JP3582275B2 - Electrode for molten carbonate fuel cell and method for producing the same - Google Patents

Electrode for molten carbonate fuel cell and method for producing the same Download PDF

Info

Publication number
JP3582275B2
JP3582275B2 JP01007397A JP1007397A JP3582275B2 JP 3582275 B2 JP3582275 B2 JP 3582275B2 JP 01007397 A JP01007397 A JP 01007397A JP 1007397 A JP1007397 A JP 1007397A JP 3582275 B2 JP3582275 B2 JP 3582275B2
Authority
JP
Japan
Prior art keywords
electrode
fuel cell
powder
molten carbonate
carbonate fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01007397A
Other languages
Japanese (ja)
Other versions
JPH10199542A (en
Inventor
稔智 太田
哲行 森田
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP01007397A priority Critical patent/JP3582275B2/en
Publication of JPH10199542A publication Critical patent/JPH10199542A/en
Application granted granted Critical
Publication of JP3582275B2 publication Critical patent/JP3582275B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は燃料の有する化学エネルギーを直接電気エネルギーに変換させるエネルギー部門で用いる溶融炭酸塩型燃料電池の電極、特に、アノードとその製造方法に関するものである。
【0002】
【従来の技術】
従来、溶融炭酸塩型燃料電池用電極(アノード)の製造方法としては、図6に示す如く、たとえば、Ni−25Cr−25Alの如きAl基の組成を有する金属間化合物1を、粉砕工程Iでボールミルにより最終粒径を1〜10μm、平均粒径で5μmとなるように微粉砕し、これを強化材として混合工程IIでNi粉2に1〜10%添加し混合してスラリー化し、次いで、スラリー3をテープ成形工程III でテープ状に成形した後、焼成工程IVにて真空中又は還元雰囲気中で1000℃以上の高温で焼成して固溶させ、厚さ0.5〜1.5mm、空隙率50〜60%、平均空孔径4〜7μmの多孔質体の電極を製造するようにしたものがある(特願平2−135360号)。
【0003】
【発明が解決しようとする課題】
上記溶融炭酸塩型燃料電池の高性能化及び長寿命化を図るためには、上記のように製造される多孔質体の電極の空隙率の増大化とそれに伴う耐クリープ変形の機能強化が挙げられるが、上記の製造方法による場合にも、金属間化合物が焼成時にNiに固溶して強化材として機能することから、クリープ強度を確保できてミクロ構造を安定化させることができ、燃料電池の高性能化が図れるものであるが、更に、燃料電池の高性能化を達成するために空隙率の増大を図るには限界があった。
【0004】
そこで、本発明は、上記従来の製造方法による場合よりも空隙率を更に増大させることができるような溶融炭酸塩型燃料電池用電極とその製造方法を提供しようとするものである。
【0005】
【課題を解決するための手段】
本発明は、上記課題を解決するために、Al基の組成を有する金属間化合物を平均粒径1.4μmの微粉としてNi粉に添加混合してテープ状に成形したものを焼成して微粉が拡散した多孔質体電極を作り、この多孔質体電極を酸化処理した後、還元処理してNiのみ還元させ、Ni多孔質体内に酸化物が分散してなる構成としたことを特徴とする溶融炭酸塩型燃料電池用電極及びAl基の組成を有する金属間化合物を細かい粒子に粉砕して、これを強化材としてNi粉に添加し混合してスラリー化し、該スラリーをテープ状に成形した後、焼成して多孔質体電極を作り、更に、該多孔質体電極を酸化処理してNi多孔質体とその内部に拡散した添加元素を酸化させた後、還元処理をしてNiのみ還元させ、Ni多孔質体内に酸化物が分散した電極を完成させる製造方法とする。
【0006】
微粉の粒子径が小さいため、焼成工程で高温で焼成させることにより、空隙率が60〜75%の多孔質体電極が作れる。これを酸化、還元処理することによりNi多孔質体自体は還元され、Ni多孔質体内に分散した添加元素は酸化したままとなり、酸化物分散強化された電極が得られる。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照して説明する。
【0008】
図1は本発明の製造方法を実施するための工程を示すもので、図6に示した従来の製造方法の工程と同様に、Al基の組成を有する金属間化合物1を粉砕工程Iで微粉砕して、これを強化材としてNi粉2に混合工程IIで混合してスラリー化し、スラリー3をテープ成形工程III でテープ状に成形した後、焼成工程IVで焼成して多孔質体電極4を作り、更に、多孔質体電極4を酸化工程Vで酸化した後、還元工程VIでNiのみ還元させた電極5を完成させるようにする。
【0009】
上記金属間化合物1の組成としては、Al−Ni系(AlNi、NiAl、NiAl、AlNi)、Al−Fe系(AlFe、AlFe、AlFe)、Al−CO系(AlCO、AlCO、AlCO)、Al−Cr系(AlCr、AlCr、AlCr、AlCr)、Al−Ti系(AlTi、AlTi)等である。
【0010】
詳述すると、上記粉砕工程Iでは、従来のボールミルによる粉砕に代えて、図2に一例を示す如き溝付テーブル7と球形ローラ8とによって、テーブル7の溝内に粉砕物9を捕らえ、ローラ8全幅に均一な噛み込み層を作り、効率よく粉砕して超微粉砕を可能とするスーパーハイブリッドミル6を用い、金属間化合物1を0.3〜4μm、平均粒径1.4μmに微粉砕させ、該超微粉砕された金属間化合物1の微粉は、図3(イ)に3000倍の電子顕微鏡写真を示す如く、粒径が小さく且つ表面に凹凸が多くて表面積を増大(接触点を多く)するようになっており、ほとんど1μm以下のように観察される。これに対し、(ロ)に同じ3000倍の電子顕微鏡写真を示す従来のボールミルで粉砕した微粉の場合は、表面が丸く、且つ粒径が大きく、平均粒径が5μmであるので、10μm程度の粒子が多く観察される。
【0011】
次に、上記粉砕工程Iでスーパーハイブリッドミル6で超微細に粉砕された細かくて表面積が増大させられている微粉を、強化材としてNi粉2に0.5〜1.0%添加して混合工程IIで混合しスラリー化する。次いで、スラリー3をテープ成形工程III でテープ状に成形した後、乾燥させてグリーンテープを作り、このグリーンテープを焼成工程IVで真空中又は還元雰囲気中にて1000℃以上の高温で焼成させる。この場合、上記粉砕工程Iで平均粒径が1.4μmとなるように微粉砕し且つ表面積が増大するように造粒することにより、Ni粉を母相とする多孔質体に充分に拡散できるように接触点を多くすることができて、焼成工程IVで1000〜1200℃での焼成では、添加元素である上記金属間化合物の微粉が細かくて焼結収縮が生じ難くなることから空隙率が55〜75%となる多孔質体電極4を作ることができるが、金属間化合物1の微粉の添加量と焼成工程IVでの焼成温度とにより上記空隙率を従来のものより高い60%以上とすることができる。結局、上記焼成工程IVを経て厚さ0.5mm〜1.5mm、空隙率60〜75%、平均空孔径4〜7μmの多孔質体電極4を作成することができる。
【0012】
続いて、上記空隙率を維持するために、多孔質体電極4に対し酸化工程Vで酸化の操作をして酸化させ、Ni粉を母相とする多孔質体内に拡散した添加元素を酸化させ、次いで、還元工程VIで多孔質体電極4に水素を添加して還元の操作をしてNiのみ還元させ、Ni多孔質体内に酸化物が分散した状態の電極5を完成させる。すなわち、Ni多孔質体内に拡散した添加元素は、Ni多孔質体内ではNiよりも酸素との親和力が強く添加元素が還元されることはないため、電池の運転時には酸化物分散強化された電極(アノード)5となる。
【0013】
上記酸化工程V及び還元工程VIは、電極4を燃料電池FC内に組み込んで行う場合と、燃料電池FC外で行ってから燃料電池FC内に組み込む場合とがある。
【0014】
燃料電池FC内で行うときは、燃料電池を初期に昇温するときに、400〜450℃まで昇温させて酸素濃度1〜50%の空気を流し、Ni粉及び該Ni粉に添加されて拡散した添加物を酸化させるようにし、450℃以上では窒素を流すようにする。その後還元させるときは、水素を流して、Niのみ還元させて母相はNi金属とし、添加元素が酸化物となって残るようにする。
【0015】
一方、燃料電池FC外で行うときは、燃料電池を組む前に、多孔質体電極4を空気中で600〜800℃で酸化させ、Niとともに添加されてNi内に拡散した添加物を酸化させる。しかる後、還元させるときは、水素を流してNiのみを還元し、添加物元素のみ酸化物とした電極5とするようにし、この電極5を電池の中に組み込んだ後、昇温して運転するようにする。
【0016】
本発明においては、粉砕工程Iで金属間化合物1を0.3μm〜4μm、平均粒径1.4μmに微粉砕するので、図6に示した従来の場合と同じ添加量とした場合には、粒子数が多くなって、それだけ拡散することになり、Ni粉との混合の際にもNiとの混合効果が期待できる。又、粒子が小さいために、Ni粉との接触点が増加し、焼成時の拡散も十分に期待できる。更に、添加物粒子径がNi粒子や従来の添加物粉より小さいために、添加量が同じ場合、焼成時の固溶体強化が十分に達成でき、強度を維持するには添加量を低下することが可能となる。
【0017】
【実施例】
(1) 本発明者等は、本発明による図3(イ)に示す如き微粉を用いた場合と、図3(ロ)に示す如き従来の微粉を用いた場合とで、水素/炭酸ガス=80/20、温度650℃、荷重12.5kgf /cm、荷重負荷時間1000時間、炭酸塩の存在下という条件で圧縮クリープ変形率(%)を調べたところ、図4に示す如き結果が得られた。図4は本発明の改善粉と従来粉の添加量を同じくし作成条件を同じにしたときで、ともに空隙率は60%であるものの圧縮クリープ変化量を示すもので、改善粉の方が変化量が少ないことがわかる。
(2) 本発明者等は次に、本発明の改善粉を酸化還元処理したものと、していないものについて上記(1) と同じ条件で圧縮クリープ変化率(%)を調べたところ、図5に示す如き結果が得られた。図5からも、酸化還元処理を施した方が圧縮クリープ変形量が少ないことがわかる。
(3) 本発明者等は、電池性能について、150mA/cmの負荷時燃料利用率75%、酸化ガス利用率50%、運転温度650℃時の条件で調べたところ、従来の電極では0.78〜0.79Vの電圧が、本発明の電極では0.81〜0.83Vとなり、高性能化したことがわかった。
【0018】
【発明の効果】
以上述べた如く、本発明の溶融炭酸塩型燃料電池用電極とその製造方法によれば、0.3μm〜4μm、平均粒径1.4μmに微粉砕させたAl基の組成を有する金属間化合物の微粉を強化材としてNi粉に混合してスラリー化し、スラリーをテープ状に成形した後、焼成して多孔質体電極とし、更に、これを酸化させた後、還元させてNiのみ還元させ、Ni多孔質体内に酸化物が分散した状態の電極を完成させるようにしてあるので、空隙率を増大させることができて電池性能を向上させることができ、且つ電池の運転時に酸化物分散強化された電極となって、耐クリープ性が生じ、長寿命化を達成することができる、という優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明の溶融炭酸塩型燃料電池用電極の製造方法の製造工程を示す図である。
【図2】本発明の粉砕工程で用いるスーパーハイブリッドミルの粉砕部を示す概略図である。
【図3】粉砕工程で粉砕した微粉を拡大して示すもので、(イ)は本発明で用いる微粉の粒径を示し、(ロ)は従来の微粉を示す電子顕微鏡写真である。
【図4】本発明で用いる細かい微粉と従来の微粉とで圧縮クリープ変化量の違いを示す実験結果を示す図である。
【図5】本発明で用いる微粉について酸化還元処理をしたものとしていないものとで圧縮クリープ変形量の違いを示す実験結果を示す図である。
【図6】従来の溶融炭酸塩型燃料電池用電極の製造工程を示す図である。
【符号の説明】
I粉砕工程
II 混合工程
III テープ成形工程
IV 焼成工程
V 酸化工程
VI 還元工程
1 金属間化合物
2 Ni粉
3 スラリー
4 多孔質体電極
5 電極
[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to an electrode of a molten carbonate fuel cell used in an energy sector in which chemical energy of a fuel is directly converted into electric energy, and particularly to an anode and a method of manufacturing the same.
[0002]
[Prior art]
Conventionally, as a method for producing an electrode (anode) for a molten carbonate fuel cell, as shown in FIG. 6, for example, an intermetallic compound 1 having an Al-based composition such as Ni-25Cr-25Al is subjected to a pulverizing step I. Finely pulverized by a ball mill to have a final particle size of 1 to 10 μm and an average particle size of 5 μm, and as a reinforcing material, add 1 to 10% to Ni powder 2 in mixing step II, mix and form a slurry, After the slurry 3 is formed into a tape shape in the tape forming step III, it is fired at a high temperature of 1000 ° C. or more in a vacuum or a reducing atmosphere in a firing step IV to form a solid solution, and has a thickness of 0.5 to 1.5 mm. There is one that manufactures a porous electrode having a porosity of 50 to 60% and an average pore diameter of 4 to 7 μm (Japanese Patent Application No. 2-135360).
[0003]
[Problems to be solved by the invention]
In order to improve the performance and extend the life of the molten carbonate fuel cell, it is necessary to increase the porosity of the electrode of the porous body manufactured as described above and to enhance the function of the creep resistance. However, even in the case of the above manufacturing method, the intermetallic compound forms a solid solution in Ni at the time of firing and functions as a reinforcing material, so that creep strength can be secured and the microstructure can be stabilized, and the fuel cell However, there is a limit in increasing the porosity in order to achieve higher performance of the fuel cell.
[0004]
Accordingly, an object of the present invention is to provide an electrode for a molten carbonate fuel cell and a method of manufacturing the same, which can further increase the porosity as compared with the conventional manufacturing method.
[0005]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems by adding and mixing an intermetallic compound having an Al-based composition as a fine powder having an average particle diameter of 1.4 μm to a Ni powder, forming a tape, firing the tape, and forming the fine powder. A molten porous electrode is prepared by oxidizing the porous electrode and then reducing it to reduce only Ni, and the oxide is dispersed in the Ni porous body. The electrode for a carbonate fuel cell and an intermetallic compound having an Al-based composition are pulverized into fine particles, and this is added to Ni powder as a reinforcing material, mixed and slurried, and the slurry is formed into a tape shape. After firing, a porous material electrode is produced, and further, the porous material electrode is oxidized to oxidize the Ni porous material and the additional element diffused therein, and then reduced to reduce only Ni. Oxide is dispersed in Ni porous body A manufacturing method of completing the electrodes.
[0006]
Due to the small particle diameter of the fine powder, a porous electrode having a porosity of 60 to 75% can be made by firing at a high temperature in the firing step. By oxidizing and reducing this, the Ni porous body itself is reduced, and the additional elements dispersed in the Ni porous body remain oxidized, whereby an electrode with oxide dispersion strengthening is obtained.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0008]
FIG. 1 shows the steps for carrying out the production method of the present invention. As in the case of the conventional production method shown in FIG. 6, an intermetallic compound 1 having an Al group composition is finely divided in a pulverization step I. The mixture is crushed and mixed with Ni powder 2 as a reinforcing material in a mixing step II to form a slurry. The slurry 3 is formed into a tape in a tape forming step III, and then fired in a firing step IV to form a porous electrode 4. After the porous electrode 4 is oxidized in the oxidation step V, the electrode 5 in which only Ni is reduced in the reduction step VI is completed.
[0009]
The composition of the intermetallic compound 1 includes Al—Ni (AlNi, Ni 3 Al, Ni 2 Al 3 , Al 3 Ni), Al—Fe (Al 2 Fe, Al 3 Fe, AlFe), and Al—CO system (AlCO, Al 5 CO 2, Al 9 CO 2), AlCr system (AlCr 2, Al 4 Cr, Al 8 Cr 5, Al 9 Cr 4), AlTi system (AlTi, Al 3 Ti), etc. It is.
[0010]
More specifically, in the pulverizing step I, instead of pulverizing by a conventional ball mill, a pulverized material 9 is caught in a groove of the table 7 by a grooved table 7 and a spherical roller 8 as shown in FIG. 8 Using a super hybrid mill 6 that forms a uniform biting layer over the entire width and enables efficient pulverization by ultra-pulverization, finely pulverizes the intermetallic compound 1 to 0.3 to 4 μm and an average particle diameter of 1.4 μm. Then, as shown in the electron micrograph of × 3000 in FIG. 3A, the ultrafinely pulverized fine powder of the intermetallic compound 1 has a small particle diameter and a large number of irregularities on the surface to increase the surface area (contact point is increased). ) And is observed as almost 1 μm or less. On the other hand, in the case of a fine powder pulverized by a conventional ball mill showing the same 3000 × electron micrograph shown in (b), the surface is round, the particle size is large, and the average particle size is 5 μm, so that it is about 10 μm. Many particles are observed.
[0011]
Next, in the above-mentioned pulverizing step I, 0.5 to 1.0% of fine powder, which has been superfinely pulverized by the super hybrid mill 6 and has an increased surface area, is added to the Ni powder 2 as a reinforcing material and mixed. Mix and slurry in Step II. Next, the slurry 3 is formed into a tape shape in a tape forming step III and then dried to form a green tape, and the green tape is fired in a firing step IV at a high temperature of 1000 ° C. or higher in a vacuum or a reducing atmosphere. In this case, by finely pulverizing in the above-mentioned pulverizing step I so as to have an average particle size of 1.4 μm and granulating so as to increase the surface area, the powder can be sufficiently diffused into the porous body having Ni powder as a matrix. Thus, the number of contact points can be increased, and in the firing at 1000 to 1200 ° C. in the firing step IV, the fine powder of the intermetallic compound as an additional element is so fine that sintering shrinkage is less likely to occur. The porous body electrode 4 having a volume ratio of 55 to 75% can be produced, but the porosity is set to 60% or more, which is higher than the conventional one, depending on the amount of the fine powder of the intermetallic compound 1 and the firing temperature in the firing step IV. can do. Eventually, the porous electrode 4 having a thickness of 0.5 mm to 1.5 mm, a porosity of 60 to 75%, and an average pore diameter of 4 to 7 μm can be formed through the above-described firing step IV.
[0012]
Subsequently, in order to maintain the porosity, the porous material electrode 4 is oxidized by an oxidizing operation in an oxidizing step V to oxidize the additional element diffused into the porous body having Ni powder as a mother phase. Then, in the reduction step VI, hydrogen is added to the porous material electrode 4 to perform a reduction operation to reduce only Ni, thereby completing the electrode 5 in a state where the oxide is dispersed in the Ni porous material. That is, since the additive element diffused into the Ni porous body has a stronger affinity for oxygen than Ni in the Ni porous body and the additive element is not reduced, the electrode with the oxide dispersion strengthened during operation of the battery ( Anode) 5.
[0013]
The oxidation step V and the reduction step VI may be performed by incorporating the electrode 4 in the fuel cell FC, or may be performed outside the fuel cell FC and then incorporated in the fuel cell FC.
[0014]
When performed in the fuel cell FC, when the temperature of the fuel cell is initially raised, the temperature is raised to 400 to 450 ° C. and air having an oxygen concentration of 1 to 50% is flowed, and the air is added to the Ni powder and the Ni powder. The diffused additive is oxidized, and nitrogen is flowed at 450 ° C. or higher. Thereafter, when reducing, hydrogen is flowed to reduce only Ni, so that the parent phase is made of Ni metal and the added element remains as an oxide.
[0015]
On the other hand, when the operation is performed outside the fuel cell FC, before assembling the fuel cell, the porous electrode 4 is oxidized in air at 600 to 800 ° C., and the additive added together with Ni and diffused into Ni is oxidized. . Thereafter, when the reduction is performed, hydrogen is flowed to reduce only Ni, and the electrode 5 is made of only the additive element as an oxide. After the electrode 5 is incorporated in a battery, the temperature is increased and the operation is performed. To do.
[0016]
In the present invention, since the intermetallic compound 1 is finely pulverized to 0.3 μm to 4 μm and the average particle diameter to 1.4 μm in the pulverization step I, when the same addition amount as the conventional case shown in FIG. As the number of particles increases, the particles diffuse accordingly, and the effect of mixing with Ni can be expected when mixing with Ni powder. Further, since the particles are small, the number of contact points with the Ni powder increases, and diffusion during firing can be sufficiently expected. Further, since the additive particle size is smaller than the Ni particles and the conventional additive powder, if the addition amount is the same, solid solution strengthening during firing can be sufficiently achieved, and the addition amount may be reduced to maintain strength. It becomes possible.
[0017]
【Example】
(1) The inventors of the present invention use hydrogen / carbon dioxide gas in the case of using the fine powder as shown in FIG. 3A according to the present invention and the case of using the conventional fine powder as shown in FIG. When the compression creep deformation rate (%) was examined under the conditions of 80/20, a temperature of 650 ° C., a load of 12.5 kgf / cm 2 , a load application time of 1000 hours, and the presence of carbonate, the results shown in FIG. 4 were obtained. Was done. FIG. 4 shows the results when the added amount of the improved powder of the present invention and that of the conventional powder were the same and the preparation conditions were the same. In both cases, although the porosity was 60%, the compressive creep change was shown. It can be seen that the amount is small.
(2) The present inventors next examined the compression creep change rate (%) of the improved powder of the present invention subjected to oxidation-reduction treatment and that of the powder not subjected to the oxidation-reduction treatment under the same conditions as in (1) above. The results as shown in FIG. 5 were obtained. FIG. 5 also shows that the oxidation-reduction treatment reduces the amount of compressive creep deformation.
(3) The present inventors examined the cell performance under the conditions of a fuel utilization of 150 mA / cm 2 at a load fuel utilization of 75%, an oxidizing gas utilization of 50%, and an operation temperature of 650 ° C. The voltage of 0.78 to 0.79 V was 0.81 to 0.83 V in the electrode of the present invention, indicating that the performance was improved.
[0018]
【The invention's effect】
As described above, according to the electrode for a molten carbonate fuel cell of the present invention and the method for producing the same, an intermetallic compound having an Al-based composition finely pulverized to 0.3 μm to 4 μm and an average particle diameter of 1.4 μm. After mixing the Ni powder with the Ni powder as a reinforcing material to form a slurry, forming the slurry into a tape, firing it to form a porous electrode, and further oxidizing it, then reducing it to reduce only Ni, Since the electrode in which the oxide is dispersed in the Ni porous body is completed, the porosity can be increased, the battery performance can be improved, and the oxide dispersion is enhanced during the operation of the battery. As a result, it is possible to obtain an excellent effect that creep resistance is generated and a longer life can be achieved.
[Brief description of the drawings]
FIG. 1 is a view showing a production process of a method for producing an electrode for a molten carbonate fuel cell of the present invention.
FIG. 2 is a schematic diagram showing a pulverizing section of a super hybrid mill used in the pulverizing step of the present invention.
FIG. 3 is an enlarged view of the fine powder pulverized in the pulverizing step. (A) shows the particle size of the fine powder used in the present invention, and (B) is an electron micrograph showing the conventional fine powder.
FIG. 4 is a view showing an experimental result showing a difference in a compression creep change amount between a fine powder used in the present invention and a conventional fine powder.
FIG. 5 is a view showing an experimental result showing a difference in the amount of compressive creep deformation between a fine powder used in the present invention and a fine powder not subjected to an oxidation-reduction treatment.
FIG. 6 is a view showing a manufacturing process of a conventional electrode for a molten carbonate fuel cell.
[Explanation of symbols]
I Pulverizing Step II Mixing Step III Tape Forming Step IV Firing Step V Oxidation Step VI Reduction Step 1 Intermetallic Compound 2 Ni Powder 3 Slurry 4 Porous Electrode 5 Electrode

Claims (4)

Al基の組成を有する金属間化合物を平均粒径1.4μmの微粉としてNi粉に添加混合してテープ状に成形したものを焼成して微粉が拡散した多孔質体電極を作り、この多孔質体電極を酸化処理した後、還元処理してNiのみ還元させ、Ni多孔質体内に酸化物が分散してなる構成としたことを特徴とする溶融炭酸塩型燃料電池用電極。An intermetallic compound having an Al-based composition was added as a fine powder having an average particle diameter of 1.4 μm to Ni powder, mixed and formed into a tape shape, and fired to produce a porous electrode in which the fine powder was diffused. An electrode for a molten carbonate fuel cell, wherein the body electrode is oxidized and then reduced to reduce only Ni, and the oxide is dispersed in the Ni porous body. 空隙率を60〜75%とした請求項1記載の溶融炭酸塩型燃料電池用電極。The electrode for a molten carbonate fuel cell according to claim 1, wherein the porosity is 60 to 75%. Al基の組成を有する金属間化合物を細かい粒子に粉砕して、これを強化材としてNi粉に添加し混合してスラリー化し、該スラリーをテープ状に成形した後、焼成して多孔質体電極を作り、更に、該多孔質体電極を酸化処理してNi多孔質体とその内部に拡散した添加元素を酸化させた後、還元処理をしてNiのみ還元させ、Ni多孔質体内に酸化物が分散した電極を完成させることを特徴とする溶融炭酸塩型燃料電池用電極の製造方法。An intermetallic compound having an Al-based composition is pulverized into fine particles, added to Ni powder as a reinforcing material, mixed and slurried, and the slurry is formed into a tape shape, and then fired to form a porous electrode. After the porous electrode is oxidized to oxidize the Ni porous body and the additional element diffused therein, only the Ni is reduced by the reduction treatment, and the oxide is contained in the Ni porous body. A method for producing an electrode for a molten carbonate fuel cell, comprising completing an electrode in which is dispersed. 粒径が0.3μm〜4μmで平均粒径を1.4μmとした微粉を用いるようにする請求項3記載の溶融炭酸塩型燃料電池用電極の製造方法。4. The method for producing an electrode for a molten carbonate fuel cell according to claim 3, wherein a fine powder having a particle size of 0.3 to 4 [mu] m and an average particle size of 1.4 [mu] m is used.
JP01007397A 1997-01-06 1997-01-06 Electrode for molten carbonate fuel cell and method for producing the same Expired - Fee Related JP3582275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01007397A JP3582275B2 (en) 1997-01-06 1997-01-06 Electrode for molten carbonate fuel cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01007397A JP3582275B2 (en) 1997-01-06 1997-01-06 Electrode for molten carbonate fuel cell and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10199542A JPH10199542A (en) 1998-07-31
JP3582275B2 true JP3582275B2 (en) 2004-10-27

Family

ID=11740199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01007397A Expired - Fee Related JP3582275B2 (en) 1997-01-06 1997-01-06 Electrode for molten carbonate fuel cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP3582275B2 (en)

Also Published As

Publication number Publication date
JPH10199542A (en) 1998-07-31

Similar Documents

Publication Publication Date Title
JP3003163B2 (en) Method for producing electrode for molten carbonate fuel cell
JP4963147B2 (en) ELECTRODE CATALYST FOR FUEL CELL AND METHOD FOR PRODUCING THE SAME
EP0198466B1 (en) Nickel anode electrode
JPH01189866A (en) Electrode for fuel cell and manufacture thereof
KR102255855B1 (en) Platinum-based alloy catalyst for oxygen reduction reaction, method of manufacturing the platinum alloy catalyst, and fuel cell having the platinum alloy catalyst
JP3582275B2 (en) Electrode for molten carbonate fuel cell and method for producing the same
JP2999918B2 (en) Method for producing positive electrode for molten carbonate fuel cell
JP3216150B2 (en) Method for producing cathode electrode for molten carbonate fuel cell
JP3206904B2 (en) Fuel cell electrode manufacturing method
JP3208935B2 (en) Method for producing electrode for molten carbonate fuel cell
JPS62154576A (en) Manufacture of molten carbonate fuel cell
JP4381158B2 (en) High temperature oxidation resistant iron-base alloy composite member, method for producing the same, and fuel cell separator using the same
JPS60150558A (en) Production method of fuel electrode for melted carbonate type fuel cell
JPS5987767A (en) Molten salt fuel cell
JP3357671B2 (en) Method for producing electrode for molten carbonate fuel cell
JPH05170528A (en) Method for sintering lanthanum chromite
JP3208528B2 (en) Electrode for molten carbonate fuel cell and method for producing the same
JPS62249360A (en) Manufacture of gas diffusion electrode
JPH02288069A (en) Negative electrode for use in high temperature fuel cell and manufacture thereof
JPH0589883A (en) Method for forming fuel electrode of solid electrolyte type fuel cell
JP3978549B2 (en) Method for manufacturing electrode of molten carbonate fuel cell
JPS63255304A (en) Production of porous metal sintered body
JPH0850899A (en) Cell for solid electrolyte fuel cell
JPH03289051A (en) Electrode for molten carbonate fuel cell and manufacture thereof
JPH05299095A (en) Manufacture of electrode for molten carbonate fuel cell

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees