JP4462013B2 - Solid electrolyte for use in solid oxide fuel cells - Google Patents

Solid electrolyte for use in solid oxide fuel cells Download PDF

Info

Publication number
JP4462013B2
JP4462013B2 JP2004328643A JP2004328643A JP4462013B2 JP 4462013 B2 JP4462013 B2 JP 4462013B2 JP 2004328643 A JP2004328643 A JP 2004328643A JP 2004328643 A JP2004328643 A JP 2004328643A JP 4462013 B2 JP4462013 B2 JP 4462013B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
solid
powder
oxide fuel
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004328643A
Other languages
Japanese (ja)
Other versions
JP2006140029A (en
Inventor
雅治 山田
孝二 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004328643A priority Critical patent/JP4462013B2/en
Publication of JP2006140029A publication Critical patent/JP2006140029A/en
Application granted granted Critical
Publication of JP4462013B2 publication Critical patent/JP4462013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

この発明は、高強度を有する固体電解質型燃料電池用固体電解質に関するものである。   The present invention relates to a solid electrolyte for a solid oxide fuel cell having high strength.

一般に、固体電解質型燃料電池は、水素ガス、天然ガス、メタノール、石炭ガスなどを燃料とすることができるので、発電における石油代替エネルギー化を促進することができ、さらに廃熱を利用することができるので省資源および環境問題の観点からも注目されている。この固体電解質型燃料電池は作動温度が900〜1000℃の高温タイプのものと、作動温度が600〜800℃の低温タイプのものがあり、その構造は、固体電解質の片面に酸素極集電体を積層し、固体電解質のもう一方の片面に燃料極集電体を積層し、前記酸素極集電体の外側に空気導入口を有するセパレータを積層し、燃料極集電体の外側に燃料導入口を有するセパレータを積層した基本構造を有している。酸素極集電体は酸化剤ガスである空気を流す流路として機能する役割があるところから、ガス通路が形成されたランタンクロマイトなどの導電性セラミックス、白金のメッシュ、あるいは銀の多項質体などが使用されている。そして、固体酸化物燃料電池の発電容量を大きくするために、酸素極集電体、燃料極集電体、固体電解質およびセパレータはいずれも板状構造を有している。   In general, since solid oxide fuel cells can use hydrogen gas, natural gas, methanol, coal gas, or the like as fuel, they can promote the use of alternative energy for petroleum in power generation and use waste heat. Because it can be done, it is attracting attention from the viewpoint of resource saving and environmental problems. This solid electrolyte fuel cell has a high temperature type with an operating temperature of 900 to 1000 ° C and a low temperature type with an operating temperature of 600 to 800 ° C. A fuel electrode current collector is stacked on the other side of the solid electrolyte, a separator having an air inlet is stacked outside the oxygen electrode current collector, and fuel is introduced outside the fuel electrode current collector. It has a basic structure in which separators having a mouth are stacked. Since the oxygen electrode current collector functions as a flow path for flowing air, which is an oxidant gas, conductive ceramics such as lanthanum chromite in which a gas passage is formed, platinum mesh, silver polymorph, etc. Is used. In order to increase the power generation capacity of the solid oxide fuel cell, the oxygen electrode current collector, the fuel electrode current collector, the solid electrolyte, and the separator all have a plate-like structure.

前記固体電解質として、(La1−xSr)(Ga1−y−zMgCo)O(ただし、x:0.05〜0.3、y:0〜0.29、z:0.01〜0.3、y+z:0.025〜0.3)からなる組成を有する固体電解質が知られており、この固体電解質は高いイオン伝導性があり、そしてこの固体電解質は、La粉末、SrCO粉末、Ga粉末、MgO粉末およびCoO粉末を原料粉末として用意し、これら原料粉末を(La1−xSr)(Ga1−y−zMgCo)O(ただし、x:0.05〜0.3、y:0〜0.29、z:0.01〜0.3、y+z:0.025〜0.3)となるように配合し、混合した後、大気中、温度:500〜1300℃で予備焼成し、この予備焼成した混合物を粉砕し、冷間静水圧プレスにより板状圧縮成形体に成形し、得られた板状圧縮成形体を温度:1200℃以上(好ましくは1300℃以上)で焼結することにより得られることは知られている(特許文献1参照)。
特開平11−335164号公報
As the solid electrolyte, (La 1-x Sr x ) (Ga 1-y-z Mg y Co z) O 3 ( provided that, x: 0.05~0.3, y: 0~0.29 , z: 0.01-0.3, y + z: 0.025-0.3) is known, this solid electrolyte has high ionic conductivity, and this solid electrolyte is La 2 O 3 powder, SrCO 3 powder, Ga 2 O 3 powder, MgO powder and CoO powder are prepared as raw material powders, and these raw material powders are (La 1-x Sr x ) (Ga 1-yz Mg y Co z ). O 3 (x: 0.05 to 0.3, y: 0 to 0.29, z: 0.01 to 0.3, y + z: 0.025 to 0.3) After mixing, pre-baking is performed at a temperature of 500 to 1300 ° C. in the atmosphere. The obtained mixture is pulverized and formed into a plate-like compression molded body by cold isostatic pressing, and the obtained plate-like compression molded body is sintered at a temperature of 1200 ° C. or higher (preferably 1300 ° C. or higher). This is known (see Patent Document 1).
Japanese Patent Laid-Open No. 11-335164

近年、固体酸化物燃料電池も大型車両などに積載しようとする試みが成されており、従来の(La1−xSr)(Ga1−y−zMgCo)O(ただし、x:0.05〜0.3、y:0〜0.29、z:0.01〜0.3、y+z:0.025〜0.3)からなる固体電解質を使用した固体酸化物形燃料電池を大型車両などに積載しようとする試みが成されている。しかし、従来の(La1−xSr)(Ga1−y−zMgCo)O(ただし、x:0.05〜0.3、y:0〜0.29、z:0.01〜0.3、y+z:0.025〜0.3)からなる固体電解質は強度が十分でなく、一層強度を高めることが必要であった。 Recently, solid oxide fuel cells have also been made an attempt to load such a large vehicle, a conventional (La 1-x Sr x) (Ga 1-y-z Mg y Co z) O 3 ( where x: 0.05 to 0.3, y: 0 to 0.29, z: 0.01 to 0.3, y + z: 0.025 to 0.3)) Attempts have been made to load batteries on large vehicles. However, conventional (La 1-x Sr x) (Ga 1-y-z Mg y Co z) O 3 ( provided that, x: 0.05~0.3, y: 0~0.29 , z: 0 .01-0.3, y + z: 0.025-0.3) was not strong enough, and it was necessary to further increase the strength.

そこで、本発明者等は、上述のような観点から、(La1−xSr)(Ga1−y−zMgCo)O(ただし、x:0.05〜0.3、y:0〜0.29、z:0.01〜0.3、y+z:0.025〜0.3)からなる固体電解質の強度を一層高めるべく研究を行った。その結果、
(イ)La粉末、SrCO粉末、Ga粉末、MgO粉末およびCoO粉末などの原料粉末を(La1−xSr)(Ga1−y−zMgCo)O(ただし、x:0.05〜0.3、y:0〜0.29、z:0.01〜0.3、y+z:0.025〜0.3)となるように配合し、混合した後、大気雰囲気中、温度:1300℃未満で予備焼成し、この予備焼成した混合物を粉砕し、冷間静水圧プレスにより板状圧縮成形体に成形し、得られた板状圧縮成形体を通常の大気よりも酸素含有量を少なくした大気雰囲気中、温度:1300℃以上で焼結させることにより得られ酸化物焼結体からなる固体電解質は、(La1−xSr)(Ga1−y−zMgCo)O(ただし、x:0.05〜0.3、y:0〜0.29、z:0.01〜0.3、y+z:0.025〜0.3)からなる組成を有しペロブスカイト結晶構造を有する酸化物焼結体の素地中に、MgおよびCo含有量の極めて少ない(La1−xSr)(Ga1−y−zMgCo)O(ただし、0.3<x<0.7、y<0.01、z<0.01、y+z<0.02)からなる組成を有する微細な酸化物粒が析出均一分散している組織を有し、この微細な酸化物粒が素地中に析出し均一分散している組織を有する酸化物焼結体からなる固体電解質は、従来の固体電解質よりも高強度を有する、
(ロ)前記素地中に均一分散する微細な酸化物粒は平均粒径:0.5〜10μmの範囲内にあることが好ましい、などの研究結果が得られたのである。
The present inventors have, from the viewpoint as described above, (La 1-x Sr x ) (Ga 1-y-z Mg y Co z) O 3 ( provided that, x: 0.05 to 0.3, Research was conducted to further increase the strength of the solid electrolyte comprising y: 0 to 0.29, z: 0.01 to 0.3, y + z: 0.025 to 0.3). as a result,
(I) Raw material powders such as La 2 O 3 powder, SrCO 3 powder, Ga 2 O 3 powder, MgO powder and CoO powder are (La 1-x Sr x ) (Ga 1-yz Mg y Co z ) O 3 (x: 0.05 to 0.3, y: 0 to 0.29, z: 0.01 to 0.3, y + z: 0.025 to 0.3) and mixed. After that, pre-fired in an air atmosphere at a temperature of less than 1300 ° C., the pre-fired mixture is pulverized, and formed into a plate-like compression-molded body by cold isostatic pressing, and the obtained plate-like compression-molded body is obtained. A solid electrolyte made of an oxide sintered body obtained by sintering at a temperature of 1300 ° C. or higher in an air atmosphere in which the oxygen content is lower than that of normal air is (La 1-x Sr x ) (Ga 1 -y-z Mg y Co z) O 3 ( provided that, x: .05 to 0 .3, y: 0 to 0.29, z: 0.01 to 0.3, y + z: 0.025 to 0.3), and a base of an oxide sintered body having a perovskite crystal structure in, very few of Mg and Co content (La 1-x Sr x) (Ga 1-y-z Mg y Co z) O 3 ( however, 0.3 <x <0.7, y <0.01 , Z <0.01, y + z <0.02), and has a structure in which fine oxide particles are precipitated and uniformly dispersed. The fine oxide particles are precipitated and uniformly dispersed in the substrate. The solid electrolyte composed of an oxide sintered body having a texture having a higher strength than the conventional solid electrolyte,
(B) Research results such as that the fine oxide particles uniformly dispersed in the substrate are preferably in the range of an average particle size of 0.5 to 10 μm are obtained.

この発明は、かかる研究結果に基づいてなされたものであって、
(1)(La1−xSr)(Ga1−y−zMgCo)O(ただし、x:0.05〜0.3、y:0〜0.29、z:0.01〜0.3、y+z:0.025〜0.3)からなる組成を有しペロブスカイト結晶構造を有する酸化物の素地中に、(La1−xSr)(Ga1−y−zMgCo)O(ただし、0.3<x<0.7、y<0.01、z<0.01、y+z<0.02)からなる組成をする微細な酸化物粒が均一分散している組織を有する酸化物焼結体からなる固体電解質型燃料電池に使用するための高強度固体電解質、
(2)前記微細な酸化物粒は、平均結晶粒径:0.5〜10μmを有する前記(1)記載の固体電解質型燃料電池に使用するための高強度固体電解質、に特徴を有するものである。
The present invention has been made based on the results of such research,
(1) (La 1-x Sr x ) (Ga 1-yz Mg y Co z ) O 3 (where x: 0.05 to 0.3, y: 0 to 0.29, z: 0. 01~0.3, y + z: in the matrix of the oxide having a perovskite crystal structure having a composition consisting of 0.025~0.3), (La 1-x Sr x) (Ga 1-y-z Mg y Co z ) O 3 (where 0.3 <x <0.7, y <0.01, z <0.01, y + z <0.02), fine oxide grains having a uniform dispersion A high-strength solid electrolyte for use in a solid oxide fuel cell made of an oxide sintered body having a texture
(2) The fine oxide particles are characterized by a high-strength solid electrolyte for use in the solid oxide fuel cell according to (1) above having an average crystal grain size: 0.5 to 10 μm. is there.

この発明の固体電解質型燃料電池に使用するための固体電解質を構成する酸化物焼結体は、原料粉末としていずれも平均粒径:0.05〜3μmを有するLa粉末、SrCO粉末、Ga粉末、MgO粉末およびCoO粉末を原料粉末として用意し、これら原料粉末を(La1−xSr)(Ga1−y−zMgCo)O(ただし、x:0.05〜0.3、y:0〜0.29、z:0.01〜0.3、y+z:0.025〜0.3)となるように配合し、混合した後、大気雰囲気(一般に、大気の成分は、体積比で、酸素:20.99%、窒素:78.03%、アルゴン:0.94%、炭酸ガス:0.03%、水素:0.01%、その他、ネオン、ヘリウム、クリプトン、キセノンなど微量に含んでいる)中、温度:1300℃未満で予備焼成し、この予備焼成した凝集体を粉砕し、冷間静水圧プレスやドクターブレード法により板状成形体に成形し、得られた板状成形体をさらに通常の大気よりも酸素を少なく含む大気雰囲気(すなわち、酸素含有量が20.99%未満の大気雰囲気)中、温度:1300℃以上(好ましくは、1400〜1450℃)で焼結することにより得られる。 The oxide sintered bodies constituting the solid electrolyte for use in the solid oxide fuel cell of the present invention are La 2 O 3 powder and SrCO 3 powder each having an average particle size of 0.05 to 3 μm as a raw material powder. , Ga 2 O 3 powder, MgO powder and CoO powder are prepared as raw material powders, and these raw material powders are (La 1-x Sr x ) (Ga 1-yz Mg y Co z ) O 3 (where x: 0.05 to 0.3, y: 0 to 0.29, z: 0.01 to 0.3, y + z: 0.025 to 0.3), and after mixing, air atmosphere ( In general, atmospheric components are oxygen: 20.99%, nitrogen: 78.03%, argon: 0.94%, carbon dioxide: 0.03%, hydrogen: 0.01%, other, neon , Helium, krypton, xenon, etc.) Temperature: Pre-baked at less than 1300 ° C., the pre-baked agglomerates are pulverized, and formed into a plate-shaped molded body by a cold isostatic press or a doctor blade method. It is obtained by sintering at a temperature of 1300 ° C. or higher (preferably 1400 to 1450 ° C.) in an air atmosphere containing less oxygen (that is, an air atmosphere having an oxygen content of less than 20.99%).

このようにして製造したこの発明の(La1−xSr)(Ga1−y−zMgCo)O(ただし、x:0.05〜0.3、y:0〜0.29、z:0.01〜0.1、y+z:0.035〜0.3)からなる組成を有しペロブスカイト結晶構造を有する酸化物焼結体の素地中に均一分散している(La1−xSr)(Ga1−y−zMgCo)O(ただし、0.3<x<0.7、y<0.01、z<0.01、y+z<0.02)からなるMgおよびCo含有量の極めて少ない組成をする微細な酸化物粒は、酸化物焼結体を固体電解質として使用する場合、平均結晶粒径:0.5〜10μmを有することが一層好ましい。そして、この酸化物粒は大部分が素地の結晶粒界に沿って析出しているいるが、一部は結晶粒内に析出することもある。 The thus produced of the present invention (La 1-x Sr x) (Ga 1-y-z Mg y Co z) O 3 ( provided that, x: 0.05~0.3, y: 0~0 . 29, z: 0.01 to 0.1, y + z: 0.035 to 0.3) and uniformly dispersed in the base of the oxide sintered body having a perovskite crystal structure (La 1 -x Sr x) (Ga 1- y-z Mg y Co z) O 3 ( however, 0.3 <x <0.7, y <0.01, z <0.01, y + z <0.02) When the oxide sintered body is used as a solid electrolyte, it is more preferable that the fine oxide particles having an extremely small Mg and Co content composition have an average crystal grain size: 0.5 to 10 μm. Most of the oxide grains are precipitated along the grain boundaries of the substrate, but some of the oxide grains may be precipitated in the crystal grains.

この発明の固体電解質型燃料電池の固体電解質は、従来の固体電解質に比べて機械的強度が大きく、したがって、この発明の固体電解質を用いた固体酸化物型燃料電池は振動などを受けても十分に耐えることができ、設置場所を選ぶことがないので一層広範囲な利用が可能となる。   The solid electrolyte of the solid oxide fuel cell of the present invention has a higher mechanical strength than the conventional solid electrolyte, and therefore the solid oxide fuel cell using the solid electrolyte of the present invention is sufficient even when subjected to vibrations or the like. Can be used, and it is not necessary to select an installation location.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

つぎに、この発明の固体酸化物燃料電池の固体電解質を実施例により具体的に説明する。
原料粉末としていずれも平均粒径:0.6μmのLa粉末、平均粒径:1.1μmのSrCO粉末、平均粒径:0.9μmのGa粉末、平均粒径:0.4μmのMgO粉末および平均粒径:1.2μmのCoO粉末を用意し、これら原料粉末を、質量%で、La粉末:53.28%、、SrCO粉末:12.07%、Ga粉末:30.65%、MgO粉末:2.47%、CoO粉末:1.53%の配合組成となるように配合し、混合した。次いで得られた混合粉末をドクターブレード法でシート成形し、円盤状に切り出して、大気中、温度:1250℃、6時間保持の条件で予備焼結し、この予備焼成した凝集体を粉砕し、冷間静水圧プレスやドクターブレード法により板状成形体に成形し、得られた板状成形体を表1に示される条件で燒結することにより、本発明固体電解質1〜2および従来固体電解質1を作製した。
Next, the solid electrolyte of the solid oxide fuel cell of the present invention will be described in detail with reference to examples.
As raw material powders, La 2 O 3 powder having an average particle diameter of 0.6 μm, SrCO 3 powder having an average particle diameter of 1.1 μm, Ga 2 O 3 powder having an average particle diameter of 0.9 μm, and an average particle diameter of 0. .4 μm MgO powder and CoO powder having an average particle diameter of 1.2 μm were prepared, and these raw material powders were, in mass%, La 2 O 3 powder: 53.28%, SrCO 3 powder: 12.07%, They were blended so as to have a blend composition of Ga 2 O 3 powder: 30.65%, MgO powder: 2.47%, CoO powder: 1.53%, and mixed. Next, the obtained mixed powder is formed into a sheet by a doctor blade method, cut into a disk shape, pre-sintered in the atmosphere at a temperature of 1250 ° C. for 6 hours, and the pre-baked aggregate is pulverized. The present invention solid electrolytes 1 and 2 and the conventional solid electrolyte 1 are formed by forming into a plate-like molded body by cold isostatic pressing or a doctor blade method and sintering the obtained plate-like molded body under the conditions shown in Table 1. Was made.

得られた本発明固体電解質1〜2および従来固体電解質1の断面を研磨し、エッチングした後そのエッチング面をCOMP(二次電子像)写真に撮り、画像解析法により素地中に分散している微細な酸化物粒の平均粒径を測定し、さらにこれら固体電解質の素地中に分散する微細な酸化物粒の成分組成をEPMA(電子線微小分析装置)により測定し、その結果を表1に示した。
さらに本発明固体電解質1〜2および従来固体電解質1の抗折強度を測定し、その結果を表3に示した。
The cross sections of the obtained solid electrolytes 1 and 2 of the present invention and the conventional solid electrolyte 1 are polished and etched, and then the etched surface is taken in a COMP (secondary electron image) photograph and dispersed in the substrate by image analysis. The average particle size of the fine oxide particles was measured, and the component composition of the fine oxide particles dispersed in the solid electrolyte substrate was measured by EPMA (electron beam microanalyzer). Indicated.
Further, the bending strengths of the present solid electrolytes 1 and 2 and the conventional solid electrolyte 1 were measured, and the results are shown in Table 3.

なお、この発明の固体電解質の組織を一層理解しやすくするために本発明固体電解質1のエッチング面をCOMPによる組織写真を図1として示し、その組織写真の説明図を図2に示した。図2説明図において斜線で示した微細な粒が(La1−xSr)(Ga1−y−zMgCo)O(ただし、0.3<x<0.7、y<0.01、z<0.01、y+z<0.02)からなる組成をする微細な酸化物粒である。 In order to make it easier to understand the structure of the solid electrolyte of the present invention, a photograph of the structure of the solid electrolyte 1 of the present invention by COMP is shown in FIG. 1, and an explanatory view of the structure photograph is shown in FIG. In the explanatory diagram of FIG. 2, fine grains indicated by oblique lines are (La 1-x Sr x ) (Ga 1-yz Mg y Co z ) O 3 (where 0.3 <x <0.7, y < Fine oxide grains having a composition of 0.01, z <0.01, y + z <0.02).

Figure 0004462013
Figure 0004462013

表1に示される結果から、本発明固体電解質1〜2は従来固体電解質1に比べて成分組成が同じであるにもかかわらず、本発明固体電解質1〜2は従来固体電解質1に比べて強度が優れていることがわかる。   From the results shown in Table 1, although the present solid electrolytes 1 and 2 have the same component composition as that of the conventional solid electrolyte 1, the present solid electrolytes 1 and 2 are stronger than the conventional solid electrolyte 1. It is understood that is superior.

この発明の固体電解質のCOMPによる組織写真である。It is the structure | tissue photograph by COMP of the solid electrolyte of this invention. 図1の組織写真の説明図である。It is explanatory drawing of the structure | tissue photograph of FIG.

Claims (3)

(La1−xSr)(Ga1−y−zMgCo)O(ただし、x:0.05〜0.3、y:0〜0.29、z:0.01〜0.3、y+z:0.025〜0.3)からなる組成を有しペロブスカイト結晶構造を有する酸化物の素地中に、(La1−xSr)(Ga1−y−zMgCo)O(ただし、0.3<x<0.7、y<0.01、z<0.01、y+z<0.02)からなる組成をする酸化物粒が均一分散している組織を有する酸化物焼結体からなることを特徴とする固体電解質型燃料電池に使用するための高強度固体電解質。 (La 1-x Sr x) (Ga 1-y-z Mg y Co z) O 3 ( provided that, x: 0.05~0.3, y: 0~0.29 , z: 0.01~0 .3, y + z: 0.025 to 0.3) in an oxide substrate having a perovskite crystal structure, (La 1-x Sr x ) (Ga 1-yz Mg y Co z ) O 3 (where 0.3 <x <0.7, y <0.01, z <0.01, y + z <0.02) A high-strength solid electrolyte for use in a solid oxide fuel cell, characterized by comprising an oxide sintered body. 前記酸化物粒は、平均結晶粒径:0.5〜10μmを有することを特徴とする請求項1記載の固体電解質型燃料電池に使用するための高強度固体電解質。 The high-strength solid electrolyte for use in a solid oxide fuel cell according to claim 1, wherein the oxide particles have an average crystal grain size of 0.5 to 10 µm. 請求項1または2記載の高強度固体電解質を備えた固体電解質型燃料電池。
A solid oxide fuel cell comprising the high-strength solid electrolyte according to claim 1.
JP2004328643A 2004-11-12 2004-11-12 Solid electrolyte for use in solid oxide fuel cells Active JP4462013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004328643A JP4462013B2 (en) 2004-11-12 2004-11-12 Solid electrolyte for use in solid oxide fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004328643A JP4462013B2 (en) 2004-11-12 2004-11-12 Solid electrolyte for use in solid oxide fuel cells

Publications (2)

Publication Number Publication Date
JP2006140029A JP2006140029A (en) 2006-06-01
JP4462013B2 true JP4462013B2 (en) 2010-05-12

Family

ID=36620720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004328643A Active JP4462013B2 (en) 2004-11-12 2004-11-12 Solid electrolyte for use in solid oxide fuel cells

Country Status (1)

Country Link
JP (1) JP4462013B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5568946B2 (en) * 2008-10-27 2014-08-13 三菱マテリアル株式会社 Method for producing ZnO vapor deposition material

Also Published As

Publication number Publication date
JP2006140029A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
WO2016080019A1 (en) Anode for solid oxide fuel cell and manufacturing method therefor, and manufacturing method for electrolyte layer-electrode assembly for fuel cell
WO2014050148A1 (en) Half cell for solid oxide fuel cells, and solid oxide fuel cell
JP3003163B2 (en) Method for producing electrode for molten carbonate fuel cell
AU2002334198A1 (en) Improvements in fuel cells and related devices
WO2003036746A2 (en) Improvements in solid oxide fuel cells and related devices
JP5225336B2 (en) Fuel cell and fuel cell
EP1850411A1 (en) Power generation cell for solid electrolyte fuel battery and structure of fuel electrode in said cell
JP2001351646A (en) LaGaO3 SOLID ELECTROLYTE FUEL CELL
JP2017191786A (en) Cell, cell stack device, electrochemical module, and electrochemical device
JP2002216807A (en) Air electrode collector for solid electrolyte type fuel cell
Xin et al. Fabrication of dense YSZ electrolyte membranes by a modified dry-pressing using nanocrystalline powders
JP2002280026A (en) Air electrode current collector for solid electrolyte fuel cell
JP2010232134A (en) Durable fuel electrode and solid oxide fuel battery incorporating this fuel electrode
JP4462013B2 (en) Solid electrolyte for use in solid oxide fuel cells
JP4739665B2 (en) Fuel cell and fuel cell
JP2009076310A (en) Current collector material, current collector using this, and solid oxide fuel cell
JP4508592B2 (en) Fuel cell manufacturing method
JP2008234915A (en) Collector material of solid oxide fuel cell, air electrode collector, and the solid oxide fuel cell
EP1689012A1 (en) Generation cell for solid electrolyte fuel cell
JP2009230929A (en) Current collector material of solid oxide fuel cell, air pole current collector, and solid oxide fuel cell
JP2007095673A (en) Power generation cell for solid electrolyte fuel cells
JP4849774B2 (en) Solid electrolyte fuel cell and solid electrolyte fuel cell
JP2002050370A (en) Current collector
JP2007012498A (en) Manufacturing method of fuel electrode for solid oxide fuel cell and fuel cell
JP2010073594A (en) Composite raw material powder for manufacturing solid electrolyte excellent in mechanical strength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4462013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4