JPH0565593A - High tensile strength steel for welded structure excellent in galvanizing cracking resistance in heat affected zone - Google Patents

High tensile strength steel for welded structure excellent in galvanizing cracking resistance in heat affected zone

Info

Publication number
JPH0565593A
JPH0565593A JP3258361A JP25836191A JPH0565593A JP H0565593 A JPH0565593 A JP H0565593A JP 3258361 A JP3258361 A JP 3258361A JP 25836191 A JP25836191 A JP 25836191A JP H0565593 A JPH0565593 A JP H0565593A
Authority
JP
Japan
Prior art keywords
plating
steel
tensile strength
crack resistance
haz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3258361A
Other languages
Japanese (ja)
Other versions
JP3011380B2 (en
Inventor
Tomoya Koseki
智也 小関
Kenichi Amano
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP3258361A priority Critical patent/JP3011380B2/en
Publication of JPH0565593A publication Critical patent/JPH0565593A/en
Application granted granted Critical
Publication of JP3011380B2 publication Critical patent/JP3011380B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve the tensile strength and plating cracking resistance of a steel by specifying C, Si, Mn, Zr, Al, B, Nb and V, and satisfying a prescribed componental relational inequality. CONSTITUTION:This high tensile strength steel is formed of a compsn. constituted of, by weight, 0.06 to 0.15% C, 0.1 to 0.5% Si, 0.8 to 2% Mn, 0.012 to 0.04% Zr, 0.005 to 0.1% SolAl, <=0.0O015% B, 0.01 to 0.1% Nb, 0.001 to 0.1% V and the balance Fe. Then, the componental content is limited so that the componental relational inequalities of 244-265C-120Si,-82Mn+415Zr=49Al-145Nb and 329V >=40 are satisfied. This high tensile strength steel has >=580MPa tensile strength and excellent in galvanizing cracking resistance in the weld heat affected zone.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶接構造物として加工
組立てをした後に溶融亜鉛浴中でめっき処理される鋼材
において、溶接熱影響部(HAZと略す)に生じやすい
めっき割れの改善をはかった高張力鋼に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention aims to improve plating cracks that are likely to occur in a weld heat affected zone (abbreviated as HAZ) in a steel material which is processed and assembled as a welded structure and then plated in a molten zinc bath. High strength steel.

【0002】[0002]

【従来の技術】鉄鋼構造物の防錆性またはさらに美観と
くに塗装性の観点において溶融亜鉛めっき処理は有用で
あり、従来広く用いられている。最近、鉄鋼構造物の大
型化ないしは軽量化の強い要請の下に、上記めっき処理
を施すべき溶接構造物用鋼材の高強度化の気運がたかま
りつつあるが、高張力鋼にあっては、それも特に580MPa
を超えるレベルの鋼材は、溶接組立てを経て、溶融亜鉛
浴中への浸漬による亜鉛めっき処理が施される際に、H
AZでのいわゆるめっき割れ、ないしは液体金属ぜい化
と呼ばれる、粒界割れが多発する傾向にある。それと云
うのは、溶接構造物の大型化、複雑化の下に溶接施工に
伴う残留応力が、引張り強さの高い材料程、より著大と
なって上記割れを助長する一因ともなるからである。溶
融亜鉛めっき割れ(以下“めっき割れ”と略す)の低減
のため、溶接の際における残留応力や、溶融亜鉛めっき
浴への浸漬時の熱応力を軽減するように、溶接施工条件
や浸漬条件について考慮が加えられ、また応力除去焼純
処理も行なわれているが、経済性、ないしは母材特性を
損なうなど、根本的解決策とは云えず、鋼材そのものの
改善が必要とされている。
2. Description of the Related Art Hot-dip galvanizing is useful and has been widely used in the past, from the viewpoint of rust prevention of steel structures or, more particularly, aesthetics, especially paintability. Recently, under the strong demand of increasing the size or weight of steel structures, there is a growing tendency to increase the strength of the steel materials for welded structures to be subjected to the plating treatment. That is especially 580MPa
Steel materials with a level of over 100% are not welded to the H, when they are subjected to galvanizing treatment by immersion in a molten zinc bath after welding and assembly.
So-called plating cracks in AZ or intergranular cracks called liquid metal embrittlement tend to occur frequently. This is because the residual stress due to welding work becomes larger as the welded structure becomes larger and more complicated, and the higher the tensile strength of the material, the more significant it becomes. is there. To reduce hot dip galvanizing cracks (hereinafter abbreviated as "plating cracks"), we will reduce the residual stress during welding and the thermal stress during dipping in the hot dip galvanizing bath. Although consideration is added and stress-relief refining treatment is also performed, it is not a fundamental solution such as impairing economic efficiency or base material properties, and improvement of steel itself is needed.

【0003】これまでもめっき割れを低減した鋼材につ
いていくつかの提案がなされている。たとえば、特開昭
58−84959号公報、特開昭59−126754号
公報、特開昭62−50448号公報および特開昭59
−113161号公報等では鋼材の添加合金元素量に特
定の量的関係を満足させることでその対策をはかってい
る。しかし、これらの対策は、HAZのめっき割れを完
全に回避するには必ずしも十分でなく、一層の改善が望
まれている。本発明者らは、先に特公平1−37470
号公報において、合金元素量間に一定の関係を保ちつ
つ、かつZr添加によって耐めっき割れ性が著しく改善す
る技術を提案した。しかし溶接構造物のより一層の大型
化、複雑化に伴い、溶接時の残留応力はより大きくな
り、また亜鉛めっき浴中への浸漬時の熱応力発生も大き
くなり、かつ溶接時の入熱量も小入熱から大入熱まで広
範囲となり、特に小入熱溶接時のHAZの耐めっき割れ
性が必ずしも十分でなくなったことがわかった。
Several proposals have hitherto been made on steel materials with reduced plating cracks. For example, JP-A-58-84959, JP-A-59-126754, JP-A-62-50448 and JP-A-59.
In Japanese Laid-Open Patent Publication No. 113131/1993, the countermeasure is taken by satisfying a specific quantitative relationship in the amount of additive alloy elements in the steel material. However, these measures are not always sufficient to completely avoid HAZ plating cracks, and further improvement is desired. The inventors of the present invention have previously disclosed Japanese Patent Publication No.
In the publication, a technique has been proposed in which the plating crack resistance is remarkably improved by adding Zr while maintaining a constant relationship between the amounts of alloying elements. However, due to the larger size and complexity of the welded structure, the residual stress during welding becomes larger, the thermal stress generated during immersion in the galvanizing bath also becomes larger, and the heat input during welding also increases. It was found that the HAZ has a wide range from a small heat input to a large heat input, and that the HAZ does not always have sufficient resistance to plating cracks during small heat input welding.

【0004】[0004]

【発明が解決しようとする課題】本発明は、かかる現状
に鑑み、母材の引張強さが580MPa以上を有し、HAZの
耐めっき割れ性の優れた鋼材、広範囲の入熱の溶接、特
に小入熱溶接をされる部位の耐めっき割れ性を改善した
鋼材を提供するためになされたものである。
In view of the above situation, the present invention has a base material having a tensile strength of 580 MPa or more and a HAZ having excellent plating crack resistance, welding of a wide range of heat input, The purpose of the present invention is to provide a steel material having improved resistance to plating cracking at the portion to which small heat input welding is performed.

【0005】[0005]

【課題を解決するための手段】小入熱溶接部HAZの耐
めっき割れ性改善を目的とした、種々の実験を行ない、
成分組成の耐めっき割れ性に及ぼす影響を鋭意検討した
結果、合金元素量を特定の関係に保ったZr添加組成鋼
で、B 含有量を制限すること、さらにB 量を制限した上
で Ti+Zrの複合添加が小入熱HAZの耐めっき割れ性を
著しく向上させることを見いだし、その知見にもとづい
て本発明をなすにいたった。すなわち、本発明は、
C:0.06〜0.15wt% 、Si:0.10 〜0.50wt% 、Mn:0.80〜2.
00wt% 、Zr:0.012〜0.040wt%、 Al:0.005 〜0.100wt%、
B:0.00015wt%以下、Nb:0.010〜0.100wt%及び、V:0.010
〜0.100wt%、を含有し、かつ下記(1) 式を満足し、 244-265C-120Si-82Mn+415Zr-49Al-145Nb-329V ≧40・・
・(1) 、 残部は実質的にFeおよび不可避的不純物であって、引張
強さ580MPa以上であることを特徴とする溶接熱影響部の
耐溶融亜鉛めっき割れ性に優れる溶接構造用高張力鋼で
あり、また C:0.06〜0.15wt% 、Si:0.10 〜0.50wt%
、Mn:0.80 〜2.00wt% 、Zr:0.012〜0.040wt%、solAl:
0.005 〜0.100wt%、B:0.00015wt%以下、Nb:0.010〜0.10
0wt%、V:0.010 〜0.100wt%と、さらにTi:0.005〜0.030w
t%、および/または0.05〜1.00wt% のNi、Cu、Cr、Moの
1種または2種以上を含有し、下記(2) 式を満足し、 244-265C-120Si-82Mn+415Zr-49Al-145Nb-329V+167Ti-17
Ni-85Cu-81Cr-73Mo ≧40・・・(2) 、 残部は実質的にFeおよび不可避的不純物であって、引張
り強さ580MPa以上であることを特徴とする溶接熱影響部
の耐溶融亜鉛めっき割れ性に優れる溶接構造用高張力鋼
である。
[Means for Solving the Problems] Various experiments were conducted for the purpose of improving the resistance to plating cracks of the small heat input welded HAZ.
As a result of diligent examination of the effect of the composition of components on the plating crack resistance, it was found that Zr-added composition steel in which the amount of alloying elements was kept in a specific relationship was limited to the B content, and the B content was also limited to Ti +. It has been found that the combined addition of Zr significantly improves the plating crack resistance of the small heat input HAZ, and the present invention has been completed based on the findings. That is, the present invention is
C: 0.06-0.15wt%, Si: 0.10-0.50wt%, Mn: 0.80-2.
00wt%, Zr: 0.012-0.040wt%, Al: 0.005-0.100wt%,
B: 0.00015wt% or less, Nb: 0.010-0.100wt% and V: 0.010
Content of 0.100 wt% and satisfy the following formula (1), 244-265C-120Si-82Mn + 415Zr-49Al-145Nb-329V ≧ 40 ・ ・
・ (1), The balance is substantially Fe and inevitable impurities, and the tensile strength is 580MPa or more. And C: 0.06 ~ 0.15wt%, Si: 0.10 ~ 0.50wt%
, Mn: 0.80 to 2.00 wt%, Zr: 0.012 to 0.040 wt%, solAl:
0.005-0.100wt%, B: 0.00015wt% or less, Nb: 0.010-0.10.
0wt%, V: 0.010 to 0.100wt%, and Ti: 0.005 to 0.030w
24% or more and 0.05 to 1.00% by weight of Ni, Cu, Cr, or Mo, which satisfy at least the following formula (2), 244-265C-120Si-82Mn + 415Zr-49Al -145Nb-329V + 167Ti-17
Ni-85Cu-81Cr-73Mo ≧ 40 ・ ・ ・ (2), The balance is substantially Fe and inevitable impurities, and the tensile strength is 580MPa or more. A high-strength steel for welded structures with excellent plating cracking resistance.

【0006】[0006]

【作用】本発明において、成分組成を限定した理由は、
つぎの通りである。C:0.06〜0.15wt%(以下% と略す)C
は最も簡便に鋼の強さを上昇させるのに役立つ成分であ
り、0.06% 未満でその効果が期待されない、一方0.15%
をこえると溶接性が低下し、目的に適合しないことから
0.06〜0.15% の範囲とする。 Si:0.10 〜0.50% Siは、脱酸作用の利用と、強度への寄与を目指して0.10
% 以上を必要とするが、0.5%をこえると、耐めっき割れ
性に悪影響を及ぼし、また低温じん性を劣化させるた
め、0.10〜0.50% とする。 Mn:0.80 〜2.00% Mnも強さの確保のため、最低0.80% を必要とし、一方2.
00% をこえると耐めっき割れ性に悪影響を及ぼすうえ、
溶接性や加工性など基本性能を害するので0.80〜2.00%
の範囲に制限する。 Zr:0.012〜0.040% Zrは、この発明に従い、580MPa以上の引張強さの下での
耐めっき割れ性を、従来技術の説明で触れたような不利
を伴うことなく確保するのに役立つ重要成分で、0.012%
以上の含有量としたときHAZ組織の微細化の下で、耐
めっき割れ性改善に著しく功を奏するが、0.040%をこえ
ると鋼の清浄度に支障を伴い機械的性質、特にじん性を
劣化させる不利を生じるので、0.012 〜0.040%の範囲に
限定する。
In the present invention, the reason for limiting the component composition is as follows.
It is as follows. C: 0.06 to 0.15 wt% (hereinafter abbreviated as%) C
Is a component that helps increase the strength of steel in the simplest way, and if it is less than 0.06%, its effect is not expected, while 0.15%
If it exceeds the range, the weldability will decrease and it will not be suitable for the purpose.
The range is 0.06 to 0.15%. Si: 0.10 to 0.50% Si is 0.10 for the purpose of utilizing deoxidizing action and contributing to strength.
% Is required, but if it exceeds 0.5%, the plating crack resistance is adversely affected and the low temperature toughness is deteriorated, so the content is made 0.10 to 0.50%. Mn: 0.80 ~ 2.00% Mn also needs a minimum of 0.80% to secure strength, while 2.
If it exceeds 00%, the plating crack resistance is adversely affected and
0.80 to 2.00% because it impairs basic performance such as weldability and workability
To the range of. Zr: 0.012 to 0.040% Zr is an important component which, according to the present invention, serves to ensure plating crack resistance under tensile strength of 580 MPa or more without the disadvantages mentioned in the description of the prior art. And 0.012%
When the content is above, under the refinement of the HAZ structure, it is remarkably effective in improving the plating crack resistance. However, the range is limited to 0.012 to 0.040%.

【0007】sol Al:0.005〜0.100% Alは、脱酸作用と焼入れ性向上のため、0.005%以上を必
要とするが0.100%をこえると耐めっき割れ性、溶接性の
低下を来すので0.005 〜0.100%とする。 NbおよびV:0.01〜0.10% NbおよびV による強さの増強には、0.01% 以上を必要と
する一方、0.10% をこえると耐めっき割れ性、溶接性の
低下を伴うので、それぞれ 0.01 〜0.10% とする。 B:0.00015%以下 B は、微量の添加で強度を上昇させる効果をもつが、小
入熱溶接のHAZの耐めっき割れ性を微量の添加で低下
させる。特に0.00015%超えの含有量で耐めっき割れ性を
著しく低下させるため、上限を0.00015%とする。 Ti:0.005〜0.030% Tiは、一般に鋼材の靱性改善を目的として添加される
が、耐めっき割れ性を損なう元素である。しかし、Bを
低減し、かつ Zr+Ti複合添加した場合に限って耐めっき
割れ性を改善する。しかし、0.005%未満では効果がな
く、0.030%を超えるとZrとの複合効果が消失し耐めっき
割れ性が低下するため、0.005 〜0.030%とする。
Sol Al: 0.005 to 0.100% Al requires 0.005% or more for deoxidizing action and improvement of hardenability, but if it exceeds 0.100%, plating crack resistance and weldability deteriorate, so 0.005%. ~ 0.100% Nb and V: 0.01 to 0.10% Strengthening with Nb and V requires 0.01% or more, while if it exceeds 0.10%, plating crack resistance and weldability decrease, so 0.01 to 0.10% respectively. %. B: 0.00015% or less B has the effect of increasing the strength by adding a small amount, but reduces the plating crack resistance of HAZ for small heat input welding by adding a small amount. In particular, if the content exceeds 0.00015%, the plating crack resistance is significantly reduced, so the upper limit is made 0.00015%. Ti: 0.005-0.030% Ti is generally added for the purpose of improving the toughness of steel materials, but is an element that impairs plating crack resistance. However, B is reduced and the plating crack resistance is improved only when Zr + Ti composite is added. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.030%, the combined effect with Zr disappears and the plating crack resistance decreases, so the content is made 0.005 to 0.030%.

【0008】また、Ni、Cu、Cr、Moは鋼材の強じん化成
分として有用であり、いづれも少なくとも1種にて0.05
% 以上を必要とするが、1.00% を超えると溶接性、熱間
加工性、経済性および耐めっき割れ性が低下するので、
それぞれ0.05〜1.00% とする。次に鋼中不純物としての
S 、P についてはそれぞれ0.020%、0.030%以内が許容さ
れるが、とくにN は、0.012%を超えるとじん性劣化が著
しいので、0.012%以下で低い程のぞましい。上記の成分
組成範囲において(1) 又は(2) 式に従う成分調整を施し
た溶鋼を、通常の製鋼手段で得たのち、造塊法または連
鋳法によるスラブ、ブルームまたはビレットについて、
必要な圧延加工を常法に従い施してこの発明の高張力鋼
は製造され得る。
Further, Ni, Cu, Cr and Mo are useful as toughening components for steel materials, and at least one of them is 0.05.
% Or more is required, but if it exceeds 1.00%, weldability, hot workability, economic efficiency and plating crack resistance will deteriorate.
Each is 0.05 to 1.00%. Next, as impurities in steel
For S and P, 0.020% and 0.030% or less are acceptable, respectively, but especially when N exceeds 0.012%, the toughness is significantly deteriorated, so 0.012% or less is desirable. In the above composition range, (1) or (2) the molten steel subjected to the component adjustment according to the formula, after obtaining by ordinary steel making means, for the slab, bloom or billet by the ingot making method or continuous casting method,
The high-strength steel of the present invention can be manufactured by subjecting the necessary rolling process to a conventional method.

【0009】本発明にかかる溶接構造用鋼の耐めっき割
れ性の評価について、実験結果に基づいて説明する。試
験片は、表1に示す種々の化学成分の鋼板から10mmφの
丸棒を切り出し高周波加熱により6KJ/cmの溶接入熱
量相当の熱サイクルを付与した後、円周切欠き加工を施
したものである。各試験片の切欠き部のみに亜鉛めっき
を施し、その亜鉛が溶融状態となる470℃で種々の静的
負荷応力をかけ、その応力で破断する時間を測定した。
このときの負荷応力とめっきを施さない試験片の470 ℃
での引張り強さの比(%表示) Rσと、その時の破断時
間の関係を図1に示した。ここに Rσは、470 ℃でめっ
きなし試験片の引張り強さに対して何% の応力状態に保
持して破断するに至ったかを示すパラメーターで、この
Rσが少なくとも40% で高ければ高い程、残留応力や熱
応力が大きいときでも割れ難いことを示す。実操業での
めっき浴浸漬時間を考慮し、400 秒でのRσの値を求め
化学成分と重回帰して、(1) 、(2) 式の左辺各項の係数
が求められた。なお、図1でわかるように、B が0.0002
% 以上含有した鋼材で、 Rσの値が著しく低下すること
より、化学成分の重回帰は、本発明範囲の B≦0.00015%
の組成鋼を対象にして行なった。
Evaluation of plating crack resistance of the welded structural steel according to the present invention will be described based on experimental results. The test pieces were obtained by cutting round bars of 10 mmφ from steel plates of various chemical compositions shown in Table 1, applying a heat cycle equivalent to a welding heat input of 6 KJ / cm by high frequency heating, and then applying circumferential notch processing. is there. Galvanization was applied only to the notch of each test piece, various static load stresses were applied at 470 ° C. where the zinc was in a molten state, and the time at which the stress fractured was measured.
Load stress at this time and 470 ° C of the test piece without plating
The relationship between the ratio of tensile strength (in%) Rσ and the breaking time at that time is shown in FIG. Here, Rσ is a parameter that indicates the percentage of stress to the tensile strength of the unplated test piece at 470 ° C that led to fracture.
The higher Rσ is at least 40%, the more difficult it is to crack even when the residual stress or thermal stress is large. Considering the plating bath immersion time in actual operation, the value of Rσ at 400 seconds was calculated and multiple regression was performed with the chemical components to obtain the coefficients of each term on the left side of Eqs. (1) and (2). As can be seen in Fig. 1, B is 0.0002.
In steel materials containing more than%, the value of Rσ decreases significantly, so that multiple regression of chemical composition is B ≦ 0.00015% of the range of the present invention.
The composition steel was used as a target.

【0010】一方、実溶接後のめっき処理での割れ状況
との対応をとるため、図2に示す拘束継手を製作し、溶
融亜鉛めっき浴に浸漬後、HAZでのめっき割れを調べ
た。図中の1a、1bは試験ビード、また2a、2bは
拘束ビードであり3は試験板である。試験板3は、片側
が研削された板を十字に組み、研削面同士の隅肉ビード
1a、黒皮同士の隅肉ビード1bとなるように組み立て
た。試験板寸法は、板厚が15mmで、試験ビードの長さL
=50mm、また十字の各張出し長さ l1=l2=l3=l4=50mm 、
そして試験板3の全長W=150mmである。拘束ビード2
a、2bの各ビード数はそれぞれ20である。この拘束
継手は溶融亜鉛めっき浴に浸漬して試験ビード1a、1
bにおける割れ発生の有無を確認し、その結果は表1に
併記したとおりである。これから特許請求の範囲内の成
分組織で、かつ(1) 、(2) 式の左辺の計算値 Rσにつ
き、 Rσ≧40が満たされれば拘束継手に割れが生じてい
ないことがわかる。
On the other hand, in order to cope with the cracking condition in the plating process after the actual welding, the restraint joint shown in FIG. 2 was manufactured, immersed in a hot dip galvanizing bath, and the cracking in HAZ was examined. In the figure, 1a and 1b are test beads, 2a and 2b are restraining beads, and 3 is a test plate. The test plate 3 was assembled in such a manner that plates whose one side was ground were assembled in a cross shape, and the fillet bead 1a between the grinding surfaces and the fillet bead 1b between the black skins were formed. The test plate has a thickness of 15 mm and a test bead length L.
= 50mm, and each overhang length of the cross l 1 = l 2 = l 3 = l 4 = 50mm,
And the total length W of the test plate 3 is 150 mm. Restrained bead 2
The number of beads in each of a and 2b is 20. This restraint joint was immersed in a hot dip galvanizing bath to test beads 1a, 1
The presence or absence of cracks in b was confirmed, and the results are shown in Table 1. From this, it is understood that cracks do not occur in the restraint joint if the composition is within the scope of the claims and the calculated value Rσ on the left side of the equations (1) and (2) satisfies Rσ ≧ 40.

【0011】[0011]

【実施例】以下、実施例に基づき本発明を説明する。表
2に化学成分を示した供給材を真空溶解法により各々10
0kgf鋼塊に溶製し、圧延後放冷あるいは圧延後加速冷却
して供試鋼とした。各鋼材について丸棒引張片による引
張り強さを求め、また上述した拘束継手試験での割れ調
査を行なった。拘束継手試験片の割れ調査は、図2に示
した試験体を作成後、脱脂、酸洗、フラックス処理し、
455 ℃の溶融亜鉛中に6分浸漬して得られためっきを除
去した後、HAZを対象にして検査した。また、表2に
は、本発明に従う回帰式で計算した Rσの値を併記し
た。
EXAMPLES The present invention will be described below based on examples. Each of the materials whose chemical composition is shown in Table 2 was 10 by vacuum melting method.
It was melted in a 0 kgf steel ingot, and allowed to cool after rolling or accelerated cooling after rolling to obtain a test steel. For each steel material, the tensile strength by a round bar tensile piece was obtained, and the crack investigation in the above-mentioned restraint joint test was conducted. For the crack investigation of the restraint joint test piece, after degreasing, pickling and fluxing the test body shown in FIG. 2,
After removing the plating obtained by immersing in molten zinc at 455 ° C. for 6 minutes, the HAZ was inspected. Further, Table 2 also shows the value of Rσ calculated by the regression equation according to the present invention.

【0012】表2から明らかなように、本発明の成分
で、回帰式による Rσ値が40を超える実施例はすべて
引張り強さが 580MPa 以上であり、しかも拘束継手のH
AZに割れは認められない。これに対し、表2中にアン
ダーラインで示した成分や計算 Rσ値が本発明の要件か
らはずれた比較例では、割れの程度に違いはあるが、H
AZ割れの発生が認められた。特に、鋼NO1、7や11
の比較例では、計算 Rσ値は40以上であるが、微量の
Bを含有するためHAZ割れが発生しており、小入熱溶
接のHAZの耐めっき割れ性をBが著しく損なうことが
わかる。
As is clear from Table 2, all of the examples of the composition of the present invention in which the Rσ value according to the regression equation exceeds 40 have a tensile strength of 580 MPa or more, and the H of the restraint joint is high.
No cracks are found in AZ. On the other hand, in the comparative examples in which the components underlined in Table 2 and the calculated Rσ values deviate from the requirements of the present invention, there are differences in the degree of cracking, but H
Occurrence of AZ cracking was recognized. Especially steel No. 1, 7 and 11
In the comparative example, the calculated Rσ value is 40 or more, but since a small amount of B is contained, HAZ cracking occurs, and it can be seen that B significantly impairs the plating cracking resistance of HAZ for small heat input welding.

【0013】[0013]

【発明の効果】本発明によると、小入熱溶接HAZの耐
めっき割れ性が著しく改善された鋼材が製造できる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to manufacture a steel material in which the plating crack resistance of the small heat input welding HAZ is remarkably improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】Rσ値と破断時間との関係を示す特性図であ
る。
FIG. 1 is a characteristic diagram showing a relationship between an Rσ value and a breaking time.

【図2】拘束継手試験の試験体の正面図(a)と側面図
(b)である。
FIG. 2 is a front view (a) and a side view (b) of a test body for a restrained joint test.

【符号の説明】[Explanation of symbols]

1a 試験ビード(隅肉ビード) 1b 試験ビード(隅肉ビード) 2a 拘束ビード 2b 拘束ビード 3 試験板 1a Test bead (fillet bead) 1b Test bead (fillet bead) 2a Restraint bead 2b Restraint bead 3 Test plate

【表1】 [Table 1]

【表2】 [Table 2]

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年9月24日[Submission date] September 24, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】発明の詳細な説明[Name of item to be amended] Detailed explanation of the invention

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、溶接構造物として加工
組立てをした後に溶融亜鉛浴中でめっき処理される鋼材
において、溶接熱影響部(HAZと略す)に生じやすい
めっき割れの改善をはかった高張力鋼に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention aims to improve plating cracks that are likely to occur in a weld heat affected zone (abbreviated as HAZ) in a steel material which is processed and assembled as a welded structure and then plated in a molten zinc bath. High strength steel.

【0002】[0002]

【従来の技術】鉄鋼構造物の防錆性またはさらに美観と
くに塗装性の観点において溶融亜鉛めっき処理は有用で
あり、従来広く用いられている。最近、鉄鋼構造物の大
型化ないしは軽量化の強い要請の下に、上記めっき処理
を施すべき溶接構造物用鋼材の高強度化の気運がたかま
りつつあるが、高張力鋼にあっては、それも特に580
MPaを超えるレベルの鋼材は、溶接組立てを経て、溶
融亜鉛浴中への浸漬による亜鉛めっき処理が施される際
に、HAZでのいわゆるめっき割れ、ないしは液体金属
ぜい化と呼ばれる、粒界割れが多発する傾向にある。そ
れと云うのは、溶接構造物の大型化、複雑化の下に溶接
施工に伴う残留応力が、引張り強さの高い材料程、より
著大となって上記割れを助長する一因ともなるからであ
る。溶融亜鉛めっき割れ(以下“めっき割れ”と略す)
の低減のため、溶接の際における残留応力や、溶融亜鉛
めっき浴への浸漬時の熱応力を軽減するように、溶接施
工条件や浸漬条件について考慮が加えられ、また応力除
去焼純処理も行なわれているが、経済性、ないしは母材
特性を損なうなど、根本的解決策とは云えず、鋼材その
ものの改善が必要とされている。
2. Description of the Related Art Hot-dip galvanizing is useful and has been widely used in the past, from the viewpoint of rust prevention of steel structures or, more particularly, aesthetics, especially paintability. Recently, under the strong demand of increasing the size or weight of steel structures, there is a growing tendency to increase the strength of the steel materials for welded structures to be subjected to the plating treatment. That is especially 580
A steel material having a level of more than MPa undergoes welding and assembly, and is subjected to a galvanizing treatment by immersion in a molten zinc bath, so-called plating cracking in HAZ, or intergranular cracking called liquid metal embrittlement. Tend to occur frequently. This is because the residual stress due to welding work becomes larger as the welded structure becomes larger and more complicated, and the higher the tensile strength of the material, the more significant it becomes. is there. Hot dip galvanizing crack (hereinafter abbreviated as "plating crack")
In order to reduce the residual stress during welding and the thermal stress during dipping in the hot dip galvanizing bath, consideration is given to welding work conditions and dipping conditions. However, it cannot be said to be a fundamental solution such as impairing the economical efficiency or the characteristics of the base material, and the improvement of the steel material itself is required.

【0003】これまでもめっき割れを低減した鋼材につ
いていくつかの提案がなされている。たとえば、特開昭
58−84959号公報、特開昭59−126754号
公報、特開昭62−50448号公報および特開昭59
−113161号公報等では鋼材の添加合金元素量に特
定の量的関係を満足させることでその対策をはかってい
る。しかし、これらの対策は、HAZのめっき割れを完
全に回避するには必ずしも十分でなく、一層の改善が望
まれている。本発明者らは、先に特公平1−37470
号公報において、合金元素量間に一定の関係を保ちつ
つ、かつZr添加によって耐めっき割れ性が著しく改善
する技術を提案した。しかし溶接構造物のより一層の大
型化、複雑化に伴い、溶接時の残留応力はより大きくな
り、また亜鉛めっき浴中への浸漬時の熱応力発生も大き
くなり、かつ溶接時の入熱量も小入熱から大入熱まで広
範囲となり、特に小入熱溶接時のHAZの耐めっき割れ
性が必ずしも十分でなくなったことがわかった。
Several proposals have hitherto been made on steel materials with reduced plating cracks. For example, JP-A-58-84959, JP-A-59-126754, JP-A-62-50448 and JP-A-59.
In Japanese Laid-Open Patent Publication No. 113131/1993, the countermeasure is taken by satisfying a specific quantitative relationship in the amount of additive alloy elements in the steel material. However, these measures are not always sufficient to completely avoid HAZ plating cracks, and further improvement is desired. The inventors of the present invention have previously disclosed Japanese Patent Publication No.
In the publication, a technique has been proposed in which the plating crack resistance is remarkably improved by the addition of Zr while maintaining a constant relationship between the amounts of alloying elements. However, due to the larger size and complexity of the welded structure, the residual stress during welding becomes larger, the thermal stress generated during immersion in the galvanizing bath also becomes larger, and the heat input during welding also increases. It was found that the HAZ has a wide range from a small heat input to a large heat input, and that the HAZ does not always have sufficient resistance to plating cracks during small heat input welding.

【0004】[0004]

【発明が解決しようとする課題】本発明は、かかる現状
に鑑み、母材の引張強さが580MPa以上を有し、H
AZの耐めっき割れ性の優れた鋼材、広範囲の入熱の溶
接、特に小入熱溶接をされる部位の耐めっき割れ性を改
善した鋼材を提供するためになされたものである。
SUMMARY OF THE INVENTION In view of the above situation, the present invention has a base material having a tensile strength of 580 MPa or more, and H
The purpose of the present invention is to provide a steel material having excellent resistance to AZ plating cracking, and a steel material having improved resistance to plating cracking in a region where welding with a wide range of heat input, particularly small heat input welding is performed.

【0005】[0005]

【課題を解決するための手段】小入熱溶接部HAZの耐
めっき割れ性改善を目的とした、種々の実験を行ない、
成分組成の耐めっき割れ性に及ぼす影響を鋭意検討した
結果、合金元素量を特定の関係に保ったZr添加組成鋼
で、B含有量を制限すること、さらにB量を制限した上
でTi+Zrの複合添加が小入熱HAZの耐めっき割れ
性を著しく向上させることを見いだし、その知見にもと
づいて本発明をなすにいたった。すなわち、本発明は、
C:0.O6〜0.15wt%、Si:0.10〜
0.50wt%、Mn:0.80〜2.00wt%、Z
r:0.012〜0.040wt%、Al:0.005
〜0.100wt%、B:0.00015wt%以下、
Nb:0.010〜0.100wt%及び、V:0.0
10〜0.100wt%、を含有し、かつ下記(1)式
を満足し、 244−265C−120Si−82Mn+415Zr
−49Al−145Nb−329V≧40・・・
(1)、 残部は実質的にFeおよび不可避的不純物であって、引
張強さ580MPa以上であることを特徴とする溶接熱
影響部の耐溶融亜鉛めっき割れ性に優れる溶接構造用高
張力鋼であり、また C:0.06〜0.15wt
%、Si:0.10〜0.50wt%、Mn:0.80
〜2.00wt%、Zr:0.012〜0.040wt
%、solAl:0.005〜0.100wt%、B:
0.00015wt%以下、Nb:0.010〜0.1
00wt%、V:0.010〜0.100Wt%と、さ
らにTi:0.005〜0.030wt%、および/ま
たは0.05〜1.00wt%のNi、Cu、Cr、M
oの1種または2種以上を含有し、下記(2)式を満足
し、 244−265C−12oSi−82Mn+415Zr
−49Al−145Nb−329V+167Ti−17
Ni−85Cu−81Cr−73Mo≧40・・・
(2)、 残部は実質的にFeおよび不可避的不純物であって、引
張り強さ580MPa以上であることを特徴とする溶接
熱影響部の耐溶融亜鉛めっき割れ性に優れる溶接構造用
高張力鋼である。
[Means for Solving the Problems] Various experiments were conducted for the purpose of improving the resistance to plating cracks of the small heat input welded HAZ.
As a result of diligent examination of the effect of the composition of components on the plating crack resistance, in the Zr-added composition steel in which the amount of alloying elements was kept in a specific relationship, the B content was limited, and the B amount was further limited, and then Ti + Zr It has been found that the combined addition significantly improves the plating crack resistance of the small heat input HAZ, and the present invention has been completed based on the findings. That is, the present invention is
C: 0. O6 to 0.15 wt%, Si: 0.10
0.50 wt%, Mn: 0.80 to 2.00 wt%, Z
r: 0.012 to 0.040 wt%, Al: 0.005
~ 0.100 wt%, B: 0.00015 wt% or less,
Nb: 0.010 to 0.100 wt% and V: 0.0
10-0.100 wt%, and satisfies the following formula (1): 244-265C-120Si-82Mn + 415Zr
-49Al-145Nb-329V ≧ 40 ...
(1) The balance is substantially Fe and unavoidable impurities, and the tensile strength is 580 MPa or more. Yes, C: 0.06-0.15 wt
%, Si: 0.10 to 0.50 wt%, Mn: 0.80
~ 2.00 wt%, Zr: 0.012-0.040 wt
%, SolAl: 0.005 to 0.100 wt%, B:
0.00015 wt% or less, Nb: 0.010 to 0.1
00 wt%, V: 0.010 to 0.100 Wt%, and further Ti: 0.005 to 0.030 wt% and / or 0.05 to 1.00 wt% Ni, Cu, Cr, M.
containing one or more of o and satisfying the following formula (2): 244-265C-12oSi-82Mn + 415Zr
-49Al-145Nb-329V + 167Ti-17
Ni-85Cu-81Cr-73Mo ≧ 40 ...
(2) The balance is substantially Fe and unavoidable impurities, and the tensile strength is 580 MPa or more. is there.

【0006】[0006]

【作用】本発明において、成分組成を限定した理由は、
つぎの通りである。 C:0.06〜0.15wt%(以下%と略す) Cは最も簡便に鋼の強さを上昇させるのに役立つ成分で
あり、0.06%未満でその効果が期待されない、一方
0.15%をこえると溶接性が低下し、目的に適合しな
いことから0.06〜0.15%の範囲とする。 Si:0.10〜0.50% Siは、脱酸作用の利用と、強度への寄与を目指して
0.10%以上を必要とするが、0.5%をこえると、
耐めっき割れ性に悪影響を及ぼし、また低温じん性を劣
化させるため、0.10〜0.50%とする。 Mn:0.80〜2.00% Mnも強さの確保のため、最低0.80%を必要とし、
一方2.00%をこえると耐めっき割れ性に悪影響を及
ぼすうえ、溶接性や加工性など基本性能を害するので
0.80〜2.00%の範囲に制限する。 Zr:0.012〜0.040% Zrは、この発明に従い、580MPa以上の引張強さ
の下での耐めっき割れ性を、従来技術の説明で触れたよ
うな不利を伴うことなく確保するのに役立つ重要成分
で、0.012%以上の含有量としたときHAZ組織の
微細化の下で、耐めっき割れ性改善に著しく功を奏する
が、0.040%をこえると鋼の清浄度に支障を伴い機
械的性質、特にじん性を劣化させる不利を生じるので、
0.012〜0.040%の範囲に限定する。
In the present invention, the reason for limiting the component composition is as follows.
It is as follows. C: 0.06 to 0.15 wt% (hereinafter abbreviated as%) C is a component that helps increase the strength of steel in the most simple manner, and if it is less than 0.06%, its effect is not expected. If it exceeds 15%, the weldability deteriorates and it is not suitable for the purpose, so the content is made 0.06 to 0.15%. Si: 0.10 to 0.50% Si requires 0.10% or more in order to utilize the deoxidizing action and contribute to strength, but if it exceeds 0.5%,
The plating crack resistance is adversely affected and the low temperature toughness is deteriorated, so the content is made 0.10 to 0.50%. Mn: 0.80 to 2.00% Mn also needs a minimum of 0.80% to secure strength,
On the other hand, if it exceeds 2.00%, the plating crack resistance is adversely affected and the basic performance such as weldability and workability is impaired, so the content is limited to the range of 0.80 to 2.00%. Zr: 0.012 to 0.040% According to the present invention, Zr ensures plating crack resistance under a tensile strength of 580 MPa or more without the disadvantages mentioned in the description of the prior art. It is an important component that helps to improve the plating crack resistance under the refinement of the HAZ structure when the content is 0.012% or more. However, if it exceeds 0.040%, the cleanliness of steel is improved. As it causes obstacles and deteriorates mechanical properties, especially toughness,
It is limited to the range of 0.012 to 0.040%.

【0007】solAl:0.005〜0.100% Alは、脱酸作用と焼入れ性向上のため、0.005%
以上を必要とするが0.100%をこえると耐めっき割
れ性、溶接性の低下を来すので0.005〜0.100
%とする。 NbおよびV:0.01〜0.10% NbおよびVによる強さの増強には、0.01%以上を
必要とする一方、0.10%をこえると耐めっき割れ
性、溶接性の低下を伴うので、それぞれ0.01〜0.
10%とする。 B:0.00015%以下 Bは、微量の添加で強度を上昇させる効果をもつが、小
入熱溶接のHAZの耐めっき割れ性を微量の添加で低下
させる。特に0.00015%超えの含有量で耐めっき
割れ性を著しく低下させるため、上限を0.00015
%とする。 Ti:0.005〜0.030% Tiは、一般に鋼材の靭性改善を目的として添加される
が、耐めっき割れ性を損なう元素である。しかし、Bを
低減し、かつZr+Ti複合添加した場合に限って耐め
っき割れ性を改善する。しかし、0.005%未満では
効果がなく、0.030%を超えるとZrとの複合効果
が消失し耐めっき割れ性が低下するため、0.005〜
0.030%とする。
SolAl: 0.005 to 0.100% Al is 0.005% in order to improve deoxidizing action and hardenability.
The above is required, but if it exceeds 0.100%, the plating crack resistance and weldability deteriorate, so 0.005-0.100.
%. Nb and V: 0.01 to 0.10% Strengthening with Nb and V requires 0.01% or more, while when it exceeds 0.10%, plating crack resistance and weldability deteriorate. Therefore, 0.01 to 0.
10%. B: 0.00015% or less B has the effect of increasing the strength by adding a trace amount, but reduces the plating crack resistance of HAZ for small heat input welding by adding a trace amount. In particular, if the content exceeds 0.00015%, the plating crack resistance is significantly reduced, so the upper limit is set to 0.00015.
%. Ti: 0.005 to 0.030% Ti is generally added for the purpose of improving the toughness of steel materials, but is an element that impairs plating crack resistance. However, B is reduced and the plating crack resistance is improved only when Zr + Ti composite is added. However, if it is less than 0.005%, there is no effect, and if it exceeds 0.030%, the combined effect with Zr disappears and the plating crack resistance decreases, so 0.005% to 0.005%.
It is set to 0.030%.

【0008】また、Ni、Cu、Cr、Moは鋼材の強
じん化成分として有用であり、いづれも少なくとも1種
にて0.05%以上を必要とするが、1.00%を超え
ると溶接性、熱間加工性、経済性および耐めっき割れ性
が低下するので、それぞれ0.05〜100%とする。
次に鋼中不純物としてのS、Pについてはそれぞれ0.
020%、0.030%以内が許容されるが、とくにN
は、0.012%を超えるとじん性劣化が著しいので、
0.012%以下で低い程のぞましい。上記の成分組成
範囲において(1)又は(2)式に従う成分調整を施し
た溶鋼を、通常の製鋼手段で得たのち、造塊法または連
鋳法によるスラブ、ブルームまたはビレットについて、
必要な圧延加工を常法に従い施してこの発明の高張力鋼
は製造され得る。
Further, Ni, Cu, Cr and Mo are useful as toughening components for steel materials, and at least one of them requires 0.05% or more, but if 1.00% is exceeded, welding is performed. Property, hot workability, economic efficiency and plating crack resistance are deteriorated, so the content is made 0.05 to 100%.
Next, regarding S and P as impurities in the steel, respectively.
020% and 0.030% are acceptable, but especially N
Is more than 0.012%, the toughness is significantly deteriorated.
0.012% or less is desirable as it is low. After obtaining molten steel in which the components are adjusted according to the formula (1) or (2) in the above-mentioned compositional range, by a usual steelmaking means, a slab, bloom or billet produced by the ingot making method or the continuous casting method,
The high-strength steel of the present invention can be manufactured by subjecting the necessary rolling process to a conventional method.

【0009】本発明にかかる溶接構造用鋼の耐めっき割
れ性の評価について、実験結果に基づいて説明する。試
験片は、表1に示す種々の化学成分の鋼板から10mm
φの丸棒を切り出し高周波加熱により6KJ/cmの溶
接入熱量相当の熱サイクルを付与した後、円周切欠き加
工を施したものである。
Evaluation of plating crack resistance of the welded structural steel according to the present invention will be described based on experimental results. The test pieces are 10 mm from steel plates with various chemical components shown in Table 1.
A φ round bar was cut out, subjected to a high frequency heating to provide a heat cycle equivalent to a welding heat input of 6 KJ / cm, and then subjected to circumferential notch processing.

0010[ 0010 ]

表1[ Table 1 ]

0011】各試験片の切欠き部のみに亜鉛めっきを施
し、その亜鉛が溶融状態となる470℃で種々の静的負
荷応力をかけ、その応力で破断する時間を測定した。こ
のときの負荷応力とめっきを施さない試験片の470℃
での引張り強さの比(%表示)Rσと、その時の破断時
間の関係を図1に示した。ここにRσは、470℃でめ
っきなし試験片の引張り強さに対して何%の応力状態に
保持して破断するに至ったかを示すパラメーターで、こ
のRσが少なくとも40%で高ければ高い程、残留応力
や熱応力が大きいときでも割れ難いことを示す。実操業
でのめっき浴浸漬時間を考慮し、400秒でのRσの値
を求め化学成分と重回帰して、(1)、(2)式の左辺
各項の係数が求められた。なお、図1でわかるように、
Bが0.0002%以上含有した鋼材で、Rσの値が著
しく低下することより、化学成分の重回帰は、本発明範
囲のB≦0.00015%の組成鋼を対象にして行なっ
た。
[0011] subjected to notch only galvanized of each specimen, subjected to various static load stress at 470 ° C. of the zinc is melted, the time was measured to break at the stress. Load stress at this time and 470 ° C of the test piece without plating
The relationship between the ratio of tensile strength (expressed in%) Rσ and the breaking time at that time is shown in FIG. Here, R σ is a parameter indicating how much stress with respect to the tensile strength of the unplated test piece at 470 ° C. is reached, and fracture occurs. The higher R σ is at least 40%, the higher It indicates that cracking is difficult even when residual stress or thermal stress is large. In consideration of the immersion time in the plating bath in actual operation, the value of Rσ at 400 seconds was obtained and multiple regression was performed with the chemical components to obtain the coefficient of each term on the left side of the equations (1) and (2). As you can see in Figure 1,
In the steel containing B in an amount of 0.0002% or more, the value of Rσ was remarkably decreased. Therefore, the multiple regression of the chemical composition was performed for the composition steel having B ≦ 0.00015% of the range of the present invention.

0012】一方、実溶接後のめっき処理での割れ状況
との対応をとるため、図2に示す拘束継手を製作し、溶
融亜鉛めっき浴に浸漬後、HAZでのめっき割れを調べ
た。図中の1a、1bは試験ビード、また2a、2bは
拘束ビードであり3は試験板である。試験板3は、片側
が研削された板を十字に組み、研削面同士の隅肉ビード
1a、黒皮同士の隅肉ビード1bとなるように組み立て
た。試験板寸法は、板厚が15mmで、試験ビードの長
さL=50mm、また十字の各張出し長さl=l
=l=50mm、そして試験板3の全長W=15
0mmである。拘束ビード2a、2bの各ビード数はそ
れぞれ20である。この拘束継手は溶融亜鉛めっき浴に
浸漬して試験ビード1a、1bにおける割れ発生の有無
を確認し、その結果は表1に併記したとおりである。こ
れから特許請求の範囲内の成分組織で、かつ(1)、
(2)式の左辺の計算値Rσにつき、Rσ≧40が満た
されれば拘束継手に割れが生じていないことがわかる。
Meanwhile, for taking a correspondence between cracking conditions in the plating process after the actual welding, to prepare a restraint joint shown in FIG. 2, after dipping in molten zinc plating bath to examine the plating cracks in HAZ. In the figure, 1a and 1b are test beads, 2a and 2b are restraining beads, and 3 is a test plate. The test plate 3 was assembled in such a manner that plates whose one side was ground were assembled in a cross shape, and the fillet bead 1a between the grinding surfaces and the fillet bead 1b between the black skins were formed. The size of the test plate is such that the plate thickness is 15 mm, the length L of the test bead is L = 50 mm, and the overhang length of each cross is l 1 = l 2 =
l 3 = l 4 = 50 mm, and the total length of the test plate 3 W = 15
It is 0 mm. The number of beads of each of the restraining beads 2a and 2b is 20. This restraint joint was dipped in a hot dip galvanizing bath to check the presence or absence of cracks in the test beads 1a and 1b. The results are shown in Table 1. The constituent organization within the scope of the claims, and (1),
For the calculated value Rσ on the left side of the equation (2), it can be seen that if Rσ ≧ 40 is satisfied, the restraint joint is not cracked.

0013[ 0013 ]

【実施例】以下、実施例に基づき本発明を説明する。表
2に化学成分を示した供給材を真空溶解法により各々1
00kgf鋼塊に溶製し、圧延後放冷あるいは圧延後加
速冷却して供試鋼とした。各鋼材について丸棒引張片に
よる引張り強さを求め、また上述した拘束継手試験での
割れ調査を行なった。拘束継手試験片の割れ調査は、図
2に示した試験体を作成後、脱脂、酸洗、フラックス処
理し、455℃の溶融亜鉛中に6分浸漬して得られため
っきを除去した後、HAZを対象にして検査した。ま
た、表2には、本発明に従う回帰式で計算したRσの値
を併記した。
EXAMPLES The present invention will be described below based on examples. Each of the feed materials whose chemical composition is shown in Table 2 was 1 by vacuum melting method.
It was melted in a 00 kgf steel ingot, and allowed to cool after rolling or accelerated cooling after rolling to obtain a test steel. For each steel material, the tensile strength by a round bar tensile piece was obtained, and the crack investigation in the above-mentioned restraint joint test was conducted. The cracking of the restraint joint test piece was carried out by degreasing, pickling and fluxing the test piece shown in FIG. 2 and immersing it in molten zinc at 455 ° C. for 6 minutes to remove the obtained plating. The HAZ was inspected. Further, in Table 2, the value of Rσ calculated by the regression equation according to the present invention is also shown.

0014[ 0014 ]

表2[ Table 2 ]

0015】表2から明らかなように、本発明の成分
で、回帰式によるRσ値が40を超える実施例はすべて
引張り強さが580MPa以上であり、しかも拘束継手
のHAZに割れは認められない。これに対し、表2中に
アンダーラインで示した成分や計算Rσ値が本発明の要
件からはずれた比較例では、割れの程度に違いはある
が、HAZ割れの発生が認められた。特に、鋼N01、
7や11の比較例では、計算Rσ値は40以上である
が、微量のBを含有するためHAZ割れが発生してお
り、小入熱溶接のHAZの耐めっき割れ性をBが著しく
損なうことがわかる。
As it is apparent from Table 2, a component of the present invention, examples of Rσ value by regression equation exceeds 40 all tensile strength is at least 580 MPa, yet cracking HAZ constraining joint is not observed .. On the other hand, in the comparative examples in which the components underlined in Table 2 and the calculated Rσ values deviate from the requirements of the present invention, the occurrence of HAZ cracking was recognized, although there was a difference in the degree of cracking. In particular, steel N01,
In the comparative examples of 7 and 11, the calculated Rσ value is 40 or more, but HAZ cracking occurs because a small amount of B is contained, and B significantly impairs the plating cracking resistance of HAZ for small heat input welding. I understand.

0016[ 0016 ]

【発明の効果】本発明によると、小入熱溶接HAZの耐
めっき割れ性が著しく改善された鋼材が製造できる。
EFFECTS OF THE INVENTION According to the present invention, it is possible to manufacture a steel material in which the plating crack resistance of the small heat input welding HAZ is remarkably improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】C:0.06〜0.15wt% 、Si:0.10 〜0.50wt%
、Mn:0.80 〜2.00wt% 、Zr:0.012〜0.040wt%、solAl:
0.005 〜0.100wt%、B:0.00015wt%以下、Nb:0.010〜0.10
0wt%及び、V:0.010 〜0.100wt%、を含有し、かつ下記
(1) 式を満足し、244-265C-120Si-82Mn+415Zr-49Al-145
Nb-329V ≧40・・・(1) 。残部は実質的にFeおよび不可
避的不純物であって、引張強さ580MPa以上であることを
特徴とする溶接熱影響部の耐溶融亜鉛めっき割れ性に優
れる溶接構造用高張力鋼。
1. C: 0.06-0.15 wt%, Si: 0.10-0.50 wt%
, Mn: 0.80 to 2.00 wt%, Zr: 0.012 to 0.040 wt%, solAl:
0.005-0.100wt%, B: 0.00015wt% or less, Nb: 0.010-0.10.
0 wt% and V: 0.010 to 0.100 wt%, and
Satisfying the formula (1), 244-265C-120Si-82Mn + 415Zr-49Al-145
Nb-329V ≧ 40 ・ ・ ・ (1). The balance is substantially Fe and unavoidable impurities, and the tensile strength is 580 MPa or more, which is a high-strength steel for welded structure excellent in hot-dip galvanizing crack resistance of the heat-affected zone of welding.
【請求項2】 C:0.06〜0.15wt% 、Si:0.10 〜0.50wt%
、Mn:0.80 〜2.00wt% 、Zr:0.012〜0.040wt%、solAl:
0.005 〜0.100wt%、B:0.00015wt%以下、Nb:0.010〜0.10
0wt%、V:0.010 〜0.100wt%、とさらにTi:0.005〜0.030w
t%、および/ または0.05〜1.00wt% のNi、Cu、Cr、Moの
1種または2種以上を含有し、下記(2)式を満足し、244
-265C-120Si-82Mn+415Zr-49Al-145Nb-329V+167Ti-17Ni-
85Cu-81Cr-73Mo ≧40・・・(2) 。残部は実質的にFeお
よび不可避的不純物であって、引張り強さ580MPa以上で
あることを特徴とする溶接熱影響部の耐溶融亜鉛めっき
割れ性に優れる溶接構造用高張力鋼。
2. C: 0.06-0.15 wt%, Si: 0.10-0.50 wt%
, Mn: 0.80 to 2.00 wt%, Zr: 0.012 to 0.040 wt%, solAl:
0.005-0.100wt%, B: 0.00015wt% or less, Nb: 0.010-0.10.
0wt%, V: 0.010-0.100wt%, and further Ti: 0.005-0.030w
It contains t% and / or 0.05 to 1.00 wt% of Ni, Cu, Cr, Mo, or two or more, and satisfies the following formula (2):
-265C-120Si-82Mn + 415Zr-49Al-145Nb-329V + 167Ti-17Ni-
85Cu-81Cr-73Mo ≧ 40 ・ ・ ・ (2). The balance is substantially Fe and unavoidable impurities, and the tensile strength is 580 MPa or more, which is a high-strength steel for welded structure with excellent hot dip galvanizing crack resistance in the heat-affected zone of the weld.
JP3258361A 1991-09-10 1991-09-10 High-strength steel for welded structures with excellent hot-dip galvanizing crack resistance in the heat-affected zone Expired - Fee Related JP3011380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3258361A JP3011380B2 (en) 1991-09-10 1991-09-10 High-strength steel for welded structures with excellent hot-dip galvanizing crack resistance in the heat-affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3258361A JP3011380B2 (en) 1991-09-10 1991-09-10 High-strength steel for welded structures with excellent hot-dip galvanizing crack resistance in the heat-affected zone

Publications (2)

Publication Number Publication Date
JPH0565593A true JPH0565593A (en) 1993-03-19
JP3011380B2 JP3011380B2 (en) 2000-02-21

Family

ID=17319170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3258361A Expired - Fee Related JP3011380B2 (en) 1991-09-10 1991-09-10 High-strength steel for welded structures with excellent hot-dip galvanizing crack resistance in the heat-affected zone

Country Status (1)

Country Link
JP (1) JP3011380B2 (en)

Also Published As

Publication number Publication date
JP3011380B2 (en) 2000-02-21

Similar Documents

Publication Publication Date Title
JPS61130462A (en) High-touchness extra high tension steel having superior stress corrosion cracking resistance as well as yield stress of 110kgf/mm2 and above
CA3078322A1 (en) Austenitic stainless steel weld metal and welded structure
CA3078398A1 (en) Austenitic stainless steel
JPH0443977B2 (en)
JPH06142980A (en) Welding material for austenitic stainless steel having excellent high-temperature strength
JP3509634B2 (en) Low alloy cast steel and its heat treatment method
JP3617591B2 (en) TIG welding method and TIG welding material
JP4465066B2 (en) Welding materials for ferrite and austenitic duplex stainless steels
JP3011380B2 (en) High-strength steel for welded structures with excellent hot-dip galvanizing crack resistance in the heat-affected zone
JPH0787989B2 (en) Gas shield arc welding method for high strength Cr-Mo steel
JP2930772B2 (en) High manganese ultra-high strength steel with excellent toughness of weld heat affected zone
JP5008172B2 (en) High strength steel plate for resistance welding and joining method thereof
US3729345A (en) Method for making propellers of high-strength and high-toughness cast steel
JPS61149468A (en) Composite steel material for welded structure finished by hot dip galvanizing
JPH08269566A (en) Production of high strength and high toughness uoe steel pipe excellent in sr characteristic
JP3400886B2 (en) High tension bolt steel with excellent hydrogen entry prevention effect
JPH04110419A (en) Production of high ni stainless steel plate
JP3933020B2 (en) Stainless steel with excellent fatigue characteristics and toughness of fillet welded joints when forming fillet welded joints
JP2573109B2 (en) Method for producing high-strength steel for Zn plating crack resistant structure
JP2986989B2 (en) Method for producing high-strength steel for Zn-Al plating
JP4254583B2 (en) Cr-containing alloy with excellent strain aging resistance of welds
KR950004679B1 (en) Making method of stainless steel
JP2003089819A (en) Method for producing steel having excellent weld heat affected zone toughness
JPH0137470B2 (en)
JPH08232041A (en) High toughness hot rolled steel plate for square steel tube, excellent in galvanizing crack resistance, and high toughness square steel tube

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees