JP3509634B2 - Low alloy cast steel and its heat treatment method - Google Patents

Low alloy cast steel and its heat treatment method

Info

Publication number
JP3509634B2
JP3509634B2 JP15840699A JP15840699A JP3509634B2 JP 3509634 B2 JP3509634 B2 JP 3509634B2 JP 15840699 A JP15840699 A JP 15840699A JP 15840699 A JP15840699 A JP 15840699A JP 3509634 B2 JP3509634 B2 JP 3509634B2
Authority
JP
Japan
Prior art keywords
cast steel
strength
low alloy
alloy cast
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15840699A
Other languages
Japanese (ja)
Other versions
JP2000345285A (en
Inventor
啓之 森
晋介 羽田
友博 土山
浩一 坂本
斉 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15840699A priority Critical patent/JP3509634B2/en
Publication of JP2000345285A publication Critical patent/JP2000345285A/en
Application granted granted Critical
Publication of JP3509634B2 publication Critical patent/JP3509634B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、舶用大型ディーゼ
ルエンジンのクランクスロー等の大型厚肉部材として用
いられる、強度、溶接性、耐引け巣性のバランスに優れ
た低合金鋳鋼材、及び、その熱処理方法に関する。
TECHNICAL FIELD The present invention relates to a low alloy cast steel material having excellent balance of strength, weldability and shrinkage cavity resistance, which is used as a large thick member such as a crank throw of a large marine diesel engine, and the like. The present invention relates to a heat treatment method.

【0002】[0002]

【従来の技術】溶接構造用鋳鋼品として、JIS規格で
は、G5102において引っ張り強さが620MPa以
上のものとして、SCW620が規定されている。この
強度を満足させるための熱処理としてのオーステナイト
化処理(焼き入れ)時の冷却には、急冷が必要であっ
た。また、特開昭59−136451号公報に記載の強
靭鋼及びその熱処理法での実施例(重量160kg程
度)においては、引っ張り強さ560MPa以上を得る
ために、焼き入れを油冷で行う必要があった(空冷では
534MPaの強度しか得られていない)。
2. Description of the Related Art As a cast steel product for welded structures, the JIS standard defines SCW620 as having a tensile strength of 620 MPa or more in G5102. Quenching was required for cooling during the austenitizing treatment (quenching) as a heat treatment for satisfying this strength. Further, in the case of the high-strength steel and the heat treatment method thereof (about 160 kg) described in JP-A-59-136451, it is necessary to perform quenching in oil cooling in order to obtain a tensile strength of 560 MPa or more. There was (a strength of only 534 MPa was obtained by air cooling).

【0003】[0003]

【発明が解決しようとする課題】前記従来の技術は、そ
の重量が数トンから数十トンにも達する超大型部材には
適用できないものであった。即ち、直径1m以上もある
ような大型厚肉部材においては、所定の強度を得るため
の熱処理(焼き入れ又は焼ならし:オーステナイト化処
理)を水冷や油冷で行うことは設備的、操業的に困難、
及び、不経済であり、また仮に出来たとしても、その中
心部まで早い冷却速度を確保することは困難である。
The above-mentioned conventional technique cannot be applied to a super-large member having a weight of several tons to several tens of tons. That is, in the case of a large-sized thick member having a diameter of 1 m or more, it is facility and operational to perform the heat treatment (quenching or normalizing: austenitizing treatment) for obtaining a predetermined strength with water cooling or oil cooling. Difficult to
In addition, it is uneconomical, and even if it is possible, it is difficult to secure a high cooling rate to the central portion.

【0004】従って、この様な超大型部材においては、
空冷するのが最も適しているが、前記の従来技術では、
オーステナイト化処理時の冷却速度を空冷のような遅い
速度にすると、所定の強度を得ることが出来ないもので
あった。そこで、本発明は、大型厚肉部材において、オ
ーステナイト化処理時の冷却速度が空冷のように遅い場
合でも、高強度を得ることが出来、かつ主組織をベイナ
イト組織として、質量効果(大型部材の内外の強度差)
を小さくして、内外均質な高強度の部材を得ることがで
きる低合金鋳鋼材及びその熱処理法を提供することを第
1の目的とする。
Therefore, in such a super-large member,
Although air cooling is most suitable, in the above-mentioned conventional technology,
If the cooling rate during the austenitizing treatment is slow such as air cooling, it is impossible to obtain a predetermined strength. Therefore, the present invention, in the large-sized thick member, even when the cooling rate during the austenitizing process is slow as in air cooling, high strength can be obtained, and the main structure is the bainite structure. (Intensity difference between inside and outside)
It is a first object of the present invention to provide a low alloy cast steel material and a heat treatment method therefor capable of obtaining a high strength member which is uniform in the inside and the outside by reducing the above.

【0005】また、本発明の他の目的は、溶接構造部材
としての使用や、溶接補修を可能とする低合金鋳鋼材を
提供することであり、更に他の目的は、鋳造時に引け巣
が発生しないようにした低合金鋳鋼材を提供することで
ある。
Another object of the present invention is to provide a low alloy cast steel material which can be used as a welded structural member and can be repaired by welding. Still another object is to produce shrinkage cavities during casting. It is an object of the present invention to provide a low alloy cast steel material that is not used.

【0006】[0006]

【課題を解決するための手段】前記第1の目的を達成す
るために、本発明は、次の手段を講じた。即ち、本発明
の低合金鋳鋼材の特徴とするところは、質量%で、 0.15
C 0.22 Si 0.4 0.7 Mn 1.4 1.2 Ni 2.5 0.
1 Cr 1.1 0.1 Mo 0.7 V 0.3 を含有し、残部実
質的にFeである低合金鋳鋼材であって、焼入性倍数α
≧560を満足する点にある。ただし、α=750C+88Si
+162Mn+81Ni+34Cr+301Mo+454V+20 であり、各成
分は、質量%である。鋼の焼入性は合金元素量によって
著しく変化する。そこで、その焼入性を表す指標として
合金元素量をパラメータとした「焼入性倍数」が用いら
れている。
[Means for Solving the Problems] In order to achieve the first object, the present invention takes the following means. That is, the feature of the low alloy cast steel material of the present invention is, in mass%, 0.15
C 0.22 , Si 0.4 , 0.7 Mn 1.4 , 1.2 Ni 2.5 , 0.
1 Cr 1.1 , 0.1 Mo 0.7 , V 0.3 , balance
A low alloy cast steel material that is qualitatively Fe and has a hardenability multiple α
There is a point of satisfying ≧ 560. However, α = 750C + 88Si
+ 162Mn + 81Ni + 34Cr + 301Mo + 454V + 20, and each component is mass %. The hardenability of steel significantly changes depending on the amount of alloying elements. Therefore, "hardenability multiple" using the amount of alloying element as a parameter is used as an index showing the hardenability.

【0007】ところで、大型厚肉鋳鋼材で高強度にする
場合には、水冷及び油冷でも肉厚中心部の冷却速度が遅
くなり、高強度を得にくいと共に、焼き入れ時に割れが
生じる可能性がある。従って、空冷(遅い冷却速度)に
おいて部材内外が均一に焼きが入る成分(強度が安定す
るベイナイト組織)が必要である。そこで、本発明で
は、通常の熱処理(焼ならし焼き戻し)において、高強
度を確保できる「焼入性倍数」なるαを取り入れた。な
おこのαは、オーステナイト化時の平均冷却速度1℃/
minとし、660℃焼き戻し後の引張強さより求めた
予測式(実験的に得られた式)である。
By the way, when high strength is applied to a large thick cast steel material, the cooling rate at the center of the wall thickness becomes slow even with water cooling or oil cooling, high strength is difficult to obtain, and cracking may occur during quenching. There is. Therefore, a component (bainite structure with stable strength) that uniformly quenches the inside and outside of the member during air cooling (slow cooling rate) is required. Therefore, in the present invention, α which is a “hardenability multiple” that can secure high strength in the ordinary heat treatment (normalizing and tempering) is introduced. This α is the average cooling rate of 1 ° C /
It is a prediction formula (experimentally obtained formula) obtained from the tensile strength after tempering at 660 ° C. for min.

【0008】前記構成の本発明のように、このαが56
0以上であれば、通常に用いられる焼き戻し温度(60
0℃〜700℃)でフェライト率が約40%以下とな
り、且つ引張強さ560MPa以上が部材内外で安定し
て得られる。また、本発明では、溶接性を向上させるた
め、溶接性指数β≦0.8を満足するものとしている。 ただし、β=C+Mn/6+Ni/15+(Cr+Mo+V)/5 金属材料の溶接の難易度(溶接割れが生じるか否か等)
を表すのに「溶接性」という言葉が用いられる。溶接性
の指標として炭素等量を用い、溶接割れ等を評価してい
る。炭素等量が大きくなると、熱影響部の硬さが高くな
り、割れ発生を助長するものとなる。そのため炭素等量
が高い場合には、溶接時の予熱温度を高くする必要があ
る。大型鋳鋼品の場合には、高温での予熱が困難である
ため、予熱温度50℃以下で溶接を可能とする必要があ
る。
As in the present invention having the above structure, this α is 56
If it is 0 or more, the tempering temperature (60
At 0 ° C. to 700 ° C.), the ferrite ratio is about 40% or less, and the tensile strength of 560 MPa or more is stably obtained inside and outside the member. Further, in the present invention, in order to improve the weldability, the weldability index β ≦ 0.8 is satisfied. However, β = C + Mn / 6 + Ni / 15 + (Cr + Mo + V) / 5 Difficulty of welding of metallic materials (whether welding cracks occur, etc.)
The term "weldability" is used to describe Weld cracks are evaluated by using carbon equivalent as an index of weldability. When the carbon equivalent is large, the hardness of the heat-affected zone becomes high, which promotes the occurrence of cracks. Therefore, when the carbon equivalent is high, it is necessary to raise the preheating temperature during welding. In the case of a large cast steel product, it is difficult to preheat at a high temperature, so it is necessary to enable welding at a preheating temperature of 50 ° C or lower.

【0009】そこで、本発明では、種々の検討の結果、
予熱温度と炭素等量との関係を見いだし、予熱温度50
℃以下となる溶接性指数β≦0.8を見いだしたのであ
る。即ち、前記構成の本発明によれば、予熱温度が50
℃以下でも良好な溶接が可能となる。また、本発明で
は、鋳造性指数γ≧16を満足するものとしている。 ただし、γ=39.9C+10.0Si−0.8Mn−1.5Ni+0.2Cr+0.
6Mo−6.2V+14.3 大型厚肉鋳鋼品の場合には、指向性凝固を達成し難く、
固相率が0.7となる温度と液相線温度の差、即ち凝固
温度範囲が狭い場合には、肉厚中心に大きな引け巣が発
生し易い傾向となり、ある凝固温度範囲以上が必要とな
ることが判明した。
Therefore, in the present invention, as a result of various studies,
Find the relationship between the preheating temperature and the carbon equivalent, and
We have found a weldability index β ≦ 0.8 that is less than or equal to ℃. That is, according to the present invention having the above configuration, the preheating temperature is 50
Good welding is possible even at temperatures below ℃. Further, in the present invention, the castability index γ ≧ 16 is satisfied. However, γ = 39.9C + 10.0Si-0.8Mn-1.5Ni + 0.2Cr + 0.
6Mo-6.2V + 14.3 It is difficult to achieve directional solidification in the case of large thick cast steel products.
If the difference between the temperature at which the solid fraction is 0.7 and the liquidus temperature, that is, the solidification temperature range is narrow, a large shrinkage cavity tends to occur at the center of the wall thickness, and a certain solidification temperature range or higher is required. It turned out to be.

【0010】そこで、種々の多元系成分の固相率が0.
7となる温度と液相線温度の差から求めた引け巣性を表
す予測式γを見いだした。即ち、鋳造性指標γが、16
以上であれば、欠陥長さが5mm以下となり、BS(英
国規格)のレベル2を満足することが見いだされた。従
って、前記構成の本発明によれば、引け巣による欠陥長
さを5mm以下とすることができる。
Therefore, the solid fraction of various multi-component components is 0.
The prediction formula γ representing the shrinkage cavity property obtained from the difference between the temperature of 7 and the liquidus temperature was found. That is, the castability index γ is 16
If it is above, it was found that the defect length was 5 mm or less, which satisfied the level 2 of BS (UK standard). Therefore, according to the present invention having the above structure, the length of the defect due to the shrinkage cavity can be set to 5 mm or less.

【0011】前記数値限定の理由を以下説明する。C
は、強度及び焼き入れ性を向上させる元素であり、含有
量が0.15%より少ないと所定の強度が得難くなる。
また、0.22%より多くては溶接割れの感受性が高く
なるので、0.15〜0.22%が望ましい。Siは、
脱酸剤としての使用及び焼き入れ性を向上させる元素で
あるが、含有量が高いと偏析が大きくなるので、0.4
%以下が好ましい。Mnは、強度及び焼き入れ性を向上
させる元素であり、含有量が0.7%より少ないと所定
の強度が得難くなる。また、1.4%より大きいと焼き
戻し脆化が著しくなるので、0.7〜1.4%が好まし
い。
The reason for limiting the numerical values will be described below. C
Is an element that improves strength and hardenability, and if the content is less than 0.15%, it becomes difficult to obtain a predetermined strength.
Further, if it exceeds 0.22%, the susceptibility to weld cracking becomes high, so 0.15 to 0.22% is desirable. Si is
It is an element that improves the use as a deoxidizing agent and hardenability, but if the content is high, segregation becomes large, so 0.4
% Or less is preferable. Mn is an element that improves strength and hardenability, and if the content is less than 0.7%, it becomes difficult to obtain a predetermined strength. Further, if it exceeds 1.4%, temper embrittlement becomes remarkable, so 0.7 to 1.4% is preferable.

【0012】Niは、強度及び焼き入れ性を向上させる
元素であり、溶接性の低下が比較的少ない元素であるの
で、できるだけ添加することが好ましいが、含有量が
1.2%より少ないと所定の強度が得難くなる。また、
高価な元素であるため、1.2〜2.5%が好ましい。
Cr、Moは、強度及び焼き入れ性の向上、及び、焼き
戻し軟化抵抗を高める元素であるため、0.1%より少
ないと所定の強度が得難くなる。また、溶接性の低下を
引き起こす元素であるため、Crは0.1〜1.1%、
Moは0.1〜0.7%が好ましい。
[0012] Ni is an element that improves the strength and hardenability and is an element that causes a relatively small decrease in weldability, so it is preferable to add Ni as much as possible, but if the content is less than 1.2%, it is predetermined. Is difficult to obtain. Also,
Since it is an expensive element, 1.2 to 2.5% is preferable.
Cr and Mo are elements that improve the strength and hardenability, and enhance the temper softening resistance, so if it is less than 0.1%, it becomes difficult to obtain a predetermined strength. Further, since it is an element that causes a decrease in weldability, Cr is 0.1 to 1.1%,
Mo is preferably 0.1 to 0.7%.

【0013】Vは、焼き戻し軟化抵抗を高める元素であ
るが、溶接性を阻害する元素であると共に、一定量以上
添加しても軟化抵抗の大きな効果が望めないため、0.
3%以下が望ましい。本発明の熱処理方法の特徴とする
ところは、前記の低合金鋳鋼材を、焼入れ乃至焼きなら
しする時、その冷却を空冷とし、その後、600℃〜7
00℃で焼き戻す点にある。なお前記空冷とは、900
℃から400℃の平均冷却速度が遅い(1000mm直
径相当材の中心で約1℃/min)処理を言う。
V is an element that enhances the temper softening resistance, but it is an element that hinders weldability and, even if added in a certain amount or more, a large effect of the softening resistance cannot be expected, so V.
3% or less is desirable. A feature of the heat treatment method of the present invention is that when the above-mentioned low alloy cast steel material is hardened or normalized, its cooling is air cooling, and then 600 ° C to 7 ° C.
It is at the point of tempering at 00 ° C. The air cooling is 900
This is a process in which the average cooling rate from 0 ° C to 400 ° C is slow (about 1 ° C / min at the center of a material corresponding to a diameter of 1000 mm).

【0014】前記熱処理を行うことにより、従来の公知
の高強度鋳鋼品に比較してより大きな鋳鋼品に対して、
引っ張り強さ560MPa以上を有し、質量効果を低減
させることができる。
By carrying out the heat treatment, a cast steel product larger than the conventionally known high-strength cast steel product,
It has a tensile strength of 560 MPa or more and can reduce the mass effect.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施の形態につき
説明する。鋳鋼部材においては、高強度のみならず溶接
性が必要事項となる。強度を向上させるためには、合金
添加を増加させれば達成できるが、添加元素の増加に伴
い溶接性が劣化する。従って、本発明は、高強度と溶接
性の両者のバランスをとるものである。更に、鋳鋼材の
場合には、強度劣化させる要因となる引け巣防止が必要
であり、本発明は、成分的に引け巣特性を改善しようと
するものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below. In cast steel members, not only high strength but also weldability is a necessary item. The strength can be improved by increasing the alloy addition, but the weldability deteriorates as the added element increases. Therefore, the present invention balances both high strength and weldability. Further, in the case of a cast steel material, it is necessary to prevent shrinkage cavities that cause deterioration in strength, and the present invention is to improve shrinkage cavity characteristics in terms of components.

【0016】本発明の低合金鋳鋼材は、超大型クランク
スロー等に使用されるものである。この鋳鋼材は、少な
くと下記の成分を含有するものである(質量%)。C:
0.15〜0.22、Si:0.4以下、Mn:0.7
〜1.4、Ni:1.2〜2.5、Cr:0.1〜1.
1、Mo:0.1〜0.7、V:0.3以下また、焼
入性倍数α、溶接性指数β、鋳造性指数γは、次式で表
され、 α=750C+88Si+162Mn+81Ni+34Cr+301Mo+454V+2
0 β=C+Mn/6+Ni/15+(Cr+Mo+V)/5 γ=39.9C+10.0Si−0.8Mn−1.5Ni+0.2Cr+0.6Mo−6.2
V+14.3 そして、α≧560、β≦0.8、γ≧16を満足する
ものとされている。
The low alloy cast steel material of the present invention is used for a super-large crank throw or the like. This cast steel material contains at least the following components ( mass %). C:
0.15-0.22, Si: 0.4 or less, Mn: 0.7
.About.1.4, Ni: 1.2 to 2.5, Cr: 0.1 to 1.
1, Mo: 0.1 to 0.7, V: 0.3 or less , the hardenability multiple α, the weldability index β, and the castability index γ are represented by the following formulas: α = 750C + 88Si + 162Mn + 81Ni + 34Cr + 301Mo + 454V + 2
0 , β = C + Mn / 6 + Ni / 15 + (Cr + Mo + V) / 5 , γ = 39.9C + 10.0Si−0.8Mn−1.5Ni + 0.2Cr + 0.6Mo−6.2
V + 14.3 , and α ≧ 560, β ≦ 0.8, and γ ≧ 16 are satisfied.

【0017】前記低合金鋳鋼材の熱処理方法は、焼き入
れ乃至焼きならしを、空冷で行う。そのときの、100
0mm直径相当材中心部での平均冷却速度は、900℃
から400℃のオーステナイト化処理において、約1℃
/minとなっている。その後、600℃〜700℃で焼
き戻しする。前期実施の形態によれば、大型厚肉部材に
おいて、オーステナイト化処理の冷却速度が遅い場合に
おいても、強度を満足し、かつ主組織をベイナイト組織
として、質量効果(大型部材の中心部と外周部の強度
差)を非常に小さくして、安定した高強度の部材を得る
ことができると共に、溶接構造部材としての使用や溶接
補修を可能とする。また、鋳造時の引け巣の欠陥が防止
される。
In the heat treatment method for the low alloy cast steel material, quenching or normalizing is performed by air cooling. 100 at that time
The average cooling rate at the center of the 0 mm diameter material is 900 ° C.
In the austenitizing process from 1 to 400 ℃
/ Min. Then, it tempers at 600-700 degreeC. According to the first embodiment, even in the case where the cooling rate of the austenitizing process is slow in the large thick member, the strength is satisfied, and the main structure is the bainite structure, and the mass effect (the center part and the outer peripheral part of the large member are The strength difference) can be made extremely small, and a stable high-strength member can be obtained, and at the same time, it can be used as a welded structural member and weld repaired. Further, shrinkage cavity defects during casting are prevented.

【0018】[0018]

【実施例】「実施例1」:強度評価 表1に示す成分(比較鋼10を除く)および他成分を電
気炉にて溶解した。そして、砂型にて、200mm×5
50mm×600mmの大きさに鋳造した。その鋳塊を
所定のサイズに切断してテストピースを作成した。この
テストピースを、920℃に保持後、1℃/minの冷
却速度にコントロール冷却した。この冷却速度は、厚肉
鋳物の遅い冷却速度に相当し、空冷を模擬したものであ
る。その後、660℃で焼き戻しを行った。そして、前
記テストピースから、引張試験片を切り出し、引張試験
を行った。
[Example] "Example 1": Strength evaluation The components shown in Table 1 (excluding comparative steel 10) and other components were melted in an electric furnace. And with sand mold, 200mm × 5
It was cast into a size of 50 mm × 600 mm. The ingot was cut into a predetermined size to prepare a test piece. After holding this test piece at 920 ° C., it was controlled and cooled at a cooling rate of 1 ° C./min. This cooling rate corresponds to the slow cooling rate of thick castings and simulates air cooling. Then, tempering was performed at 660 ° C. Then, a tensile test piece was cut out from the test piece and a tensile test was performed.

【0019】[0019]

【表1】 [Table 1]

【0020】前記表1に於ける焼入れ性倍数α、溶接性
指数β、鋳造性指数γは、次のとおりである。尚、各成
分は質量%である。 α=750C+88Si+162Mn+81Ni+34Cr+301Mo+454V+2
0 β=C+Mn/6+Ni/15+(Cr+Mo+V)/5 γ=39.9C+10.0Si−0.8Mn−1.5Ni+0.2Cr+0.6Mo−6.2
V+14.3 前記表1によれば、比較鋼7〜10は、αが560未満
であるため、充分な強度が得られていない。比較鋼7
は、JISのSCW620相当材である。比較鋼10
は、前記従来の記述で示した特開昭59−136451
号公報に記載のデータである。
The hardenability multiple α, the weldability index β, and the castability index γ in Table 1 are as follows. In addition, each component is mass %. α = 750C + 88Si + 162Mn + 81Ni + 34Cr + 301Mo + 454V + 2
0 , β = C + Mn / 6 + Ni / 15 + (Cr + Mo + V) / 5 , γ = 39.9C + 10.0Si−0.8Mn−1.5Ni + 0.2Cr + 0.6Mo−6.2
V + 14.3 , according to Table 1 above, Comparative Steels 7 to 10 do not have sufficient strength because α is less than 560. Comparative steel 7
Is a material equivalent to JIS SCW620. Comparative steel 10
Are disclosed in Japanese Patent Laid-Open No. 59-136451.
This is the data described in the publication.

【0021】図1は、前記引張試験の結果を示すグラフ
であり、焼入性倍数αと引張強度の実測値の関係を示し
ている。前記図から、αが560以上で、高温の660
℃の焼き戻しにおいても、平均で560MPa以上の強
度が得られることが確認された。図2に、熱処理後のテ
ストピースのフェライト率を測定した結果を示す。図2
に示すように、引張強さが560MPaまではフェライ
ト率が約40%までで、質量効果が小さく、大型厚肉鋳
鋼品に適する。一方、フェライト率が40%を越えて多
くなると、引張強さが急激に低下すると共に、質量効果
により内外強度さが非常に大きくなる。
FIG. 1 is a graph showing the results of the tensile test, showing the relationship between the hardenability multiple α and the measured value of tensile strength. From the above figure, α is 560 or more and high temperature is 660.
It was confirmed that even in tempering at ℃, a strength of 560 MPa or more was obtained on average. FIG. 2 shows the result of measuring the ferrite ratio of the test piece after the heat treatment. Figure 2
As shown in, the tensile strength is up to 560 MPa, the ferrite ratio is up to about 40%, the mass effect is small, and it is suitable for large-sized thick cast steel products. On the other hand, when the ferrite ratio exceeds 40% and increases, the tensile strength sharply decreases, and the inner and outer strengths become very large due to the mass effect.

【0022】「実施例2」:溶接性評価 材料製作方法は、前記実施例1と同じである。熱処理
は、920℃で焼きなましのみを実施した。使用材料
は、発明鋼1、比較鋼1,2,3,8,9で、溶接性指
数βが0.59〜0.88の範囲に含まれている材料を
用いた。溶接割れ試験については、JISZ3158の
y型溶接割れ試験方法(溶接はTig溶接を行い、溶接
棒には共金を使用した)に基づき、予熱温度と割れの有
無の関係を調べ、断面割れ率が0となる限界予熱温度と
溶接性指数βの関係を求めた。
[Embodiment 2]: The method for producing the weldability evaluation material is the same as that in Embodiment 1. The heat treatment was performed only at 920 ° C. The materials used were invention steel 1, comparative steels 1, 2, 3, 8, and 9, and the weldability index β was in the range of 0.59 to 0.88. Regarding the weld crack test, based on the JIS Z3158 y-type weld crack test method (Tig welding was performed and common metal was used for the welding rod), the relationship between the preheating temperature and the presence or absence of cracks was examined, and the cross-section crack ratio was The relationship between the critical preheat temperature of 0 and the weldability index β was determined.

【0023】図3に、前記テスト結果を示す。同図によ
れば、βが、0.8以上で急激に予熱温度は上昇し、5
0℃以上の温度を要することが判る。 「実施例3」:溶接性評価 前記表1に示す実施例2で使用した材料以外の材料(発
明鋼2〜7、比較鋼4〜7)については、予熱温度25
℃で試験を実施し、割れの有無のみを確認した。溶接性
指数βの大きな比較鋼4〜6については、割れが発生
し、発明鋼及び他の比較鋼においては、割れが発生しな
かった。
FIG. 3 shows the test results. According to the figure, when β is 0.8 or more, the preheating temperature rises rapidly, and
It can be seen that a temperature of 0 ° C. or higher is required. "Example 3": Weldability evaluation For materials other than the materials used in Example 2 shown in Table 1 above (inventive steels 2 to 7 and comparative steels 4 to 7), the preheating temperature was 25.
The test was conducted at ℃, and only the presence or absence of cracks was confirmed. Cracking occurred in Comparative Steels 4 to 6 having a large weldability index β, and no cracking occurred in Invention Steel and other comparative steels.

【0024】「実施例4」:鋳造性評価 前記表1に示す、発明鋼6、比較鋼2,5,8につい
て、電気炉にて溶解し、砂型にて、重量約10t(肉厚
約400mm)の鋳鋼品を鋳造した。ただし、強制的に
凝固させる冷やし金は使用していない。前記鋳鋼品の中
心部を超音波探傷試験して、欠陥サイズを確認し、鋳造
性指数γとの関係を求めた。図4に、前記γと欠陥長さ
の関係を示す。
"Example 4": Castability evaluation The invention steel 6 and the comparative steels 2, 5 and 8 shown in Table 1 were melted in an electric furnace and weighed about 10 tons (thickness: about 400 mm) in a sand mold. ) Cast steel products were cast. However, it does not use a chill to forcibly solidify. The center portion of the cast steel product was subjected to an ultrasonic flaw detection test to confirm the defect size and to determine the relationship with the castability index γ. FIG. 4 shows the relationship between the γ and the defect length.

【0025】同図によれば、γが大きくなるほど欠陥が
小さくなることが判る。通常の鋳造方案にて、成分的に
欠陥長さを小さくする(BS規格で5mm以下)ための
γは、16以上にすることが望ましい。
According to the figure, the larger the γ, the smaller the defect. In the usual casting method, it is desirable that γ be 16 or more in order to reduce the defect length componentally (BS standard is 5 mm or less).

【0026】[0026]

【発明の効果】本発明によれば、大型厚肉部材におい
て、強度を満足することができる。また、溶接構造部材
としての使用が可能となる。さらに、引け巣の欠陥を防
止することができる。
According to the present invention, strength can be satisfied in a large-sized thick member. Further, it can be used as a welded structural member. Furthermore, it is possible to prevent defects in shrinkage cavities.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、焼入れ性倍数αと実測強度の関係を示
すグラフである。
FIG. 1 is a graph showing the relationship between hardenability multiple α and measured strength.

【図2】図2は、フェライト率と強度の関係を示すグラ
フである。
FIG. 2 is a graph showing the relationship between ferrite ratio and strength.

【図3】図3は、溶接性指数βと予熱温度の関係を示す
グラフである。
FIG. 3 is a graph showing the relationship between the weldability index β and the preheating temperature.

【図4】図4は、鋳造性指数γと欠陥長さの関係を示す
グラフである。
FIG. 4 is a graph showing the relationship between the castability index γ and the defect length.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂本 浩一 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (72)発明者 石田 斉 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所 神戸総合技術研 究所内 (56)参考文献 特開 平8−176728(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 C21D 6/00 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Koichi Sakamoto 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Prefecture Kobe Steel Works, Ltd. Kobe Research Institute (72) Inventor, Hitoshi Ishida Nishi-ku, Kobe-shi, Hyogo Prefecture Takatsukadai 1-5-5 Kobe Steel, Ltd., Kobe Research Institute (56) Reference JP-A-8-176728 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) ) C22C 38/00 C21D 6/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 質量%で、 0.15 C 0.22 Si 0.4 0.7
Mn 1.4 1.2 Ni 2.5 0.1 Cr 1.1 0.1 Mo 0.
7 V 0.3 を含有し、残部実質的にFeである低合金鋳
鋼材であって、焼入性倍数αが、α≧560 を満足す
ることを特徴とする低合金鋳鋼材。 ただし、α=750C+88Si+162Mn+81Ni+34Cr+301Mo+
454V+20 各成分は重量%である。
1. In mass%, 0.15 C 0.22 , Si 0.4 , 0.7
Mn 1.4 , 1.2 Ni 2.5 , 0.1 Cr 1.1 , 0.1 Mo 0.
A low alloy cast steel material containing 7 , V 0.3 and the balance being substantially Fe, wherein the hardenability multiple α satisfies α ≧ 560. However, α = 750C + 88Si + 162Mn + 81Ni + 34Cr + 301Mo +
454V + 20 , each component is% by weight.
【請求項2】 溶接性指数βが、β≦0.8 を、及び
/又は、鋳造性指数γが、γ≧16を満足する請求項1
記載の低合金鋳鋼材。 ただし、β=C+Mn/6+Ni/15+(Cr+Mo+V)/5γ= 39.9C 10.0Si 0.8Mn 1.5Ni 0.2Cr 0.6Mo 6.2
V 14.3
2. The weldability index β is β ≦ 0.8 , and
Or / or the castability index γ satisfies γ ≧ 16.
The described low alloy cast steel material. However, β = C + Mn / 6 + Ni / 15 + (Cr + Mo + V) / 5 γ = 39.9C + 10.0Si 0.8Mn 1.5Ni + 0.2Cr + 0.6Mo 6.2
V + 14.3
【請求項3】 請求項1又は2記載の低合金鋳鋼材を、
焼入れ又は焼きならしする時、その冷却を空冷とし、そ
の後、600℃〜700℃で焼き戻しすることを特徴と
する低合金鋳鋼材の熱処理方法。
3. A low alloy cast steel material according to claim 1 or 2,
When quenching or normalizing, the cooling should be air cooling.
After that, it is characterized by tempering at 600 ° C to 700 ° C.
Heat treatment method for low alloy cast steel.
JP15840699A 1999-06-04 1999-06-04 Low alloy cast steel and its heat treatment method Expired - Lifetime JP3509634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15840699A JP3509634B2 (en) 1999-06-04 1999-06-04 Low alloy cast steel and its heat treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15840699A JP3509634B2 (en) 1999-06-04 1999-06-04 Low alloy cast steel and its heat treatment method

Publications (2)

Publication Number Publication Date
JP2000345285A JP2000345285A (en) 2000-12-12
JP3509634B2 true JP3509634B2 (en) 2004-03-22

Family

ID=15671067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15840699A Expired - Lifetime JP3509634B2 (en) 1999-06-04 1999-06-04 Low alloy cast steel and its heat treatment method

Country Status (1)

Country Link
JP (1) JP3509634B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160098412A (en) 2013-12-16 2016-08-18 가부시키가이샤 고베 세이코쇼 Marine steel forging

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10235219A1 (en) * 2002-08-01 2004-02-19 K.B.P. Kettenwerk Becker-Prünte Gmbh Steel with high strength and good toughness
JP4523875B2 (en) * 2005-06-06 2010-08-11 三菱重工業株式会社 WELDING STRUCTURE MEMBER AND ITS MANUFACTURING METHOD, WELDING STRUCTURE AND ITS MANUFACTURING METHOD, GEAR RIM
JP5229823B2 (en) * 2009-09-25 2013-07-03 株式会社日本製鋼所 High-strength, high-toughness cast steel and method for producing the same
JP6153747B2 (en) * 2013-03-21 2017-06-28 日本鋳造株式会社 Structural high-strength cast steel
CN103243195B (en) * 2013-04-25 2015-02-11 浙江大江合金钢钢管有限公司 Smelting process of steel ingot for wind power generating motor shaft with high performance
CN103233094B (en) * 2013-04-25 2015-05-13 浙江大江合金钢钢管有限公司 Smelting process of high-strength alloy steel
JP6169667B2 (en) * 2015-11-05 2017-07-26 株式会社神戸製鋼所 Cast steel product for welded structure and method for producing cast steel product for welded structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160098412A (en) 2013-12-16 2016-08-18 가부시키가이샤 고베 세이코쇼 Marine steel forging

Also Published As

Publication number Publication date
JP2000345285A (en) 2000-12-12

Similar Documents

Publication Publication Date Title
US8043446B2 (en) High manganese duplex stainless steel having superior hot workabilities and method manufacturing thereof
EP3246426B1 (en) Method for manufacturing a thick high-toughness high-strength steel sheet
JP3888333B2 (en) High-strength steel and manufacturing method thereof
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
CN112981261B (en) Non-quenched and tempered steel and application, product and manufacturing method thereof
JP3509634B2 (en) Low alloy cast steel and its heat treatment method
JP6601284B2 (en) High strength bolt
JP3379355B2 (en) High-strength steel used in an environment requiring sulfide stress cracking resistance and method of manufacturing the same
JPH02220735A (en) Production of high tensile strength steel for welding and low temperature including titanium oxide
JPH0443977B2 (en)
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
EP0738784B1 (en) High chromium martensitic steel pipe having excellent pitting resistance and method of manufacturing
JP2002294404A (en) High carbon hot rolling steel material suitable for friction pressure welding and production method therefor
JP2003064449A (en) Heat-resisting low-alloy steel tube and manufacturing method therefor
JP3536001B2 (en) Cast steel for welded structures
US3574605A (en) Weldable,nonmagnetic austenitic manganese steel
JPH0775808A (en) Wear resistant composite roll for rolling shape steel
JP2974846B2 (en) Low temperature structural steel
JPH10130783A (en) Non-heat treated high strength seamless steel tube
JP3683417B2 (en) Composite roll for rolling
JPH022925B2 (en)
JP3439062B2 (en) High Mn stainless steel with excellent hot workability and cryogenic toughness
JPH02205656A (en) Quenched roll for rolling
JP6296797B2 (en) High strength cast steel material and manufacturing method thereof
EP3797013B1 (en) An austenitic nickel-base alloy

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20031216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031222

R150 Certificate of patent or registration of utility model

Ref document number: 3509634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

EXPY Cancellation because of completion of term