JPH0565561A - Production of tial intermetallic compound having high creep strength - Google Patents
Production of tial intermetallic compound having high creep strengthInfo
- Publication number
- JPH0565561A JPH0565561A JP3227729A JP22772991A JPH0565561A JP H0565561 A JPH0565561 A JP H0565561A JP 3227729 A JP3227729 A JP 3227729A JP 22772991 A JP22772991 A JP 22772991A JP H0565561 A JPH0565561 A JP H0565561A
- Authority
- JP
- Japan
- Prior art keywords
- tial
- phase
- intermetallic compound
- atomic
- creep strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、高クリープ強さを有す
るTiAl系金属間化合物の製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a TiAl-based intermetallic compound having high creep strength.
【0002】この種TiAl系金属間化合物は、軽量
で、且つ優れた耐熱性を有するためエンジン部品等の構
造材料として着目されている。This type of TiAl-based intermetallic compound has been attracting attention as a structural material for engine parts and the like because it is lightweight and has excellent heat resistance.
【0003】[0003]
【従来の技術】従来、前記TiAl系金属間化合物とし
ては、Ti3 Al相(α2 相)とTiAl相(γ相)と
を交互に積層した層状組織を有するものが知られてい
る。2. Description of the Related Art Conventionally, as the TiAl intermetallic compound, one having a layered structure in which Ti 3 Al phase (α 2 phase) and TiAl phase (γ phase) are alternately laminated is known.
【0004】[0004]
【発明が解決しようとする課題】従来のTiAl系金属
間化合物において、そのクリープ強さを向上させるため
には、熱処理等によって層状組織の平均粒径を増大させ
ればよいことが知られているが、このような層状組織の
拡張は、他方においてTiAl系金属間化合物の常温強
度の低下を招来する、といった問題がある。It is known that in conventional TiAl intermetallic compounds, the average grain size of the layered structure may be increased by heat treatment or the like in order to improve the creep strength. However, there is a problem that such expansion of the layered structure causes a decrease in the room temperature strength of the TiAl-based intermetallic compound on the other hand.
【0005】本発明は前記に鑑み、特定の第3元素を用
いて熱処理による金属組織の制御を行うことによって、
常温強度を上昇傾向に保つと共にクリープ強さを向上さ
せたTiAl系金属間化合物を得ることのできる前記製
造方法を提供することを目的とする。In view of the above, the present invention provides a control of the metal structure by heat treatment using a specific third element,
It is an object of the present invention to provide the above-mentioned manufacturing method capable of obtaining a TiAl-based intermetallic compound having an increased tendency of room temperature strength and an improved creep strength.
【0006】[0006]
【課題を解決するための手段】本発明に係る高クリープ
強さを有するTiAl系金属間化合物の製造方法は、T
i3 Al相とTiAl相とを交互に積層した層状組織を
有し、且つGe含有量を0.1原子%≦Ge≦0.5原
子%に設定された素材を製造し、次いで前記素材に熱処
理を施して、前記層状組織の平均粒径の増大を抑制しつ
つ、Ti3 Al相とTiAl相との積層方向におけるT
iAl相の平均幅を、前記素材の前記平均幅よりも拡張
することを特徴とする。The method for producing a TiAl-based intermetallic compound having high creep strength according to the present invention comprises:
A material having a layered structure in which i 3 Al phases and TiAl phases are alternately laminated and having a Ge content set to 0.1 atomic% ≤ Ge ≤ 0.5 atomic% is manufactured, and A heat treatment is performed to suppress an increase in the average grain size of the layered structure, and T in the stacking direction of the Ti 3 Al phase and the TiAl phase.
It is characterized in that the average width of the iAl phase is expanded beyond the average width of the material.
【0007】[0007]
【実施例】図1は、素材の金属組織を模型的に示したも
ので、その金属組織はTi3 Al相(α2 相)p1とT
iAl相(γ相)p2とを交互に積層した層状組織Lの
集合体より構成されている。EXAMPLE FIG. 1 shows a model of the metallic structure of the material. The metallic structure is Ti 3 Al phase (α 2 phase) p1 and T.
It is composed of an aggregate of layered structures L in which iAl phases (γ phases) p2 are alternately laminated.
【0008】素材は、TiAl系金属間化合物を構成す
る主成分にGeを含有させたもので、その主成分は36
原子%≦Al≦60原子%および残部Tiといった組成
を有し、またGe含有量は、主成分に対し0.1原子%
≦Ge≦0.5原子%に設定される。The material is Ge containing the main component of the TiAl-based intermetallic compound, and the main component is 36.
The composition is such that atomic% ≦ Al ≦ 60 atomic% and the balance Ti, and the Ge content is 0.1 atomic% with respect to the main component.
≦ Ge ≦ 0.5 atomic% is set.
【0009】図2は、前記素材に熱処理を施して得られ
たTiAl系金属間化合物の金属組織を模型的に示した
ものである。その金属組織は、素材同様層状組織Lの集
合体より構成されているが、各層状組織LにおいてTi
Al相p2の形態が素材と異なる。FIG. 2 schematically shows the metallographic structure of the TiAl-based intermetallic compound obtained by subjecting the material to heat treatment. The metallographic structure is composed of an aggregate of layered structures L like the material, but Ti in each layered structure L
The morphology of the Al phase p2 is different from the material.
【0010】即ち、Ti3 Al相p1とTiAl相p2
との積層方向におけるTiAl相p2の平均幅w1 が素
材のTiAl相p2の平均幅w2 よりも拡張されている
(w 1 >w2 )。That is, Ti3Al phase p1 and TiAl phase p2
Average width w of the TiAl phase p2 in the stacking direction with1Primitive
Average width w of TiAl phase p2 of the material2Is extended than
(W 1> W2).
【0011】一方、各層状組織Lの前記積層方向におけ
る平均粒径dは、素材の平均粒径dと略同一となるよう
にその増大を抑制されている。On the other hand, the average grain size d of each layered structure L in the stacking direction is suppressed so as to be substantially the same as the average grain size d of the material.
【0012】このような金属組織の制御は、Geを前記
のように微量含有させて熱処理を行うことにより達成さ
れる。Such control of the metal structure is achieved by heat-treating with a small amount of Ge as described above.
【0013】前記のように、各層状組織Lの平均粒径d
の増大を抑制しつつ、TiAl相p2の前記平均幅w1
を素材のそれよりも拡張すると、TiAl系金属間化合
物の常温強度を上昇傾向に保つと共にクリープ強さを向
上させることができる。As described above, the average grain size d of each layered structure L
The average width w 1 of the TiAl phase p2 while suppressing an increase in
When the material is expanded beyond that of the material, the room temperature strength of the TiAl-based intermetallic compound can be maintained in an increasing tendency and the creep strength can be improved.
【0014】ただし、Ge含有量がGe<0.1原子%
では前記のような金属組織の制御を行うことができず、
一方、Ge>0.5原子%では粒界に析出物が多量に生
じるため常温強度およびクリープ強さが急激に低下す
る。However, if the Ge content is Ge <0.1 atomic%.
In that case, it is not possible to control the metal structure as described above,
On the other hand, when Ge> 0.5 atomic%, a large amount of precipitates are generated at the grain boundaries, so that the room temperature strength and the creep strength are rapidly reduced.
【0015】次に、具体例について説明する。 (a) 純度99.5%のTi(スポンジチタン)と、
純度99.99%のAl(アルミニウムショット)と、
純度99.999%のGe(細片)とを、原子%で、
(Ti53Al47)100-X GeX となるように秤量して原
料を調製した。 (b) 原料を用い、プラズマアーク溶解を行うことに
よって直径50mm、長さ15mmのインゴットを14個得
た。この場合、各成分の均一性を向上させるため1回目
の溶解を行った後インゴットを裏返して2回目の溶解を
行った。 (c) 前記14個のインゴットを用い、アークスカル
溶解を行うことによって、直径60〜70mm、長さ11
0mm、重量約1.5kgの素材を得た。 (d) 素材に、1573K、3時間の条件下で熱処理
を施してTiAl系金属間化合物を得た。Next, a specific example will be described. (A) Ti (sponge titanium) having a purity of 99.5%,
Al (aluminum shot) with a purity of 99.99%,
Ge (strips) with a purity of 99.999%, in atomic%,
(Ti 53 Al 47 ) 100-X Ge X was weighed to prepare a raw material. (B) By using the raw material and performing plasma arc melting, 14 ingots having a diameter of 50 mm and a length of 15 mm were obtained. In this case, in order to improve the uniformity of each component, the ingot was turned over after the first melting, and the second melting was performed. (C) A diameter of 60 to 70 mm and a length of 11 are obtained by performing arc skull melting using the 14 ingots.
A material of 0 mm and weight of about 1.5 kg was obtained. (D) The material was heat-treated at 1573K for 3 hours to obtain a TiAl-based intermetallic compound.
【0016】このTiAl系金属間化合物の金属組織
は、体積分率Vfが80%以上の層状組織Lより構成さ
れており、したがって層状組織Lの特性がTiAl系金
属間化合物の特性に直接的に影響を及ぼす。The metallographic structure of this TiAl-based intermetallic compound is composed of a layered structure L having a volume fraction Vf of 80% or more. Therefore, the characteristics of the layered structure L directly relate to the characteristics of the TiAl-based intermetallic compound. affect.
【0017】次に、TiAl系金属間化合物より図3に
示す丸棒状試験片Tを製作して各種試験を行った。試験
片Tの寸法は、全長a=99mm、両つかみ部の長さb=
22mm、両大径部の長さc=4mm、両中径部の長さd=
10mm、小径部の長さe=25.4mm、大径部の直径f
=9.5mm、中径部の直径g=6.6mm、小径部の直径
h=6.35mm、両フランジ部の直径k=8.3mm、両
フランジ部の厚さm=2mmである。Next, a round bar-shaped test piece T shown in FIG. 3 was produced from the TiAl intermetallic compound and various tests were conducted. The dimensions of the test piece T are as follows: total length a = 99 mm, length of both grips b =
22mm, length of both large diameter parts c = 4mm, length of both middle diameter parts d =
10 mm, small diameter length e = 25.4 mm, large diameter diameter f
= 9.5 mm, medium-diameter portion diameter g = 6.6 mm, small-diameter portion diameter h = 6.35 mm, both flange portion diameter k = 8.3 mm, and both flange portion thickness m = 2 mm.
【0018】図4は、TiAl相p2の平均幅w1 とク
リープ強さとの関係を示す。このクリープ強さは、10
0時間のラプチャ強度として表わされている。FIG. 4 shows the relationship between the average width w 1 of the TiAl phase p2 and the creep strength. This creep strength is 10
It is expressed as the rupture intensity at 0 hours.
【0019】図4から明らかなように、0.1原子%≦
Ge≦0.5原子%において、Ge含有量の増加に伴い
TiAl相p2の平均幅w2 が拡張されて、TiAl系
金属間化合物のクリープ強さが向上することが判る。G
e>0.5原子%では析出物が多量に生じるためクリー
プ強さが急激に低下する。As is apparent from FIG. 4, 0.1 atomic% ≦
It can be seen that when Ge ≦ 0.5 atomic%, the average width w 2 of the TiAl phase p2 is expanded with an increase in the Ge content, and the creep strength of the TiAl-based intermetallic compound is improved. G
When e> 0.5 atom%, a large amount of precipitates are generated, and thus the creep strength sharply decreases.
【0020】図5は、Ge含有量とTiAl相p2の平
均幅w1 との関係を示す。FIG. 5 shows the relationship between the Ge content and the average width w 1 of the TiAl phase p2.
【0021】図5から明らかなように、0.1原子%≦
Ge≦0.5原子%において、TiAl相p2の平均幅
w1 を制御し得ることが判る。ただし、Ge>0.5原
子%では析出物が生成されるため前記平均幅w1 の拡張
が停止する。As is apparent from FIG. 5, 0.1 atomic% ≦
It can be seen that the average width w 1 of the TiAl phase p2 can be controlled when Ge ≦ 0.5 atomic%. However, when Ge> 0.5 at%, a precipitate is generated, so that the expansion of the average width w 1 stops.
【0022】図6は、TiAl相p2の平均幅w1 と層
状組織Lの平均粒径dとの関係を示す。FIG. 6 shows the relationship between the average width w 1 of the TiAl phase p2 and the average grain size d of the layered structure L.
【0023】図6から明らかなように、0.1原子%≦
Ge≦0.5原子%においてTiAl相p2の平均幅w
1 が変化するが、層状組織Lの平均粒径dは殆ど変化し
ないことが判る。As is apparent from FIG. 6, 0.1 atomic% ≦
Average width w of TiAl phase p2 in Ge ≦ 0.5 atomic%
It can be seen that although 1 changes, the average grain size d of the layered structure L hardly changes.
【0024】図7は、TiAl相p2の平均幅w1 と常
温引張強さとの関係を示す。この試験では、前記クリー
プ試験用試験片Tが用いられた。FIG. 7 shows the relationship between the average width w 1 of the TiAl phase p2 and the room temperature tensile strength. In this test, the creep test specimen T was used.
【0025】図7から明らかなように、TiAl相p2
の平均幅w1 の拡張にもかかわらず常温強度が上昇傾向
に保たれることが判る。As is clear from FIG. 7, the TiAl phase p2
It can be seen that the room temperature strength is maintained in a rising tendency despite the expansion of the average width w 1 of the.
【0026】図8は、Ge無添加のTiAl系金属間化
合物における層状組織の平均粒径(dに相当)と常温引
張強さとの関係を示す。この平均粒径の制御は、熱処理
において、α相→α2 相+γ相の変態点を通過する冷却
速度を制御することによって行われた。図8より、層状
組織の平均粒径の増大に伴い常温強度が低下することが
判る。FIG. 8 shows the relationship between the average grain size (corresponding to d) of the lamellar structure and the normal temperature tensile strength in the GeAl-free TiAl intermetallic compound. The control of the average grain size was performed by controlling the cooling rate of passing through the transformation point of α phase → α 2 phase + γ phase in the heat treatment. From FIG. 8, it can be seen that the room temperature strength decreases as the average grain size of the layered structure increases.
【0027】[0027]
【発明の効果】本発明によれば、前記のように独特の方
法を採用することによって、常温強度を上昇傾向に保つ
と共にクリープ強さを向上させたTiAl系金属間化合
物を得ることができる。According to the present invention, by adopting the unique method as described above, it is possible to obtain a TiAl-based intermetallic compound in which the room temperature strength is kept increasing and the creep strength is improved.
【図1】素材の金属組織を示す概略図である。FIG. 1 is a schematic view showing a metal structure of a raw material.
【図2】TiAl系金属間化合物の金属組織を示す概略
図である。FIG. 2 is a schematic view showing a metallographic structure of a TiAl-based intermetallic compound.
【図3】試験片の正面図である。FIG. 3 is a front view of a test piece.
【図4】TiAl相の平均幅とクリープ強さとの関係を
示すグラフである。FIG. 4 is a graph showing the relationship between the average width of the TiAl phase and creep strength.
【図5】Ge含有量とTiAl相の平均幅との関係を示
すグラフである。FIG. 5 is a graph showing the relationship between the Ge content and the average width of the TiAl phase.
【図6】TiAl相の平均幅と層状組織の平均粒径との
関係を示すグラフである。FIG. 6 is a graph showing the relationship between the average width of the TiAl phase and the average grain size of the layered structure.
【図7】TiAl相の平均幅と常温引張強さとの関係を
示すグラフである。FIG. 7 is a graph showing the relationship between the average width of the TiAl phase and room temperature tensile strength.
【図8】層状組織の平均粒径と常温引張強さとの関係を
示すグラフである。FIG. 8 is a graph showing the relationship between the average grain size of a layered structure and room temperature tensile strength.
L 層状組織 p1 Ti3 Al相 p2 TiAl相 d 平均粒径 w1 ,w2 平均幅L lamellar structure p1 Ti 3 Al phase p2 TiAl phase d average particle diameter w 1, w 2 average width
Claims (1)
層した層状組織を有し、且つGe含有量を0.1原子%
≦Ge≦0.5原子%に設定された素材を製造し、次い
で前記素材に熱処理を施して、前記層状組織の平均粒径
の増大を抑制しつつ、Ti3 Al相とTiAl相との積
層方向におけるTiAl相の平均幅を、前記素材の前記
平均幅よりも拡張することを特徴とする高クリープ強さ
を有するTiAl系金属間化合物の製造方法。1. A layered structure in which a Ti 3 Al phase and a TiAl phase are alternately laminated, and a Ge content of 0.1 atomic%.
Producing a material set to ≦ Ge ≦ 0.5 atomic%, and then subjecting the material to heat treatment to laminate a Ti 3 Al phase and a TiAl phase while suppressing an increase in the average grain size of the layered structure. A method for producing a TiAl-based intermetallic compound having high creep strength, which comprises expanding the average width of the TiAl phase in the direction from the average width of the material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3227729A JPH0565561A (en) | 1991-09-09 | 1991-09-09 | Production of tial intermetallic compound having high creep strength |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3227729A JPH0565561A (en) | 1991-09-09 | 1991-09-09 | Production of tial intermetallic compound having high creep strength |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0565561A true JPH0565561A (en) | 1993-03-19 |
Family
ID=16865445
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3227729A Pending JPH0565561A (en) | 1991-09-09 | 1991-09-09 | Production of tial intermetallic compound having high creep strength |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0565561A (en) |
-
1991
- 1991-09-09 JP JP3227729A patent/JPH0565561A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4954369B2 (en) | Method for producing aluminum-magnesium-lithium alloy product | |
JP2001049371A (en) | Al-Zn ALLOY EXCELLENT IN VIBRATION ABSORBING CAPACITY AND ITS PRODUCTION | |
JPH08325663A (en) | Aluminum alloy sheet excellent in press formability and its production | |
JPH057460B2 (en) | ||
CN1352316A (en) | Aluminium-erbium alloy | |
JPH0565561A (en) | Production of tial intermetallic compound having high creep strength | |
JPS6339661B2 (en) | ||
JPH08144034A (en) | Production of titanium-aluminium intermetallic compound-base alloy | |
JPH04318145A (en) | Al-mg superplasticity aluminum alloy sheet excellent in strength and corrosion resistance and its manufacture | |
JPH0649567A (en) | High strength tial intermetallic compound | |
JPH01272743A (en) | High tensile aluminum alloy having excellent heat resistance | |
JPH06228685A (en) | High strength and high ductility tial intermetallic compound and its production | |
JP2862494B2 (en) | Heat treatment method for TiAl intermetallic compound | |
JPH0547616B2 (en) | ||
JP2813516B2 (en) | TiAl-based intermetallic compound and its production method | |
JPH04160131A (en) | Al-mg-si alloy plate excellent in strength and formability, and its manufacture | |
JPH04246148A (en) | Rolled aluminum alloy sheet excellent in formability and its manufacture | |
JPH0776745A (en) | High strength and high ductility ti-al intermetallic compound | |
JPH0551679A (en) | Tial intermetallic compound having high toughness and ductility | |
JP3059313B2 (en) | TiAl alloy and method for producing the same | |
JPH0565581A (en) | Tial intermetallic compound having high fatigue strength | |
JPH0794701B2 (en) | Manufacturing method of aluminum alloy soft material for welded structure | |
JPH0565576A (en) | High toughness and high ductility tial intermetallic compound | |
JPH0559469A (en) | High toughness and high ductility tial intermetallic compound | |
JPH0565569A (en) | High toughness tial intermetallic compound |