may decrease, in the present invention, in order to prevent such a point, the sintering inhibitor 5 which thermally decomposes and pulverizes the mixture of the Ni powder 1 and the Al intermetallic compound 2 at a high temperature.
Is added, so that the porosity does not decrease and the microstructure can be stabilized. In the above, the amount of addition of the sintering inhibitor 5 is up to 20%.
This is because if it is 20% or more, sintering of metal powders is hindered. The sintering temperature is 950-1
The temperature was set to 050 ° C., because the porosity is increased when the temperature is 950 ° C. or less, and the porosity is decreased when the temperature is 1050 ° C. or more.

【0013】ここで、従来のNi単体電極と比較するた
めに行ったAl金属間化合物2をNi粉1に添加した電
極8の圧縮クリープ強度の試験結果を表1に、又、上記
電極8を酸化処理した場合の導電率の試験結果を表2に
示す。クリープ試験条件は、700℃×50hr、圧縮荷
重15.4Kgf /cm2 、Air中(酸化雰囲気)であ
る。導電率試験条件は、650℃Air−CO2 中であ
る。
Table 1 shows the test results of the compressive creep strength of the electrode 8 obtained by adding the Al intermetallic compound 2 to the Ni powder 1 for comparison with the conventional Ni simple electrode. Table 2 shows the test results of the conductivity when the oxidation treatment was performed. The creep test conditions are 700 ° C. × 50 hr, a compressive load of 15.4 kgf / cm 2 , and in Air (oxidizing atmosphere). The conductivity test condition is 650 ° C. in Air-CO 2 .

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 Al金属間化合物を添加した電極の場合、上記表1か
ら、Ni単体の電極よりも耐クリープ性が高いことがわ
かる。又、表2から、導電率は合金化されることによっ
て若干減少するものの、電極としての機能は損われない
程度のものであることがわかる。
[Table 2] From Table 1 above, it can be seen that the electrode to which the Al intermetallic compound is added has higher creep resistance than the electrode of Ni alone. Also, from Table 2, it can be seen that although the conductivity is slightly reduced by alloying, the function as an electrode is not impaired.

【0016】なお、本発明は上記実施例にのみ限定され
るものではなく、本発明の要旨を逸脱しない範囲内にお
いて種々変更を加え得ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, and various changes can be made without departing from the scope of the present invention.

【0017】[0017]

【発明の効果】以上述べた如く、本発明の溶融炭酸塩型
燃料電池用カソード電極の製造方法によれば、2〜5μ
のNi粉に、予め粉砕して3〜8μの粒径とするよう微
粉化させたAl金属間化合物の微粉を、強化材として
0.1〜5%混合し、次に、該混合物に焼結防止剤を最
大20%添加してスラリー化し、該スラリーをテープ状
に成形した後、真空中あるいは還元雰囲気中で950〜
1050℃の高温で焼結し、且つ上記焼結防止剤として
焼結処理時にAl、MgOの如く熱分解して微粉
化するものを用いて多孔質のカソード電極を製造するよ
うにしてあるので、Al金属間化合物は硬く脆いため容
易に3〜8μの粒径となるよう微粉化できて、Ni粉に
混合して真空中あるいは還元雰囲気中で950〜105
0℃の高温で焼結させることによりAl金属間化合物が
Ni粉に固溶し易く且つ固溶して強化材として機能させ
ることができ、Ni粉同士の結合力を強めることができ
て、変形しにくく耐クリープ性の高いカソード電極を得
ることができ、又、Al金属間化合物の混合量が少ない
ために高温焼結時にNi粉同士の焼結が進んで電極とし
ての空隙率が低下するおそれがあっても、上記混合物に
焼結処理時にAl、MgOの如く熱分解して微粉
化する焼結防止剤を添加するようにするので、より高温
での焼結が必要となり、この結果、Ni粉同士の焼結及
びNiと強化材であるAl金属間化合物との焼結が促進
され、電極の空隙率を低下させることなくミクロ構造を
安定化させることができ、燃料電池の高性能化に寄与し
得られ、又、Al金属間化合物の混合比を0.1〜5%
の微量とすることから、耐クリープ性がよくなり、且つ
電気抵抗が大きくなり過ぎることもなく、更に、焼結防
止剤の添加量を最大20%とすることにより金属同士の
焼結を阻害することなく、950〜1050℃で焼結す
ることにより多孔質のカソード電極とすることができ
る、という優れた効果を発揮する。
As described above, according to the method of manufacturing a cathode for a molten carbonate fuel cell of the present invention, 2 to 5 μm
0.1-5% of a fine powder of an Al intermetallic compound, which has been pulverized in advance to a particle size of 3 to 8 μm, with Ni powder of 0.1 to 5% as a reinforcing material, and then sintered to the mixture. A slurry is formed by adding a maximum of 20% of an inhibitor, and the slurry is formed into a tape shape.
A porous cathode electrode is manufactured by using a material which is sintered at a high temperature of 1050 ° C. and which is thermally decomposed and pulverized such as Al 2 O 3 or MgO during the sintering process as the sintering inhibitor. Since the Al intermetallic compound is hard and brittle, it can be easily pulverized to have a particle size of 3 to 8 μm, and mixed with Ni powder in a vacuum or a reducing atmosphere to produce 950 to 105 μm.
By sintering at a high temperature of 0 ° C., the Al intermetallic compound can easily form a solid solution in the Ni powder and can function as a reinforcing material by dissolving in the Ni powder. It is possible to obtain a cathode electrode that is difficult to perform and has high creep resistance. Also, since the mixing amount of the Al intermetallic compound is small, sintering of Ni powder proceeds at high temperature sintering, and the porosity as an electrode may decrease. Even if there is, a sintering inhibitor which is thermally decomposed and pulverized like Al 2 O 3 or MgO at the time of sintering treatment is added to the mixture, so that sintering at a higher temperature is required. As a result, sintering of the Ni powders and sintering of the Ni and the Al intermetallic compound as the reinforcing material are promoted, and the microstructure can be stabilized without lowering the porosity of the electrode. It can contribute to performance improvement, and A l The mixing ratio of the intermetallic compound is 0.1 to 5%
, The creep resistance is improved, the electric resistance is not excessively increased, and the sintering between metals is inhibited by setting the addition amount of the sintering inhibitor to a maximum of 20%. Without sintering at 950 to 1050 ° C., a porous cathode electrode can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の溶融炭酸塩型燃料電池用カソード電極
の製造方法を示すプロセスフローである。
FIG. 1 is a process flow showing a method for producing a cathode electrode for a molten carbonate fuel cell of the present invention.

【図2】本発明の製造方法により製造されたカソード電
極の結晶構造を示すもので、(A)は酸化される前の状
態を、又、(B)は酸化された後の状態を示す概略図で
ある。
FIGS. 2A and 2B show a crystal structure of a cathode electrode manufactured by the manufacturing method of the present invention, in which FIG. 2A shows a state before oxidation, and FIG. 2B shows a state after oxidation. FIG.

【図3】従来のカソード電極の製造方法の一例を示すプ
ロセスフローである。
FIG. 3 is a process flow showing an example of a conventional method for manufacturing a cathode electrode.

【図4】従来の製造方法により製造されたカソード電極
の結晶構造を示すもので、(A)は酸化される前の状態
を、又、(B)は酸化された後の状態を示す概略図であ
る。
4A and 4B are schematic diagrams showing a crystal structure of a cathode electrode manufactured by a conventional manufacturing method, wherein FIG. 4A shows a state before oxidation, and FIG. 4B shows a state after oxidation. It is.

【符号の説明】[Explanation of symbols]

1 Ni粉 2 Al金属間化合物 5 焼結防止剤 7 スラリー 8 カソード電極 I 混合工程 II テープ成形工程 III 焼成工程 Reference Signs List 1 Ni powder 2 Al intermetallic compound 5 Sintering inhibitor 7 Slurry 8 Cathode electrode I Mixing process II Tape forming process III Firing process

フロントページの続き (72)発明者 森田 哲行 東京都江東区豊洲三丁目1番15号 石川 島播磨重工業株式会社 東二テクニカル センター内 (72)発明者 太田 稔智 東京都江東区豊洲三丁目1番15号 石川 島播磨重工業株式会社 東二テクニカル センター内 (56)参考文献 特開 平2−103861(JP,A) 特開 平2−103860(JP,A) 特開 昭61−271749(JP,A) 特開 昭62−165864(JP,A) 特開 平2−288069(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/86 - 4/98 Continuation of the front page (72) Inventor Tetsuyuki Morita 3-1-1, Toyosu, Koto-ku, Tokyo Ishikawa Shima-Harima Heavy Industries Co., Ltd. Inside the Toji Technical Center (72) Inventor Minoruichi Ota 3-1-1, Toyosu, Koto-ku, Tokyo No. 15 Ishikawa Shima Harima Heavy Industries, Ltd. Toji Technical Center (56) References JP-A-2-103681 (JP, A) JP-A-2-103860 (JP, A) JP-A-61-271749 (JP, A) JP-A-62-165864 (JP, A) JP-A-2-288069 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/86-4/98

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 2〜5μのNi粉に、予め粉砕して3〜
8μの粒径とするよう微粉化させたAl金属間化合物の
微粉を、強化材として0.1〜5%混合し、次に、該混
合物に焼結防止剤を最大20%添加してスラリー化し、
該スラリーをテープ状に成形した後、真空中あるいは還
元雰囲気中で950〜1050℃の高温で焼結し、且つ
上記焼結防止剤に、焼結処理時にAl、MgOの
如く熱分解して微粉化するものを用いて多孔質のカソー
ド電極を製造することを特徴とする溶融炭酸塩型燃料電
池用カソード電極の製造方法。
1. A pulverization method in which 2 to 5 μ Ni powder is pulverized in advance to 3 to 5 μm.
0.1-5% of a fine powder of Al intermetallic compound finely ground to have a particle size of 8μ is mixed as a reinforcing material, and then a sintering inhibitor is added to the mixture at a maximum of 20% to form a slurry. ,
After the slurry is formed into a tape, the slurry is sintered at a high temperature of 950 to 1050 ° C. in a vacuum or a reducing atmosphere, and the sintering inhibitor is thermally decomposed at the time of sintering, such as Al 2 O 3 or MgO. A method for producing a cathode electrode for a molten carbonate type fuel cell, comprising producing a porous cathode electrode by using a material that is pulverized.
JP15955091A 1991-06-04 1991-06-04 Method for producing cathode electrode for molten carbonate fuel cell Expired - Fee Related JP3216150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15955091A JP3216150B2 (en) 1991-06-04 1991-06-04 Method for producing cathode electrode for molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15955091A JP3216150B2 (en) 1991-06-04 1991-06-04 Method for producing cathode electrode for molten carbonate fuel cell

Publications (2)

Publication Number Publication Date
JPH04359869A JPH04359869A (en) 1992-12-14
JP3216150B2 true JP3216150B2 (en) 2001-10-09

Family

ID=15696196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15955091A Expired - Fee Related JP3216150B2 (en) 1991-06-04 1991-06-04 Method for producing cathode electrode for molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JP3216150B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2137262C1 (en) * 1997-09-26 1999-09-10 Акционерное общество закрытого типа "Карбид" Method for producing porous metal; porous metal and electrode for electrochemical charge accumulation and storage device
KR100314513B1 (en) * 1999-10-25 2001-11-30 박호군 An Alloy Anode for Molten Carbonate Fuel Cell and a Process for Production Thereof
US20080157419A1 (en) * 2006-12-29 2008-07-03 Doosan Heavy Industries & Construction Co., Ltd. Wet method of manufacturing electrolyte-impregnated electrodes for molten carbonate fuel cell

Also Published As

Publication number Publication date
JPH04359869A (en) 1992-12-14

Similar Documents

Publication Publication Date Title
JP3003163B2 (en) Method for producing electrode for molten carbonate fuel cell
JP5072169B2 (en) Improvements in fuel cells and related equipment
ES2829048T3 (en) Electrolyte formation process
EP1979964A2 (en) Fuel cell components having porous electrodes
JP3216150B2 (en) Method for producing cathode electrode for molten carbonate fuel cell
JP2999918B2 (en) Method for producing positive electrode for molten carbonate fuel cell
JP3208935B2 (en) Method for producing electrode for molten carbonate fuel cell
JP4508592B2 (en) Fuel cell manufacturing method
US6585931B1 (en) Molten carbonate fuel cell anode and method for manufacturing the same
JP3206904B2 (en) Fuel cell electrode manufacturing method
JP2002050370A (en) Current collector
JPH05299095A (en) Manufacture of electrode for molten carbonate fuel cell
KR20000012974A (en) Metal connection member for solid oxide fuel cell and method thereof
JP3582275B2 (en) Electrode for molten carbonate fuel cell and method for producing the same
JP4462013B2 (en) Solid electrolyte for use in solid oxide fuel cells
JP3357671B2 (en) Method for producing electrode for molten carbonate fuel cell
JP3208528B2 (en) Electrode for molten carbonate fuel cell and method for producing the same
JP3447019B2 (en) Separator material for solid oxide fuel cell and method for producing the same
JPH0949001A (en) Oxide dispersion strengthened nickel alloy powder for anode of fuel cell and its production
KR19990081359A (en) Method for manufacturing anode of molten carbonate fuel cell
KR20000043716A (en) Method for manufacturing a fuel electrode
JPH02288069A (en) Negative electrode for use in high temperature fuel cell and manufacture thereof
JP3219220B2 (en) Air electrode precursor green sheet and molten carbonate fuel cell using the same
JP3978549B2 (en) Method for manufacturing electrode of molten carbonate fuel cell
JPH03289051A (en) Electrode for molten carbonate fuel cell and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080803

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090803

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees