JPH056592B2 - - Google Patents

Info

Publication number
JPH056592B2
JPH056592B2 JP59199738A JP19973884A JPH056592B2 JP H056592 B2 JPH056592 B2 JP H056592B2 JP 59199738 A JP59199738 A JP 59199738A JP 19973884 A JP19973884 A JP 19973884A JP H056592 B2 JPH056592 B2 JP H056592B2
Authority
JP
Japan
Prior art keywords
copper powder
paint
conductive
acid
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59199738A
Other languages
Japanese (ja)
Other versions
JPS6178869A (en
Inventor
Shoji Yamaguchi
Kimiko Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP19973884A priority Critical patent/JPS6178869A/en
Priority to EP85108001A priority patent/EP0170063B1/en
Priority to US06/749,463 priority patent/US4663079A/en
Priority to DE8585108001T priority patent/DE3564636D1/en
Publication of JPS6178869A publication Critical patent/JPS6178869A/en
Priority to US06/878,578 priority patent/US4705647A/en
Publication of JPH056592B2 publication Critical patent/JPH056592B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、種々の環境条件下においても導電性
低下及び緑青の発生の少ない優れた銅系導電性塗
料組成物に関する。 〔従来技術〕 導電性塗料は、導電性フイラー粉末(たとえば
金、銀、銅、ニツケル、モリブデン、タングステ
ン等の金属微粉末、カーボンブラツク、グラフア
イト等の炭素微粉末等)を、ポリフエニルエーテ
ル系、アクリル系、若しくはセルロース系等の熱
可塑性樹脂、又はエポキシ系、フエノール系等の
熱硬化性樹脂溶液中に分散せしめてなるものであ
り、回路用ペースト、導電性接着剤、電磁波シー
ルド剤等の多くの用途に使用される。 上記の各種の導電性フイラー中、金、銀等の貴
金属粉末は高価なために、特殊な用途の導電性塗
料に使用されているにすぎない。また、ニツケル
粉以外の他の金属粉や炭素粉は、導電性又は導電
性の持続性に劣るために、導電性塗料用の導電性
フイラーとしては、シールド用を中心としてニツ
ケル粉末が多用されている。 近年、電子機器の急速な普及により、電磁的相
互干渉(EMI.すなわちElectro Magnetic
Interference)が問題化されるようになつたが、
このEMIが導電性塗料を塗布することにより解
決できる技術が開発され、いわゆるEMIシール
ド技術として知られるようになり、導電性塗料は
この分野において多量に使用されるようになつ
た。 〔従来技術の問題点〕 表面酸化層を除去した銅粉末を導電性フイラー
として配合した導電性塗料は、その塗膜の初期性
能がニツケル粉末を用いた導電性塗料よりも優れ
ているが、耐熱性、耐湿性に劣り、使用中に導電
性が急激に低下するために、実用化されていな
い。銅粉末はニツケル粉末よりも安価であり、か
つ銅は地金ベースでみてニツケルよりも電気伝導
度が約4倍も高いので、銅粉末の酸化防止技術さ
え確立されれば、銅粉末はニツケル粉末に代つて
導電性塗料の導電性フイラーに多量に使用できる
筈である。 すなわち、市販銅粉末は、購入した段階で既に
表面が酸化されていて、これをそのまま塗料基材
中に分散させても導電性を示さないが、市販銅粉
末を鉱酸水溶液で洗浄してから塗料基材中に分散
させると初期段階では上記のように優れた導電性
を示すが、酸化の進行とともに塗膜の導電性が次
第に低下し、早い場合には数日後に導電性が全く
失なわれてしまう。しかし、銅粉末の酸化防止技
術が確立されれば、銅粉末を導電性フイラーとす
る導電性塗料が安価に有利に供給できる筈であ
り、従来、銅粉末の酸化防止に関する研究が広く
行なわれ、既に種々の提案がされた。 この種の導電性塗料における銅粉末の酸化防止
技術に関しては、たとえば亜リン酸及びその誘導
体を用いるもの、アントラセン誘導体を用いるも
の、ホルムアルデヒド系樹脂を用いるもの、ヒド
ロキシフエノール誘導体(ヒドロキノン、カテコ
ール等)を用いるもの、有機酸とロジン系物質を
併用するもの、有機チタネートを用いるもの、有
機チタン化合物とフエノール系化合物を併用する
もの等の種々の提案がされた。しかしこれらの提
案は、ほとんど若しくは全く効果を示さないか、
多少効果があつてもニツケル粉末又は銀粉末を用
いた塗料には到底比較にならず、しかもすべての
場合に共通する欠点は、程度の差こそあれ、塗料
ペースト又はその塗膜に緑青の発生が著しいこと
である。 〔発明が解決しようとする問題点〕 本発明者等は、導電性フイラーとして銅粉末を
用いた導電性塗料における上記緑青の発生の欠点
を改良するために鋭意研究を行なつた結果、還元
減量が0.2%以下の銅粉末又は有機カルボン酸処
理をして表面酸化層を除去した銅粉末を、特定の
酸化防止剤とともに塗料用バインダー樹脂中に分
散せしめた塗料は、貯蔵安定性、耐湿性、耐熱性
及び耐ヒートサイクル性等に著しく優れ、しかも
塗料及び塗膜に緑青の発生が極めて少なく、その
ためにその塗膜は種々の環境条件下において長期
間優れた導電性を示すことを知り、本発明に到達
したのである。 〔問題点を解決する具体的手段〕 本発明の銅系導電性塗料組成物は、(A)還元減量
0.2%以下の銅粉末又は有機カルボン酸処理して
表面酸化層を除いた銅粉末、(B)塗料用バインダー
樹脂、及び(C)一般式() 〔式中、Yは水酸基、水素原子、炭素数1〜18の
アルキル基またはハロゲン原子であり、aは1〜
3の数である。〕 で示されるトリアゾール類を酸化防止剤として含
有せしめてなるものである。 本発明において使用する還元減量0.2%以下
(JSPM標準3−63)の銅粉末及び有機カルボン
酸処理をする原料の銅粉末は、その製法に格別の
制限がなく、電解法で得られたもの、噴霧法で得
られたもの、搗砕法で得られたもの、及び還元法
で得らたもの等がいずれも使用できる。そして、
銅粉末の粒径は100μ以下のものが適する。特に、
塗装性等の点からして、325メツシユ以下の粒子
が80%以上を占めるれものが好ましい。銅粉末は
2種以上の異なる製法で得られたものを組合わせ
て用いることも可能である。本発明において有機
カルボン酸処理を行なう銅粉末は還元減量が0.2
%以上の銅粉末である。 本発明における銅粉末の表面酸化層の除去に使
用する有機カルボン酸としては、たとえば酢酸、
プロピオン酸等のモノカルボン酸類、コハク酸、
トリカルバリル酸等の置換基のないポリカルボン
酸類、乳酸、酒石酸、グリセリン酸、リンゴ酸、
クエン酸、グルコン酸、トロパ酸、ベンジル酸、
マンデル酸、アトロラクチン酸及びグリコール酸
等のヒドロキシカルボン酸類があげられる。これ
ら有機カルボン酸の中で特に好ましいものはヒド
ロキシカルボン酸類である。これらの有機カルボ
ン酸を適当な溶剤に溶解した溶液に銅粉末を加え
て一定時間浸漬して放置するか又は撹拌すれば銅
粉末の表面酸化層は容易に除去される。有機カル
ボン酸を溶解せしめる溶剤としては、水及び各種
の有機溶剤があるが、銅イオンの溶媒和能力の大
きい点からして、水及びメタノール、エタノー
ル、プロパノール等のアルコール類が好ましい。
有機カルボン酸処理後の銅粉末は、過し、水又
はアルコール等で洗浄して乾燥する。かくして得
られる有機カルボン酸処理して表面酸化層を除い
た銅粉末(以下、これを「有機カルボン酸処理銅
粉末」ということがある。)又は還元減量0.2%以
下の銅粉末は、本発明の導電性塗料組成物に配合
されるが、その配合割合は塗料組成物に対して10
〜90重量%、好ましくは30〜70重量%である。 なお、本発明の有機カルボン酸処理に代えて、
鉱酸水溶液で銅粉末を処理して酸化層を除いた場
合には、その処理銅粉末を本発明におけると同様
の酸化防止剤と併用して導電性塗料としても、得
られる塗料は初期導電性を発現しなかつたり、有
機カルボン酸処理したものを用いた場合に較べて
著しく酸化防止性の劣つたものとなる。 次に、本発明の導電性塗料組成物には酸化防止
剤(C)が配合されるが、その酸化防止剤は、前記式
()で示されるトリアゾール類である。 かかるトリアゾール類としては、Yが水素原子
のもの〔3−(N−サリチロイル)アミノ−1,
2,4−トリアゾール〕が、アデカ・アーガス化
学(株)によりMARK CDA−1及びMARK CDA
−1Mという商品名で市販されているからかかる
市販品を適宜に使用することができる。 本発明の銅系導電性塗料組成物における酸化防
止剤の配合割合は、酸化防止剤の種類及び塗料組
成物の用途に応じても変化するが、還元減量0.2
%以下の銅粉末又は有機カルボン酸処理銅粉末に
対して通常0.01〜5重量%、好ましくは0.1〜2
重量%の範囲内である。 以上述べた還元減量0.2%以下の銅粉末又は有
機カルボン酸処理銅粉末及び酸化防止剤を適当な
塗料バインダー樹脂中に所定の割合で混合し分散
せしめれば、本発明の塗料組成物が得られるが、
その塗料用バインダー樹脂としては、通常の塗料
用バインダー樹脂はすべて使用することができ
る。たとえばアクリル系、ビニル系、セルロース
系、及び塩化ビニル/酢酸ビニル共重合体系等の
熱可塑性樹脂;エポキシ系、ウレタン系、熱硬化
性アクリル系、フエノール系、メラミン系、及び
アルキツド系等の熱硬化性樹脂が使用できる。こ
れらのバインダー樹脂は、必要に応じて2種類以
上を混合して使用することも可能である。 これらの塗料用バインダー樹脂には、通常、特
に樹脂自体の粘度が高い場合には適当な有機溶剤
が併用される。その有機溶剤はバインダー樹脂の
種類に応じて変化するが、その有機溶剤の例とし
ては、トルエン、キシレン系の芳香族炭化水素
類;イソプロパノール、ブタノール等のアルコー
ル類;メチルエチルケトン、メチルイソブチルケ
トン等のケトン類;酢酸エチル、酢酸ブチル等の
エステル類;エチルセロソルブ、ブチルセロソル
ブ等のセロソルブ類等があげられる。有機溶剤は
バインダー樹脂の種類等に応じて1種類を単独使
用してもよいし、2種以上を適宜に併用すること
もできる。なお被塗物がプラスチツク等の場合に
は、使用溶剤は被塗物を溶解するおそれのないも
のを選定する等の配慮も必要となる。 本発明の導電性塗料組成物のタイプとしては、
たとえば熱可塑性アクリル樹脂等をバインダー樹
脂として使用した一液速乾性タイプのもの、或い
はたとえばウレタン樹脂若しくはエポキシ樹脂等
を用いた二液タイプのもの等、場合に応じて適宜
タイプのものとすることができる。 本発明の導電性塗料組成物の調製における各成
分の配合割合は、塗料塗膜の導電性が最高にな
り、しかもその導電性が長時間維持されるように
選定するのが望ましい。たとえば、吹き付け塗
装、ハケ塗り用に用いられる導電性塗料の場合の
代表的な配合割合の範囲は下記のとおりである。 バインダー樹脂 5〜20重量% 還元減量0.2%以下の銅粉末又は有機カルボン酸
処理銅粉末 40〜60重量% 酸化防止剤 0.01〜5重量% 溶 剤 20〜55 〃 本発明の導電性塗料組成物には、上記の各成分
のほかに、必要に応じて種々の添加剤を配合する
ことができる。特に銅粉末の沈降防止のために、
増粘剤若しくはチクソ剤等と呼ばれるような種々
の沈降防止剤を、導電性を妨げない範囲内で配合
するのが望ましい。かかる沈降防止剤としては、
たとえば水素添加ひまし無、金属石けん、アルミ
ニウムキレート、有機ベントナイト、コロイダル
シリカ、酸化ポリエチレンワツクス、長鎖ポリア
ミノアミド、ポリカルボン酸アルキルアミン等が
あげられ、これらの沈降防止剤は1種類を単独使
用してもよいし、2種以上を併用することも可能
である。 特に好ましい沈降防止剤は、一般式RCONH2
又は(RCONH)2A(各式中、Rは炭素数5〜21
のアルキル基、Aは炭素数1〜6のアルキレン基
である。)で表わされる脂肪族アミド、及びかか
る脂肪族アミドとワツクス類との複合物である。
その脂肪族アミドの具体例としてはオレイン酸ア
ミド、カプロン酸アミド、リノール酸アミド、ベ
ヘン酸アミド等のモノアミド類、N,N′−メチ
レンビスステアリン酸アミド、N,N′−エチレ
ンビスステアリン酸アミド等のビスアミド類があ
げられる。また、脂肪族アミド類とワツクスとの
複合物としては、上記のビスアミド類と分子量
1000〜9000のポリオレフインワツクスとの共粉砕
によつて得られた複合物があげられる(特開昭56
−65056号公報参照)。 本発明の導電性塗料組成物には、さらに必要に
応じてレベリング剤(たとえばシリコーン、高沸
点ケトン等)、界面活性剤及び難燃剤等を配合す
ることができる。又、特願昭59−107518に開示さ
れている酸化防止剤、例えばリン酸エステル類、
ホスフアチアジン酸誘導体類、アルキルイミダゾ
ール類、アルキルイミダゾール類の有機カルボン
酸塩類、窒素系シランカツプリング剤類、イオウ
系シランカツプリング剤類、フエノチアジン、チ
オニン、及びステアリルプロピレンジアミン等を
前式()で示されるトリアゾール類と併用して
もよい。 本発明の導電性塗料組成物の調製は、上記のバ
インダー樹脂、有機カルボン酸処理銅粉末、酸化
防止剤、溶剤及び必要に応じて配合する各種の添
加剤を適宜に混合して、通常の塗料調製において
使用されるような分散装置(たとえばデイスパ
ー、ボールミル、サンドミル、三本ロール、フー
バーマーラー等)を用いて塗料化すればよい。か
くして得られる本発明の導電性組成物は、スプレ
ー、ハケ塗り、デイツピング、オフセツトプリン
ト塗り、スクリーン印刷等の適宜の方法で、被塗
物に塗装又は印刷をすれば、導電性が著しく高
く、しかも種々の環境条件下においても導電性の
低下や緑青の発生の少ない優れた導電性塗膜が得
られる。 以下に、実施例及び比較例をあげてさらに詳述
する。これらの例に記載の「部」は重量部を意味
し、「%」は重量%を意味する。 また、これらの例に記載の体積固有抵抗は下記
の方法により測定したものである。 すなわち、添付図面に示したように、プラスチ
ツク板(ガラス繊維補強エポキシ樹脂積層板)1
に銅箔を貼り付けた巾5cm×長さ10cmの銅張り積
層板の中央部4の銅箔をエツチングして除き、プ
ラスチツク板1の両端部に1.5cm巾の銅箔部2及
び2を残した基板A(基板Aの両銅箔部2及び2
間の距離は7cmである。)とし、この基板Aに、
導電性塗料を1cm巾に塗布し、得られた塗膜3を
各種の環境条件下で所定時間放置後、塗膜の厚さ
をデジタルマイクロメータ(株式会社三豊製作所
製デジマチツクインジケータ543)で、また電気
抵抗をホイートストンブリツジ(横河電機製作所
製タイプ2755)で測定し、次式により体積固有抵
抗を算出した。 体積固有抵抗(Ω・cm)=測定抵抗値(Ω)×厚さ(cm
)×巾(cm)/長さ(cm)=測定抵抗値×厚さ/7 実施例 1 市販の工業用電解銅粉(325メツシユ通過90%
以上還元減量0.23%)100部に、10%クエン酸水
溶液400部を加え、撹拌機で15時間撹拌後、過
して銅粉を分離し、よく水洗し、乾燥した。 得られた銅粉100部に対して、3−(N−サリチ
ロイル)アミノ−1,2,4−−トリアゾール
(アデカ アーガス化学製MARK CDA−1)1
部、市販のポリメチルメタクリレート(和光純薬
社製試薬、分子量約10万)の40%トルエン溶液
100部、及びメチルエチルケトン60部を加え、高
速デイスパー分散を行なわせて導電性塗料を得
た。 この塗料を添付図面に示した基板A上に、上記
したとおり塗布したものを23℃、50%RHで24時
間放置したのち体積固有抵抗を測定したところ、
7.4×10-4Ω・cmであつた。また、この塗膜を85
℃の加熱空気中で1000時間放置後の体積固有抵抗
を測定したところ、7.8×10-4Ω・cmであつた。
また、この塗料の塗膜及び塗料溶液自体を室温で
空気中に1000時間放置したのちのそれぞれの緑青
発生状態を調べた結果、表1に示す様に塗膜、塗
料ともに緑青の発生はみられなかつた。又、23
℃、50RH%で1000時間密閉容器中で保存後基板
A上に作成したサンプルについて同様な抵抗測定
を行つたところ表1に示す様にほとんど変化がみ
られなかつた。 実施例 2 還元減量0.15%(JSPM3−63)の工業用電解
銅粉100部に、3−(N−サリチロイル)アミノ−
1,2,4−トリアゾール(アデカ アーガス化
学製品名MARK CDA−1M)1部、アクリル樹
脂(三菱レーヨン社製商品ダイヤナールBR−
102)の40%トルエン溶液100部、メチルエチルケ
トン60部、セリダスト9615A(ヘキスト社製アミ
ド変性ワツクスの商品名)2部を加え、高速デイ
スパー分散させて、導電性塗料を得た。 この塗料を実施例1におけると同様にして塗布
し、同様にして放置した後の体積固有抵抗を測定
したところ、24時間放置後は8.1×10-4Ω・cm、
1000時間放置後は8.6×10-4Ω・cmであつた。ま
た、この塗料の塗膜及び塗料溶液を実施例1にお
けると同様に1000時間放置後の緑青の発生状態及
び23℃、50%RHで1000時間密閉容器中で保存後
の抵抗値は表1に示すとおりであつた。 比較例 1〜2 実施例1における3−(N−サリチロイル)ア
ミノ−1,2,4−トリアゾール(MARK
CDA−1)を全く配合せずに、そのほかは実施
例1におけると同様にして導電性塗料を製造した
(比較例1)。 また、実施例1におけるクエン酸処理銅粉の代
りに、実施例1で用いた工業用電解銅粉をそのま
ま使用し、かつ3−(N−サリチロイル)アミノ
−1,2,4−トリアゾールを全く配合せずに、
そのほかは実施例1におけると同様にして導電性
塗料を製造した(比較例2)。 得られた各塗料について、実施例1におけると
同様の体積固有抵抗及び緑青の発生状態及び保存
性を試験した結果は表1に示すとおりであつた。 比較例 3 実施例1において用いたと同一の市販の工業用
電解銅粉100部に5%塩酸水溶液100部を加え、撹
拌機で15時間撹拌したのち、銅粉を過して分離
したのち、よく水洗してから遠心分離して乾燥し
た。 実施例1におけるクエン酸処理銅粉の代りに、
この塩酸処理銅粉を使用し、そのほかは実施例1
におけると同様にして導電性塗料を得た。この塗
料の塗膜の初期の体積固有抵抗は2.5×10-3Ω・
cmであつたが、85℃の空気中に1000時間放置後に
は、その固有抵抗は1.7×10-2Ω・cmと、約10倍
高くなり、しかも表1に示すように塗膜及び塗料
溶液中の緑青の発生が著しく、かつ、保存性も悪
かつた。 実施例 3 クエン酸水溶液処理に代えて、コハク酸水溶液
処理をし、そのほかは実施例1におけると同様に
して導電性塗料を得た。 得られた塗料について、実施例1におけると同
様の試験をした結果は表1に示すとおりであつ
た。 実施例 4 クエン酸水溶液処理に代えて、酢酸水溶液処理
をし、そのほかは実施例1と同様にして導電性塗
料を調製した。 得られた塗料について、実施例1におけると同
様の試験をした結果は表1に示すとおりであつ
た。
[Industrial Field of Application] The present invention relates to an excellent copper-based conductive coating composition that exhibits little reduction in conductivity and little occurrence of patina even under various environmental conditions. [Prior art] Conductive paint is made by mixing conductive filler powder (for example, fine metal powder such as gold, silver, copper, nickel, molybdenum, tungsten, etc., fine carbon powder such as carbon black, graphite, etc.) with polyphenyl ether-based paint. It is dispersed in a solution of thermoplastic resin such as acrylic or cellulose, or thermosetting resin such as epoxy or phenol, and is used for circuit pastes, conductive adhesives, electromagnetic shielding agents, etc. Used for many purposes. Among the above-mentioned various conductive fillers, powders of noble metals such as gold and silver are expensive, so they are only used in conductive paints for special purposes. In addition, metal powders and carbon powders other than nickel powder have poor conductivity or long-lasting conductivity, so nickel powder is often used as a conductive filler for conductive paints, mainly for shielding. There is. In recent years, with the rapid spread of electronic devices, electromagnetic interference (EMI.
Interference) has become a problem, but
A technology has been developed that can solve this EMI by applying conductive paint, and it has come to be known as the so-called EMI shielding technology, and conductive paint has come to be used in large quantities in this field. [Problems with the prior art] Conductive paints containing copper powder from which the surface oxidation layer has been removed as a conductive filler have better initial film performance than conductive paints using nickel powder, but have poor heat resistance. It has not been put into practical use because it has poor properties and moisture resistance, and its conductivity rapidly decreases during use. Copper powder is cheaper than nickel powder, and copper has about 4 times higher electrical conductivity than nickel on a base metal basis, so if copper powder oxidation prevention technology is established, copper powder can be replaced with nickel powder. It should be possible to use a large amount of it as a conductive filler in conductive paints instead of. In other words, the surface of commercially available copper powder is already oxidized at the stage of purchase, and it does not show conductivity even if it is directly dispersed in a paint base material. When dispersed in a paint base material, it exhibits excellent conductivity as described above at the initial stage, but as oxidation progresses, the conductivity of the paint film gradually decreases, and in some cases, it loses its conductivity completely after a few days. I'll get lost. However, if technology for preventing oxidation of copper powder was established, it would be possible to advantageously supply conductive paints using copper powder as a conductive filler at low cost. Various proposals have already been made. Regarding anti-oxidation technology for copper powder in this type of conductive paint, for example, those using phosphorous acid and its derivatives, those using anthracene derivatives, those using formaldehyde resin, and those using hydroxyphenol derivatives (hydroquinone, catechol, etc.) Various proposals have been made, such as using an organic acid and a rosin-based substance together, using an organic titanate, and using an organic titanium compound and a phenol-based compound together. However, these proposals have little or no effect or
Even if they are somewhat effective, they are in no way comparable to paints using nickel powder or silver powder, and the common drawback in all cases is that, to varying degrees, the paint paste or its coating develops a patina. This is remarkable. [Problems to be Solved by the Invention] The present inventors have conducted intensive research to improve the above-mentioned drawback of generation of patina in conductive paints using copper powder as a conductive filler, and as a result, reduction weight loss has been achieved. Copper powder containing 0.2% or less, or copper powder treated with organic carboxylic acid to remove the surface oxidation layer, is dispersed in a paint binder resin together with a specific antioxidant.The paint has excellent storage stability, moisture resistance, We learned that it has excellent heat resistance and heat cycle resistance, and that there is very little patina on paints and coatings.As a result, the coatings exhibit excellent electrical conductivity for long periods of time under various environmental conditions, and we developed this book. The invention was achieved. [Specific means for solving the problems] The copper-based conductive coating composition of the present invention has (A) reduction weight loss.
Copper powder of 0.2% or less or copper powder treated with organic carboxylic acid to remove the surface oxidation layer, (B) Binder resin for paint, and (C) General formula () [In the formula, Y is a hydroxyl group, a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or a halogen atom, and a is 1 to
The number is 3. ] It is made by containing the triazoles shown below as an antioxidant. The copper powder with a reduction loss of 0.2% or less (JSPM standard 3-63) used in the present invention and the copper powder used as the raw material for organic carboxylic acid treatment have no particular restrictions on their manufacturing method, and may be obtained by electrolysis, Those obtained by a spraying method, those obtained by a grinding method, those obtained by a reduction method, etc. can all be used. and,
The particle size of the copper powder is preferably 100μ or less. especially,
From the viewpoint of paintability, etc., it is preferable to use resin in which particles of 325 mesh or less account for 80% or more. It is also possible to use a combination of two or more types of copper powder obtained by different manufacturing methods. In the present invention, the copper powder treated with organic carboxylic acid has a reduction loss of 0.2
% or more of copper powder. Examples of organic carboxylic acids used to remove the surface oxidation layer of copper powder in the present invention include acetic acid,
Monocarboxylic acids such as propionic acid, succinic acid,
Polycarboxylic acids without substituents such as tricarballylic acid, lactic acid, tartaric acid, glyceric acid, malic acid,
citric acid, gluconic acid, tropic acid, benzylic acid,
Examples include hydroxycarboxylic acids such as mandelic acid, atrolactic acid, and glycolic acid. Particularly preferred among these organic carboxylic acids are hydroxycarboxylic acids. The surface oxidation layer of the copper powder can be easily removed by adding the copper powder to a solution of these organic carboxylic acids in a suitable solvent, immersing it for a certain period of time, and leaving it to stand or stirring it. Examples of the solvent for dissolving the organic carboxylic acid include water and various organic solvents, but water and alcohols such as methanol, ethanol, and propanol are preferred from the standpoint of their ability to solvate copper ions.
The copper powder treated with the organic carboxylic acid is filtered, washed with water or alcohol, and dried. The thus obtained copper powder treated with an organic carboxylic acid to remove the surface oxidation layer (hereinafter sometimes referred to as "organic carboxylic acid treated copper powder") or the copper powder with a reduction loss of 0.2% or less is used in the present invention. It is blended into the conductive paint composition, but the blending ratio is 10% to the paint composition.
~90% by weight, preferably 30-70% by weight. Note that instead of the organic carboxylic acid treatment of the present invention,
When copper powder is treated with an aqueous mineral acid solution to remove the oxidized layer, the treated copper powder can be used in combination with the same antioxidant as in the present invention to make a conductive paint, and the resulting paint has initial conductivity. The anti-oxidation properties are significantly inferior to those that do not express or are treated with an organic carboxylic acid. Next, an antioxidant (C) is blended into the conductive coating composition of the present invention, and the antioxidant is a triazole represented by the above formula (). Such triazoles include those in which Y is a hydrogen atom [3-(N-salicyloyl)amino-1,
2,4-triazole] was produced by Adeka Argus Chemical Co., Ltd. as MARK CDA-1 and MARK CDA.
Since it is commercially available under the trade name -1M, such a commercial product can be used as appropriate. The blending ratio of the antioxidant in the copper-based conductive coating composition of the present invention varies depending on the type of antioxidant and the application of the coating composition, but the reduction loss is 0.2
% or less of copper powder or organic carboxylic acid treated copper powder, usually 0.01 to 5% by weight, preferably 0.1 to 2%
Within the range of % by weight. The coating composition of the present invention can be obtained by mixing and dispersing the above-mentioned copper powder having a reduction loss of 0.2% or less or organic carboxylic acid-treated copper powder and an antioxidant in a predetermined ratio in a suitable coating binder resin. but,
As the paint binder resin, all common paint binder resins can be used. For example, thermoplastic resins such as acrylic, vinyl, cellulose, and vinyl chloride/vinyl acetate copolymer systems; thermosetting resins such as epoxy, urethane, thermosetting acrylic, phenolic, melamine, and alkyd systems. Compatible resins can be used. These binder resins can also be used in combination of two or more types, if necessary. A suitable organic solvent is usually used in combination with these paint binder resins, especially when the viscosity of the resin itself is high. The organic solvent varies depending on the type of binder resin, but examples of organic solvents include aromatic hydrocarbons such as toluene and xylene; alcohols such as isopropanol and butanol; and ketones such as methyl ethyl ketone and methyl isobutyl ketone. esters such as ethyl acetate and butyl acetate; and cellosolves such as ethyl cellosolve and butyl cellosolve. Depending on the type of binder resin, one type of organic solvent may be used alone, or two or more types may be used in combination as appropriate. If the object to be coated is plastic or the like, consideration must be given to selecting a solvent that will not dissolve the object to be coated. Types of the conductive coating composition of the present invention include:
For example, a one-component quick-drying type using thermoplastic acrylic resin or the like as a binder resin, or a two-component type using urethane resin or epoxy resin, etc. may be used as appropriate depending on the situation. can. The blending ratio of each component in the preparation of the conductive coating composition of the present invention is desirably selected so that the electrical conductivity of the coating film is maximized and the electrical conductivity is maintained for a long period of time. For example, typical blending ratio ranges for conductive paints used for spray painting and brush painting are as follows. Binder resin 5-20% by weight Copper powder with reduction loss of 0.2% or less or copper powder treated with organic carboxylic acid 40-60% by weight Antioxidant 0.01-5% by weight Solvent 20-55 In the conductive coating composition of the present invention In addition to the above-mentioned components, various additives can be added as necessary. Especially to prevent settling of copper powder.
It is desirable to incorporate various anti-settling agents, such as thickeners or thixotropic agents, within a range that does not interfere with conductivity. Such anti-settling agents include:
For example, hydrogenated castor-free, metal soap, aluminum chelate, organic bentonite, colloidal silica, oxidized polyethylene wax, long-chain polyaminoamide, polycarboxylic acid alkylamine, etc. are used alone. It is also possible to use two or more types in combination. Particularly preferred antisettling agents have the general formula RCONH 2
or (RCONH) 2 A (in each formula, R has 5 to 21 carbon atoms
In the alkyl group, A is an alkylene group having 1 to 6 carbon atoms. ) and composites of such aliphatic amides and waxes.
Specific examples of the aliphatic amides include monoamides such as oleic acid amide, caproic acid amide, linoleic acid amide, and behenic acid amide, N,N'-methylenebisstearic acid amide, and N,N'-ethylenebisstearic acid amide. Bisamides such as In addition, as a compound of aliphatic amides and wax, the above bisamides and molecular weight
Examples include composites obtained by co-pulverization with polyolefin waxes of 1,000 to 9,000 (Japanese Patent Application Laid-open No.
-Refer to Publication No. 65056). The conductive coating composition of the present invention may further contain a leveling agent (eg, silicone, high-boiling ketone, etc.), a surfactant, a flame retardant, and the like, if necessary. In addition, antioxidants disclosed in Japanese Patent Application No. 107518/1983, such as phosphoric acid esters,
Phosphathiazine derivatives, alkylimidazoles, organic carboxylic acid salts of alkylimidazoles, nitrogen-based silane coupling agents, sulfur-based silane coupling agents, phenothiazine, thionine, stearylpropylenediamine, etc. are represented by the preceding formula (). It may be used in combination with triazoles. The conductive coating composition of the present invention is prepared by appropriately mixing the above-mentioned binder resin, organic carboxylic acid-treated copper powder, antioxidant, solvent, and various additives blended as necessary. It may be made into a paint using a dispersing device (for example, a disper, a ball mill, a sand mill, a three-roll mill, a Huber muller, etc.) used in the preparation. The electrically conductive composition of the present invention obtained in this way has extremely high electrical conductivity when coated or printed on an object by an appropriate method such as spraying, brushing, dipping, offset printing, or screen printing. Moreover, even under various environmental conditions, an excellent conductive coating film with little decrease in conductivity or occurrence of patina can be obtained. The following is a more detailed explanation of Examples and Comparative Examples. "Parts" in these examples means parts by weight, and "%" means % by weight. Moreover, the volume resistivity described in these examples was measured by the following method. That is, as shown in the attached drawing, a plastic board (glass fiber reinforced epoxy resin laminate) 1
Etch and remove the copper foil in the center part 4 of a copper-clad laminate with a width of 5 cm x length of 10 cm, and leave copper foil parts 2 and 2 with a width of 1.5 cm at both ends of the plastic board 1. board A (both copper foil parts 2 and 2 of board A)
The distance between them is 7cm. ), and on this board A,
After applying the conductive paint to a width of 1 cm and leaving the resulting coating film 3 under various environmental conditions for a predetermined period of time, the thickness of the coating film was measured using a digital micrometer (Digimatic Indicator 543 manufactured by Mitoyo Seisakusho Co., Ltd.). Further, the electrical resistance was measured with a Wheatstone bridge (type 2755 manufactured by Yokogawa Electric Corporation), and the volume resistivity was calculated using the following formula. Volume resistivity (Ω cm) = Measured resistance value (Ω) x Thickness (cm
) × Width (cm) / Length (cm) = Measured resistance value × Thickness / 7 Example 1 Commercially available industrial electrolytic copper powder (325 mesh passing 90%
400 parts of a 10% citric acid aqueous solution was added to 100 parts (reduction loss 0.23%), and after stirring with a stirrer for 15 hours, the copper powder was separated by filtration, thoroughly washed with water, and dried. For 100 parts of the obtained copper powder, 1 part of 3-(N-salicyloyl)amino-1,2,4-triazole (MARK CDA-1 manufactured by Adeka Argus Chemical Co., Ltd.)
40% toluene solution of commercially available polymethyl methacrylate (reagent manufactured by Wako Pure Chemical Industries, molecular weight approximately 100,000)
100 parts and 60 parts of methyl ethyl ketone were added, and high-speed dispersion was performed to obtain a conductive paint. This paint was applied on the substrate A shown in the attached drawing as described above, and after being left at 23°C and 50% RH for 24 hours, the volume resistivity was measured.
It was 7.4×10 -4 Ω・cm. In addition, this coating film is 85
When the volume resistivity was measured after being left in heated air at ℃ for 1000 hours, it was 7.8×10 -4 Ω·cm.
In addition, as a result of examining the development of patina after leaving the paint film of this paint and the paint solution itself in the air at room temperature for 1000 hours, as shown in Table 1, no patina was observed in both the paint film and the paint. Nakatsuta. Also, 23
After storage in a sealed container at 50 RH% for 1000 hours, a similar resistance measurement was performed on the sample prepared on substrate A, and as shown in Table 1, almost no change was observed. Example 2 3-(N-salicyloyl)amino-
1 part of 1,2,4-triazole (Adeka Argus Chemical product name: MARK CDA-1M), acrylic resin (product name of Mitsubishi Rayon Co., Ltd., Product Dianal BR-)
100 parts of a 40% toluene solution of 102), 60 parts of methyl ethyl ketone, and 2 parts of Ceridust 9615A (trade name of amide-modified wax manufactured by Hoechst) were added and dispersed at high speed to obtain a conductive paint. This paint was applied in the same manner as in Example 1, and the volume resistivity after being left for 24 hours was 8.1×10 -4 Ω・cm,
After being left for 1000 hours, the resistance was 8.6×10 -4 Ω・cm. Table 1 shows the development of patina after the paint film and paint solution of this paint were left for 1000 hours in the same manner as in Example 1, and the resistance value after being stored in a sealed container at 23°C and 50% RH for 1000 hours. It was as shown. Comparative Examples 1-2 3-(N-salicyloyl)amino-1,2,4-triazole (MARK
A conductive paint was produced in the same manner as in Example 1 except that CDA-1) was not blended at all (Comparative Example 1). In addition, instead of the citric acid-treated copper powder in Example 1, the industrial electrolytic copper powder used in Example 1 was used as it was, and 3-(N-salicyloyl)amino-1,2,4-triazole was not used at all. without blending,
A conductive paint was otherwise produced in the same manner as in Example 1 (Comparative Example 2). Each of the obtained paints was tested for volume resistivity, development of patina, and storage stability in the same manner as in Example 1, and the results are shown in Table 1. Comparative Example 3 100 parts of a 5% hydrochloric acid aqueous solution was added to 100 parts of the same commercially available industrial electrolytic copper powder used in Example 1, and the mixture was stirred for 15 hours using a stirrer. After washing with water, it was centrifuged and dried. Instead of the citric acid-treated copper powder in Example 1,
This hydrochloric acid-treated copper powder was used, and the rest was Example 1.
A conductive paint was obtained in the same manner as in . The initial volume resistivity of this paint film is 2.5×10 -3 Ω・
cm, but after being left in air at 85°C for 1000 hours, its resistivity became 1.7×10 -2 Ω・cm, about 10 times higher, and as shown in Table 1, the coating film and paint solution There was a significant amount of patina inside, and the storage stability was also poor. Example 3 A conductive paint was obtained in the same manner as in Example 1 except that the succinic acid aqueous solution treatment was performed instead of the citric acid aqueous solution treatment. The obtained paint was subjected to the same test as in Example 1, and the results were as shown in Table 1. Example 4 A conductive paint was prepared in the same manner as in Example 1, except that acetic acid aqueous solution treatment was performed instead of citric acid aqueous solution treatment. The obtained paint was subjected to the same test as in Example 1, and the results were as shown in Table 1.

【表】 上記各実施例と比較例の対比から明らかなよう
に、各実施例の塗料は導電性に優れており、しか
も種々の環境条件下においても導電性の低下及び
緑青の発生が少ない。
[Table] As is clear from the comparison between the Examples and Comparative Examples above, the paints of each Example have excellent conductivity, and even under various environmental conditions, there is little decrease in conductivity and little occurrence of patina.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は塗料塗膜の体積固有抵抗の測定に用い
た部分銅張り積層基板Aの斜視図であり、1はプ
ラスチツク基板、2は銅箔部、3は塗料塗膜をそ
れぞれ示す。
FIG. 1 is a perspective view of a partially copper-clad laminated board A used for measuring the volume resistivity of a paint film, where 1 shows the plastic substrate, 2 shows the copper foil portion, and 3 shows the paint film.

Claims (1)

【特許請求の範囲】 1 (A)還元減量0.2%以下の銅粉末又は有機カル
ボン酸処理して表面酸化層を除いた銅粉末、(B)塗
料用バインダー樹脂、及び(C)一般式 〔式中、Yは水酸基、水素原子、炭素数1〜18の
アルキルキまたはハロゲン原子であり、aは1〜
3の数である〕 で示されるトリアゾール類を含有する銅系導電性
塗料組成物。 2 (C)成分が、3−(N−サリチロイル)アミノ
−1,2,4−トリアゾールであることを特徴と
する特許請求の範囲第1項記載の銅系導電性塗料
組成物。
[Scope of Claims] 1 (A) Copper powder with reduction loss of 0.2% or less or copper powder treated with organic carboxylic acid to remove the surface oxidation layer, (B) Binder resin for paint, and (C) General formula [In the formula, Y is a hydroxyl group, a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or a halogen atom, and a is 1 to
3] A copper-based conductive coating composition containing a triazole represented by the following. 2. The copper-based conductive coating composition according to claim 1, wherein the component (C) is 3-(N-salicyloyl)amino-1,2,4-triazole.
JP19973884A 1984-07-31 1984-09-25 Electrically conductive copper-containing paint composition Granted JPS6178869A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP19973884A JPS6178869A (en) 1984-09-25 1984-09-25 Electrically conductive copper-containing paint composition
EP85108001A EP0170063B1 (en) 1984-07-31 1985-06-27 Copper-type conductive coating composition
US06/749,463 US4663079A (en) 1984-07-31 1985-06-27 Copper-type conductive coating composition
DE8585108001T DE3564636D1 (en) 1984-07-31 1985-06-27 Copper-type conductive coating composition
US06/878,578 US4705647A (en) 1984-07-31 1986-06-26 Copper-type conductive coating composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19973884A JPS6178869A (en) 1984-09-25 1984-09-25 Electrically conductive copper-containing paint composition

Publications (2)

Publication Number Publication Date
JPS6178869A JPS6178869A (en) 1986-04-22
JPH056592B2 true JPH056592B2 (en) 1993-01-26

Family

ID=16412805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19973884A Granted JPS6178869A (en) 1984-07-31 1984-09-25 Electrically conductive copper-containing paint composition

Country Status (1)

Country Link
JP (1) JPS6178869A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6152808B2 (en) * 2014-02-28 2017-06-28 住友金属鉱山株式会社 Conductive paste for multilayer ceramic capacitor internal electrode and multilayer ceramic capacitor
JP6201150B2 (en) * 2014-02-28 2017-09-27 住友金属鉱山株式会社 Conductive paste for multilayer ceramic capacitor internal electrode, method for producing the same, and multilayer ceramic capacitor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532897A (en) * 1976-06-28 1978-01-12 Dacor Corp Buoyancy compensation controller of diving respiratory device
JPS59166542A (en) * 1983-02-28 1984-09-19 Hitachi Chem Co Ltd Electroconductive resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS532897A (en) * 1976-06-28 1978-01-12 Dacor Corp Buoyancy compensation controller of diving respiratory device
JPS59166542A (en) * 1983-02-28 1984-09-19 Hitachi Chem Co Ltd Electroconductive resin composition

Also Published As

Publication number Publication date
JPS6178869A (en) 1986-04-22

Similar Documents

Publication Publication Date Title
EP0170063B1 (en) Copper-type conductive coating composition
JP2611347B2 (en) Copper-based conductive coating composition
US5204025A (en) Conductive paste composition
JP4280742B2 (en) Conductive paint composition and method for producing the same
US4517118A (en) New nickel coating composition for shielding electronic equipment and the like
JPH056592B2 (en)
JPH0434577B2 (en)
JPS6058268B2 (en) Conductive copper paste composition
JPH01297475A (en) Copper powder for electrically conductive coating material and electrically conductive coating composition
JPS60252671A (en) Copper-based electrically conductive paint composition
EP0292190B1 (en) Electrically conductive coating composition
JPH0214258A (en) Copper powder for electroconductive coating compound and electroconductive coating compound composition
JP2007284593A (en) Electroconductive coating material
JP2005029639A (en) Conductive paint and electronic component using the same
JPS60258273A (en) Electrically conductive coating composition
JPS6389577A (en) Electrically conductive paint
JPH0436903A (en) Copper conductive paste
JP2005120301A (en) Conductive paint
JP2017171984A (en) Reactant, conductive composition and manufacturing method of surface treated copper powder
JPH0140069B2 (en)
JPS6279278A (en) Electrically conductive coating material composition
JPH0149390B2 (en)
JP3079396B2 (en) Hybrid IC
JPH04146972A (en) Conductive paste composition
JPS59161467A (en) Electrically conductive paint

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term