JPH0564476B2 - - Google Patents

Info

Publication number
JPH0564476B2
JPH0564476B2 JP5661484A JP5661484A JPH0564476B2 JP H0564476 B2 JPH0564476 B2 JP H0564476B2 JP 5661484 A JP5661484 A JP 5661484A JP 5661484 A JP5661484 A JP 5661484A JP H0564476 B2 JPH0564476 B2 JP H0564476B2
Authority
JP
Japan
Prior art keywords
film
piezoelectric
piezoelectric polymer
charged particles
developer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5661484A
Other languages
Japanese (ja)
Other versions
JPS60198876A (en
Inventor
Hideyuki Okinaka
Seiichi Nakatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59056614A priority Critical patent/JPS60198876A/en
Publication of JPS60198876A publication Critical patent/JPS60198876A/en
Publication of JPH0564476B2 publication Critical patent/JPH0564476B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/098Forming organic materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、スピーカやマイクロホンの振動板と
して、あるいは、圧電キーボードなどに使用され
ている圧電性高分子材料を作製するための製造方
法に関するものである。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a manufacturing method for manufacturing a piezoelectric polymer material used as a diaphragm for speakers and microphones, or for piezoelectric keyboards, etc. .

従来例の構成とその問題点 圧電性高分子薄膜は、通常、ロール法や溶媒法
により作製される。ロール法は、高分子の軟化点
近くの温度でロールによりシート状に成形するも
のである。また、溶媒法は高分子材料を溶媒に溶
かし、ガラス板上でフイルム状にするものであ
る。
Structure of conventional examples and their problems Piezoelectric polymer thin films are usually produced by a roll method or a solvent method. In the roll method, the polymer is formed into a sheet using rolls at a temperature near the softening point of the polymer. In the solvent method, a polymer material is dissolved in a solvent and formed into a film on a glass plate.

これらの成形法により得られる成形体は、殆ど
がシート状のものであり、これを各種用途に合わ
せて切断や打抜きを行つて使用するため、シート
の無駄が発生する。また、打抜き形状の変更に伴
なつて打抜き金型が必要となり、金型作製の日
数、製作コストなどの関係上、容易に形状変更は
行えないのが現状である。
Most of the molded bodies obtained by these molding methods are in the form of sheets, which are then cut or punched according to various uses, resulting in wasted sheets. In addition, a punching die is required to change the punching shape, and the current situation is that the shape cannot be easily changed due to the number of days required to make the die and the manufacturing cost.

発明の目的 本発明は、スピーカやブザーなどの種々の用途
に応じた圧電性高分子膜を製造するにあたり、前
記製造上の問題点を解決するために、任意形状の
圧電性高分子膜の製造を可能とする方法を提供す
るものである。
Purpose of the Invention The present invention aims to solve the above manufacturing problems in manufacturing piezoelectric polymer membranes for various uses such as speakers and buzzers. This provides a method that makes it possible.

発明の構成 即ち、本発明は、静電潜像を顕像化するための
帯電性を付与した樹脂を主成分とする現像剤にお
いて、樹脂として圧電性高分子を用いた現像剤を
作製し、これを静電写真プロセスを用いて任意形
状の圧電性高分子膜を容易に量産性良く作製する
ものであり、圧電体デバイスとして組立てる場合
にもシートを切断加工する必要がなく、従つて切
技金型の作製も不要で、圧電膜の形状変更も極め
て容易となり、製造コストの低減を可能ならしめ
るものである。
Structure of the Invention That is, the present invention provides a developer that uses a piezoelectric polymer as the resin in a developer whose main component is a resin imparted with chargeability for visualizing an electrostatic latent image. Using this electrostatic photographic process, piezoelectric polymer membranes of arbitrary shapes can be easily produced with good mass production, and there is no need to cut the sheets when assembling them into piezoelectric devices, so there is no cutting process required. There is no need to create a mold, and it is extremely easy to change the shape of the piezoelectric film, making it possible to reduce manufacturing costs.

静電写真プロセスを用いた、いわゆる電子写真
法には、カールソン法、光電導性トナー法、光起
電力法、TESI法(静電転写法)、永久内部光分極
法(PIP法)、キヤノンNP法などがあり、その中
でもカールソ法が最も代表的な方法である。本発
明は、上記のような電子写真技術を利用して、こ
れに用いる静電潜像を顕像化するための現像剤に
圧電性高分子を含有せしめることにより、圧電性
高分子膜を作製するものであり、特に厚みの薄い
任意形状と圧電薄膜作製上、極めて有効な製造方
法となり得るものである。
So-called electrophotographic methods using electrostatic photographic processes include the Carlson method, photoconductive toner method, photovoltaic method, TESI method (electrostatic transfer method), permanent internal optical polarization method (PIP method), and Canon NP method. Among them, the Carlso method is the most representative method. The present invention utilizes the electrophotographic technology described above to produce a piezoelectric polymer film by incorporating a piezoelectric polymer into a developer used to visualize an electrostatic latent image. This can be an extremely effective manufacturing method, especially for producing thin arbitrary shapes and piezoelectric thin films.

実施例の説明 以下、本発明を実施例に基づき詳細に説明す
る。まず、ポリフツ化ビニリデン(PVF2)を97
重量部、電荷制御剤として塩素化ポリエステルを
3重量部加え、これらを溶融混練した後、微粉砕
し、150℃の気流中で球状化し、粒径を10〜20μ
mとしたものに流動化剤として平均粒径1μm程
度の疎水性シリカを1重量部加えたものを荷電粒
子として用いた。該荷電粒子を、四三酸化鉄
(Fe3O4)の安定な酸化被膜を表面に形成した平
均粒径70μmの鉄粉をキヤリヤとして、第1図か
ら第5図に示すカールソン法による電子写真法を
用いて、厚さ150μmのマイラフイルム(登録商
標)上に、磁気ブラシ現像方式により印刷成形し
た。
Description of Examples Hereinafter, the present invention will be described in detail based on Examples. First, polyvinylidene fluoride (PVF 2 ) was added at 97%
Add 3 parts by weight of chlorinated polyester as a charge control agent, melt and knead them, then finely pulverize and spheroidize in an air stream at 150°C to a particle size of 10 to 20μ
The charged particles were prepared by adding 1 part by weight of hydrophobic silica having an average particle size of about 1 μm as a fluidizing agent to m. The charged particles were electrophotographed by the Carlson method as shown in Figs. 1 to 5 using iron powder with an average particle size of 70 μm on the surface of which a stable oxide film of triiron tetroxide (Fe 3 O 4 ) was formed as a carrier. The film was printed and molded onto Mylar film (registered trademark) with a thickness of 150 μm using a magnetic brush development method.

第1図は帯電工程を示し、感光体1上に帯電器
3を走査させ、コロナ放電によつて一様に帯電さ
せた。感光体としては、暗抵抗が1012〜1014Ω・
cm、光照射時の抵抗が107〜109Ω・cmの無定形セ
レンを用いた。なお2は帯電器用電源である。第
2図は露光工程を示し、レンズ4を通して感光体
1上に20mm×8mmの長方形パターンを露光し静電
潜像5を形成する。第3図は現像工程を示し、前
記荷電粒子が磁気ブラシ現像法によつて静電潜像
上に沈積され、静電潜像が顕在化される。6は現
像器、7は現像バイアス用電源、8は前記荷電粒
子からなる現像剤である。現像後、第4図に示す
ように現像された前記荷電粒子からなる現像剤を
マイラフイルム(登録商標)1上に転写される。
9は転写用コロナ帯電器、10は転写用コロナ帯
電器用電源である。転写後第5図に示すように転
写された電気荷電粒子からなる現像剤を熱ローラ
12,13によつて定着した。ここで熱ローラの
温度は165℃であり、定着と同時にポリフツ化ビ
ニリデンは延伸される。
FIG. 1 shows the charging process, in which a charger 3 was scanned over the photoreceptor 1 to uniformly charge it by corona discharge. As a photoreceptor, the dark resistance is 10 12 to 10 14 Ω・
cm, and amorphous selenium with a resistance of 10 7 to 10 9 Ω·cm when irradiated with light was used. Note that 2 is a power source for the charger. FIG. 2 shows the exposure process, in which a rectangular pattern of 20 mm x 8 mm is exposed on the photoreceptor 1 through the lens 4 to form an electrostatic latent image 5. FIG. 3 shows the development step in which the charged particles are deposited on the electrostatic latent image by magnetic brush development to make the electrostatic latent image visible. 6 is a developing device, 7 is a power source for developing bias, and 8 is a developer made of the charged particles. After the development, the developer made of the developed charged particles is transferred onto the Myra film (registered trademark) 1 as shown in FIG.
9 is a transfer corona charger, and 10 is a power source for the transfer corona charger. After the transfer, the transferred developer consisting of electrically charged particles was fixed by heat rollers 12 and 13 as shown in FIG. Here, the temperature of the heat roller is 165° C., and the polyvinylidene fluoride is stretched at the same time as fixing.

上記工程により、20mm×8mmの長方形で厚みが
30μmのフイルムを得た。フイルムの両面にアル
ミニウムを蒸着し、100℃で150KV/cmの直流電
圧を30分間印加し、そのまま室温まで除冷した。
このようにして得られた圧電膜の圧電率を測定し
たところ、d31=195×10-9cgsesuの値が得られ、
従来法によつて得られた値(d31=200×
10-9cgsesu)と同等の特性を有する圧電性高分子
膜が得られることを確認した。
Through the above process, the thickness of the rectangle is 20mm x 8mm.
A 30 μm film was obtained. Aluminum was deposited on both sides of the film, a DC voltage of 150 KV/cm was applied at 100°C for 30 minutes, and the film was allowed to cool to room temperature.
When the piezoelectric constant of the piezoelectric film obtained in this way was measured, a value of d 31 = 195 × 10 -9 cgsesu was obtained,
The value obtained by the conventional method (d 31 = 200×
It was confirmed that a piezoelectric polymer film with properties equivalent to those of 10 -9 cgsesu) could be obtained.

次に第2の実施例として、ポリ塩化ビニルを98
重量部、電荷制御剤として塩素化ポリエステルを
2重量部加えた後、前記実施例と同様の方法で荷
電粒子を作製し、該荷電粒子を用いて、前記実施
例と同じ電子写真法により20mm×8mmの長方形で
厚みが20μmの、ポリ塩化ビニルからなるフイル
ムを得た。該フイルムの両面にアルミニウムを蒸
着した後、前記実施例と同じ分極条件で分極処理
したフイルムについて、圧電率を測定したとこ
ろ、d31=14×10-9cgsesuの値が得られ、従来法
によつて得られた値(d31=15×10-9cgsesu)と
同等の特性を有するポリ塩化ビニルの圧電膜が得
られることを確認した。
Next, as a second example, polyvinyl chloride was
After adding 2 parts by weight of chlorinated polyester as a charge control agent, charged particles were prepared in the same manner as in the above example, and using the charged particles, a 20 mm× A polyvinyl chloride film having a rectangular shape of 8 mm and a thickness of 20 μm was obtained. After aluminum was vapor-deposited on both sides of the film, the piezoelectric constant of the film was polarized under the same polarization conditions as in the previous example, and a value of d 31 =14×10 -9 cgsesu was obtained, which was superior to the conventional method. It was thus confirmed that a polyvinyl chloride piezoelectric film having properties equivalent to the obtained value (d 31 =15×10 -9 cgsesu) could be obtained.

以上の実施例では、圧電性高分子材料として、
ポリフツ化ビニリデン(PVF2)と、ポリ塩化ビ
ニルを用いたが、これ以外の圧電性高分子を含ん
だ現像剤であつても、全く同様に任意形状の圧電
性高分子膜が作製できることは言うまでもない。
また、印刷方法についても、実施例以外に静電潜
像を現像剤により顕像化する原理に基づくプロセ
スを含むものであれば、特に限定される必要のな
いことは明らかである。
In the above examples, as the piezoelectric polymer material,
Although polyvinylidene fluoride (PVF 2 ) and polyvinyl chloride were used, it goes without saying that a piezoelectric polymer film of any shape can be produced in the same way using a developer containing other piezoelectric polymers. stomach.
Furthermore, it is clear that there is no particular limitation on the printing method as long as it includes a process based on the principle of making an electrostatic latent image visible using a developer other than those in the examples.

発明の効果 以上のように本発明による圧電性高分子膜の製
造方法を用いることにより、種々の形状および厚
みを有する圧電性高分子膜が容易に得られるた
め、シート状のものから所定形状の試料を打抜く
従来法と比べて、原料無駄の軽減や製造プロセス
の合理化による大幅なコストダウンを図ることが
できる。
Effects of the Invention As described above, by using the piezoelectric polymer membrane manufacturing method according to the present invention, piezoelectric polymer membranes having various shapes and thicknesses can be easily obtained. Compared to the conventional method of punching samples, this method can significantly reduce costs by reducing raw material waste and streamlining the manufacturing process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は、本発明の圧電性高分子を含
む荷電粒子を用いた圧電性フイルムの作製プロセ
スを説明するための工程図である。 1……感光基体、2……コロナ帯電器用電源、
3……コロナ帯電器、4……レンズ、5……静電
潜像、6……現像機、7……現像バイアス用電
源、8……現像剤、9……転写用コロナ帯電器、
10……転写用コロナ帯電器用電源、11……マ
イラフイルム(登録商標)、12,13……定着
用ローラ。
FIGS. 1 to 5 are process diagrams for explaining a process for producing a piezoelectric film using charged particles containing a piezoelectric polymer according to the present invention. 1... Photosensitive substrate, 2... Power source for corona charger,
3...Corona charger, 4...Lens, 5...Electrostatic latent image, 6...Developer, 7...Power source for development bias, 8...Developer, 9...Corona charger for transfer,
10...Power supply for a corona charger for transfer, 11...Myrafilm (registered trademark), 12, 13...Fixing roller.

Claims (1)

【特許請求の範囲】[Claims] 1 圧電性高分子を含む荷電粒子を用いて、静電
潜像を顕像化せしめる印刷方法により、圧電性高
分子薄膜を作製することを特徴とする圧電性高分
子材料の製造方法。
1. A method for producing a piezoelectric polymer material, which comprises producing a piezoelectric polymer thin film by a printing method that visualizes an electrostatic latent image using charged particles containing a piezoelectric polymer.
JP59056614A 1984-03-23 1984-03-23 Manufacture of piezoelectric high-molecular material Granted JPS60198876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59056614A JPS60198876A (en) 1984-03-23 1984-03-23 Manufacture of piezoelectric high-molecular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59056614A JPS60198876A (en) 1984-03-23 1984-03-23 Manufacture of piezoelectric high-molecular material

Publications (2)

Publication Number Publication Date
JPS60198876A JPS60198876A (en) 1985-10-08
JPH0564476B2 true JPH0564476B2 (en) 1993-09-14

Family

ID=13032133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59056614A Granted JPS60198876A (en) 1984-03-23 1984-03-23 Manufacture of piezoelectric high-molecular material

Country Status (1)

Country Link
JP (1) JPS60198876A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326995A (en) * 1976-08-25 1978-03-13 Daikin Ind Ltd Highhmolecular piezooelectric material
JPS5528558A (en) * 1978-08-19 1980-02-29 Hitachi Maxell Ltd Magnetic recording medium
JPS57123603A (en) * 1981-01-23 1982-08-02 Kureha Chemical Ind Co Ltd Piezoelectric pyroelectric unit made of vinylidene fluoride copolymer
JPS5940597A (en) * 1982-08-30 1984-03-06 松下電器産業株式会社 Method of producing printed wired circuit board

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5326995A (en) * 1976-08-25 1978-03-13 Daikin Ind Ltd Highhmolecular piezooelectric material
JPS5528558A (en) * 1978-08-19 1980-02-29 Hitachi Maxell Ltd Magnetic recording medium
JPS57123603A (en) * 1981-01-23 1982-08-02 Kureha Chemical Ind Co Ltd Piezoelectric pyroelectric unit made of vinylidene fluoride copolymer
JPS5940597A (en) * 1982-08-30 1984-03-06 松下電器産業株式会社 Method of producing printed wired circuit board

Also Published As

Publication number Publication date
JPS60198876A (en) 1985-10-08

Similar Documents

Publication Publication Date Title
US2965481A (en) Electrostatic charging and image formation
US3271146A (en) Xeroprinting with photoconductors exhibiting charge-storage asymmetry
JPH0564476B2 (en)
US3398336A (en) Electrical charging utilizing a twophase liquid medium
US4047945A (en) Xeroprinting master and process
JPH0564475B2 (en)
US3317317A (en) Xerographic method of making a particle transparency projectable image
US3928669A (en) Image-forming method
US4994342A (en) Electrophotographic lithographic printing plate precursor and a method of developing the same
US4175957A (en) Electrophotographic process using insulating dot overlayer
GB1378798A (en) Methods of and apparatus for electrophotography
JPS59192261A (en) Developer
JPH024900B2 (en)
JPH0564474B2 (en)
JPH0470876A (en) Developing device
JP2528665B2 (en) Electrophotographic recording method
JPS59127057A (en) Electrophotographic developing agent
US3647286A (en) Reproduction apparatus using photovoltaic material
JP3166040B2 (en) Magnetic developing roller
JPS55118044A (en) Electrophotographic receptor
US4200891A (en) Electromagnetic bond photocopy device
JPH044590B2 (en)
JPS603653A (en) Image forming method
JPS6330625B2 (en)
JPS59131942A (en) Electrophotographic developer