JPH0564474B2 - - Google Patents

Info

Publication number
JPH0564474B2
JPH0564474B2 JP5661384A JP5661384A JPH0564474B2 JP H0564474 B2 JPH0564474 B2 JP H0564474B2 JP 5661384 A JP5661384 A JP 5661384A JP 5661384 A JP5661384 A JP 5661384A JP H0564474 B2 JPH0564474 B2 JP H0564474B2
Authority
JP
Japan
Prior art keywords
green sheet
piezoelectric
piezoelectric ceramic
substrate
ceramic thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5661384A
Other languages
Japanese (ja)
Other versions
JPS60198875A (en
Inventor
Hideyuki Okinaka
Seiichi Nakatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59056613A priority Critical patent/JPS60198875A/en
Publication of JPS60198875A publication Critical patent/JPS60198875A/en
Publication of JPH0564474B2 publication Critical patent/JPH0564474B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • H10N30/097Forming inorganic materials by sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To enable to easily obtain piezoelectric ceramic thin plates having various configurations and thicknesses by a method wherein developing solution consisting of piezoelectric inorganic material-containing charged particles is used as developer and a green sheet printed with this developer in an arbitrary configuration using an electrostatic photoprocess is sintered at high temperatures. CONSTITUTION:A sensitive substrate 1 is made to uniformly electrify by scanning a corona electrifier 3 on the substrate 1. Circular patterns are performed an exposure on the substrate 1 electrified to form an electrostatic latent image. The latent image is transferred on a Mylar film 8 utilizing corona discharge and toner is fixed thereon using heated rollers 7. A green sheet is obtained by repeating the abovementioned process plural times. This green sheet is put in a sheath being mainly constituted with MgO and a high-density sintered body is obtained by baking. As a result, a piezoelectric ceramic thin plate having an arbitrary configuration and thickness can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、スピーカやブザーの振動板などに使
用されている圧電磁器薄板の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a piezoelectric ceramic thin plate used for diaphragms of speakers, buzzers, and the like.

従来例の構成とその問題点 圧電磁器薄板の製造方法としては、チタン酸ジ
ルコン酸鉛〔Pb(Ti、Zr)O3〕系あるいはチタ
ン酸バリウム(BaTiO3)系などの圧電性粒子に
有機結合剤、可塑剤、分散剤などを加え、さらに
溶剤を加えてスラリーを作製し、これをドクター
ブレード法、押し出し成形法、ロール成形法など
の成形法により、シート状に整形したものを所定
の形状の打抜き、これを高温で焼成する方法が一
般的である。しかし、これらの方法においては シートを乾燥する際、溶剤の飛散に伴なつて
シートにクラツクが発生しやすく、 溶剤が飛散し、成形時にスラリーの粘度が変
化し、 連続でシート状に成形するため、特に円形に
打抜いて使用する場合はシートの無駄が多くな
り、 飛散した溶剤を排気するための装置や温度、
湿度の制御が必要である、 などの欠点がある。
Conventional configurations and problems The method for manufacturing piezoelectric ceramic thin plates involves organic bonding to piezoelectric particles such as lead zirconate titanate [Pb(Ti,Zr)O 3 ] or barium titanate (BaTiO 3 ). A slurry is created by adding additives, plasticizers, dispersants, etc., and a solvent, and this is shaped into a sheet using a forming method such as the doctor blade method, extrusion molding method, or roll molding method. A common method is to punch out the material and fire it at a high temperature. However, with these methods, when drying the sheet, cracks tend to occur in the sheet due to the scattering of the solvent, and the viscosity of the slurry changes during forming due to the scattering of the solvent, making it difficult to form the sheet continuously. , especially if the sheet is punched out into a circular shape, there will be a lot of wasted sheets, and there will be a need for equipment to exhaust the scattered solvent, temperature, etc.
There are disadvantages such as the need to control humidity.

また、スピーカの再生周波数帯域拡大の要望に
応じるためには、焼結体の厚みを50μmあるいは
それ以下に、極めて薄くする必要があるが、この
ような薄いシートを現行の成形方法で成形するこ
とは容易ではなく、また成形できたとしても、有
機成分が多いために焼成時にこれらが飛散、燃焼
するのに伴ないクラツクやそりが発生し、実用に
供し得る圧電磁器薄板を得ることは極めて困難で
あるというのが実情である。
In addition, in order to meet the demand for expanding the playback frequency band of speakers, the thickness of the sintered body must be made extremely thin to 50 μm or less, but it is difficult to mold such a thin sheet using current molding methods. It is not easy to form piezoelectric ceramic thin sheets, and even if it can be formed, it is extremely difficult to obtain a piezoelectric ceramic thin sheet that can be used for practical purposes because it contains many organic components, which scatter and burn during firing, resulting in cracks and warpage. The reality is that.

発明の目的 本発明は、圧電磁器薄板作製のための上記製造
法における種々の問題点を解決するために、複雑
な工程管理を必要とすることなく任意の形状に圧
電性粒子を成形し、これを焼結することにより、
スピーカやブザーなどの種々の用途に応じた圧電
磁器薄板を容易に製造するための方法を提供する
ものである。
Purpose of the Invention The present invention aims to solve various problems in the above manufacturing method for producing piezoelectric ceramic thin plates by molding piezoelectric particles into arbitrary shapes without requiring complicated process control. By sintering the
The present invention provides a method for easily manufacturing piezoelectric ceramic thin plates suitable for various uses such as speakers and buzzers.

発明の構成 即ち、本発明は、圧電性無機材料を含む荷電粒
子を現像剤とし、これを静電写真プロセスを用い
て任意の形状に印刷したものを高温で焼成するこ
とにより、任意形状の圧電磁器薄板を得るもので
ある。
Structure of the Invention That is, the present invention uses charged particles containing a piezoelectric inorganic material as a developer, and prints the developer in an arbitrary shape using an electrostatic photographic process, and then bakes it at a high temperature. A thin porcelain plate is obtained.

静電写真プロセスを用いた、いわゆる電子写真
法には、カールソン法、光電導性トナー法、光起
電力法、TESI法(静電転写法)、永久内部光分極
法(PIP法)、キヤノンNP法などがあり、その中
でもカールソン法が最も代表的な方法である。本
発明は、上記のような電子写真技術を利用して、
これに用いる静電潜像を顕像化するための現像剤
に圧電性無機材料を含有せしめることにより、圧
電性粒子と樹脂成分とからなるシートを印刷成形
し、これを高温で焼成することにより、樹脂成分
を飛散せしめ、圧電磁器薄板を作製するものであ
り、特に、厚みの薄い任意形状の圧電性基板作製
上、極めて有効な製造方法となり得るものであ
る。
So-called electrophotographic methods using electrostatic photographic processes include the Carlson method, photoconductive toner method, photovoltaic method, TESI method (electrostatic transfer method), permanent internal optical polarization method (PIP method), and Canon NP method. Among them, the Carlson method is the most representative method. The present invention utilizes the above electrophotographic technology,
By incorporating a piezoelectric inorganic material into the developer used to visualize the electrostatic latent image, a sheet consisting of piezoelectric particles and a resin component is printed and molded, and this is baked at a high temperature. , a thin piezoelectric ceramic plate is produced by scattering a resin component, and it can be an extremely effective manufacturing method, especially for producing thin piezoelectric substrates of arbitrary shapes.

実施例の説明 以下、本発明を実施例に基づき詳細に説明す
る。
Description of Examples Hereinafter, the present invention will be described in detail based on Examples.

まず結着剤としての熱可塑性樹脂としてスチレ
ンアクリル重合体を20重量部、電荷制御剤として
塩素化ポリエステルを5重量部、これにチタン酸
ジルコン酸鉛〔Pb(Ti0.46Zr0.54)O3〕(平均粒径
約1μm)を75重量部加え、これらを溶融混練し
た後、微粉砕し、150℃の気流中で球状化し、粒
径が10〜20μmの荷電粒子(トナー)を得た。こ
のトナーを、四三酸化鉄(Fe3O4)の安定な酸化
鉄被膜を表面に経営した平均粒径70μmの鉄粉を
キヤリヤとして、第1図から第3図に示すプロセ
スにより、マイラフイルム(登録商標)8上に印
刷成形した。即ち、感光基体1上に、コロナ帯電
器3を走査することにより、感光基体1を一様に
帯電させる。2は帯電器用電源である。帯電した
感光基体に直径10mmの円形パターンを露光し、静
電潜像を形成した。そして現像器4により、トナ
ーで現像した5。ここで6は現像バイアス用電源
である。次に、マイラフイルム(登録商標)8上
にコロナ放電を利用して転写し、熱ローラ7によ
つてトナーを定着した。
First, 20 parts by weight of styrene acrylic polymer as a thermoplastic resin as a binder, 5 parts by weight of chlorinated polyester as a charge control agent, and lead zirconate titanate [Pb (Ti 0.46 Zr 0.54 ) O 3 ] ( After melting and kneading the mixture, 75 parts by weight of particles with an average particle size of about 1 μm were added, and then finely pulverized and spheroidized in an air stream at 150° C. to obtain charged particles (toner) having a particle size of 10 to 20 μm. This toner is processed into mylar film by the process shown in Figs. (registered trademark) 8. That is, by scanning the corona charger 3 over the photosensitive substrate 1, the photosensitive substrate 1 is uniformly charged. 2 is a power source for the charger. A circular pattern with a diameter of 10 mm was exposed to light on the charged photosensitive substrate to form an electrostatic latent image. Then, the image 5 was developed with toner using a developing device 4. Here, 6 is a power source for developing bias. Next, the toner was transferred onto a Myra film (registered trademark) 8 using corona discharge, and the toner was fixed by a heat roller 7.

上記工程を3回くり返すことによつて、直径10
mm、厚み50μmの生シートを得た。従来のシート
成形法では、例えばドクターブレード法を用いて
同一組成の圧電粒子から成る生シートを作製した
場合には、生シートの密度は3.9〜4.0程度である
が、本実施例の場合は圧電粒子を熱ローラで熱圧
着するために4.2〜4.3と高い密度の生シートが得
られた。この生シート11を第4図に示すよう
に、マグネシア(MgO)を主成分とするサヤ1
2に入れ、上ぶた13をかぶせた後、電気炉内に
投入し、400℃で3時間予備焼成して有機成分を
除去した後、1300℃で2時間焼成した。この結
果、厚さ約43μmの焼結体シートが得られた。そ
の密度は約78g/cm3であり、従来のドクターブレ
ード法などによる生シートを用いて得られる焼結
体密度が7.6〜7.7であるのに比べて緻密な焼結体
が得られた。これは、生シートの密度の差による
ものと思われる。
By repeating the above process three times, a diameter of 10
A green sheet with a thickness of 50 μm and a thickness of 50 μm was obtained. In conventional sheet forming methods, for example, when a green sheet made of piezoelectric particles of the same composition is produced using a doctor blade method, the density of the green sheet is about 3.9 to 4.0, but in the case of this example, piezoelectric A green sheet with a high density of 4.2 to 4.3 was obtained by thermocompression bonding of the particles with a hot roller. As shown in FIG.
2 and covered with the top lid 13, the sample was placed in an electric furnace, preliminarily baked at 400°C for 3 hours to remove organic components, and then baked at 1300°C for 2 hours. As a result, a sintered sheet having a thickness of about 43 μm was obtained. The density was about 78 g/cm 3 , and a denser sintered body was obtained compared to the sintered body density of 7.6 to 7.7 obtained using a green sheet by the conventional doctor blade method. This seems to be due to the difference in the density of the raw sheets.

得られた焼結体は、X線解析の結果、ペロブス
カイト型構造を有するPb(Ti、Zr)O3系の磁器
であることが確認された。また、その電気特性
は、εT 33/ε0=540、Kp=0.50と従来法によつて得
られた焼結体シートの電気特性に比べて、同等以
上の特性が得られた。
As a result of X-ray analysis, the obtained sintered body was confirmed to be Pb (Ti, Zr) O 3 -based porcelain having a perovskite structure. Further, its electrical properties were ε T 330 =540, Kp=0.50, which were equivalent or better than those of the sintered sheet obtained by the conventional method.

次に、前記実施例で示されたと同じ方法で、
PbTiO3:PbZrO3:Pb(Mg1/3Nb2/3)O3=37.5:
25.0:37.5の組成比をもつ、平均粒径約1μmの圧
電粒子を含むトナーを作製し、セレンの感光ドラ
ムを用いたカールソン法に基ずく、一般に市販さ
れている乾式複写機を用いて、上記トナーを印刷
した。印刷パターンは直径10mmの円板として、位
置合わせを行ないながら、印刷をくり返すごとに
より、種々の厚みの生シートを作製した。これを
前記実施例と同様にして焼成した。その結果、厚
みがそれぞれ33、57、95、150μmの焼結体シー
トが得られたが、いずれも密度は約7.8g/cm3
あり、電気特性もεT 33/ε0=1580、Kp=0.50と、
従来のドクターブレード法などによつて得られた
焼結体シートのそれと比べて同等以上の値が得ら
れた。
Then, in the same way as shown in the previous example,
PbTiO 3 :PbZrO 3 :Pb(Mg 1/3 Nb 2/3 )O 3 =37.5:
A toner containing piezoelectric particles having a composition ratio of 25.0:37.5 and an average particle size of approximately 1 μm was prepared, and the above was carried out using a commercially available dry copying machine based on the Carlson method using a selenium photosensitive drum. Printed toner. The printing pattern was a disk with a diameter of 10 mm, and by repeating printing while aligning, green sheets of various thicknesses were produced. This was fired in the same manner as in the previous example. As a result, sintered sheets with thicknesses of 33, 57, 95, and 150 μm were obtained, respectively, and the density was approximately 7.8 g/cm 3 and the electrical properties were ε T 330 = 1580, Kp =0.50 and
A value equal to or higher than that of a sintered sheet obtained by the conventional doctor blade method was obtained.

以上の実施例では、圧電粒子として、Pb(Ti、
Zr)O3系、Pb(Mg、Nb)(Ti、Zr)O3系の粒子
を用いたが、圧電粒子であれば、これ以外の粒子
でも全く同様にトナーを作製し、生シートおよび
焼結体シートを作製できることは言うまでもな
い。
In the above examples, Pb(Ti,
Pb(Mg, Nb) (Ti, Zr) O 3 based particles were used; however, as long as it is a piezoelectric particle, toners can be prepared in exactly the same way with other particles, and green sheets and baked Needless to say, a consolidated sheet can be produced.

また、生シート作製法についても、実施例以外
に、静電潜像を荷電粒子により顕像化する原理に
基ずくプロセスを含むものであれば、特に限定さ
れる必要のないことは明らかである。
Furthermore, it is clear that there is no need for any particular limitations on the green sheet manufacturing method, as long as it includes a process based on the principle of making an electrostatic latent image visible using charged particles, other than those described in the Examples. .

発明の効果 以上のように、本発明による圧電磁器の製造方
法を用いることにより、種々の形状および厚みを
有する圧電磁器薄板が容易に得られ、原料無駄の
軽減や、製造プロセスの合理化による大幅なコス
トダウンを図ることができる。また、50μm以下
の圧電磁器薄板の作製も可能となり、スピーカの
周波数特性の向上が図れるなど、実用上の価値は
非常に高いものである。
Effects of the Invention As described above, by using the piezoelectric ceramic manufacturing method according to the present invention, piezoelectric ceramic thin plates having various shapes and thicknesses can be easily obtained, reducing raw material waste and streamlining the manufacturing process. Cost reduction can be achieved. Furthermore, it has become possible to produce piezoelectric ceramic thin plates with a diameter of 50 μm or less, and this has great practical value, such as improving the frequency characteristics of speakers.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は、本発明の圧電粒子
を含む荷電粒子を用いた生シート作製プロセスを
説明するための工程図、第4図は生シートを焼成
する際のサヤ詰めの状態を説明するための断面図
である。 1……感光基体、2……コロナ帯電器用電源、
3……コロナ帯電器、4……現像器、5……現像
剤、6……現像バイアス用電源、7……定着用コ
ーラ、8……マイラフイルム(登録商標)、11
……生シート、12……サヤ、13……上ぶた。
Figures 1, 2, and 3 are process diagrams for explaining the green sheet manufacturing process using charged particles including piezoelectric particles of the present invention, and Figure 4 is a pod packing process when firing the green sheet. FIG. 1... Photosensitive substrate, 2... Power source for corona charger,
3...Corona charger, 4...Developing device, 5...Developer, 6...Power source for developing bias, 7...Cola for fixing, 8...Myra film (registered trademark), 11
...Raw sheet, 12...Saya, 13...Top lid.

Claims (1)

【特許請求の範囲】[Claims] 1 圧電性無機材料を含む荷電粒子を用いて静電
潜像を顕像化せしめる印刷方法により、圧電性無
機粒子を含む薄板を作製し、これを焼成すること
により、圧電磁器薄板を得ることを特徴とする圧
電磁器の製造方法。
1. A piezoelectric ceramic thin plate is obtained by producing a thin plate containing piezoelectric inorganic particles by a printing method that visualizes an electrostatic latent image using charged particles containing a piezoelectric inorganic material and firing the thin plate. A manufacturing method for piezoelectric ceramics.
JP59056613A 1984-03-23 1984-03-23 Manufacture of piezoelectric ceramic Granted JPS60198875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59056613A JPS60198875A (en) 1984-03-23 1984-03-23 Manufacture of piezoelectric ceramic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59056613A JPS60198875A (en) 1984-03-23 1984-03-23 Manufacture of piezoelectric ceramic

Publications (2)

Publication Number Publication Date
JPS60198875A JPS60198875A (en) 1985-10-08
JPH0564474B2 true JPH0564474B2 (en) 1993-09-14

Family

ID=13032101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59056613A Granted JPS60198875A (en) 1984-03-23 1984-03-23 Manufacture of piezoelectric ceramic

Country Status (1)

Country Link
JP (1) JPS60198875A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5659346A (en) 1994-03-21 1997-08-19 Spectra, Inc. Simplified ink jet head
US5474032A (en) * 1995-03-20 1995-12-12 Krietzman; Mark H. Suspended feline toy and exerciser

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940597A (en) * 1982-08-30 1984-03-06 松下電器産業株式会社 Method of producing printed wired circuit board

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5940597A (en) * 1982-08-30 1984-03-06 松下電器産業株式会社 Method of producing printed wired circuit board

Also Published As

Publication number Publication date
JPS60198875A (en) 1985-10-08

Similar Documents

Publication Publication Date Title
JPS5588065A (en) Electrophotographic receptor
JPS5588064A (en) Electrophotographic receptor
JPH0564474B2 (en)
EP1156374B1 (en) Magnetic carrier particles
US3447957A (en) Method of making a smooth surfaced adhesive binder xerographic plate
JP4356181B2 (en) Wet developer for circuit formation and circuit formation method using this developer
JPS59222916A (en) Method of producing laminated capacitor
JPS5940597A (en) Method of producing printed wired circuit board
JPH0145997B2 (en)
WO2018124747A2 (en) Magnetic carrier, method for manufacturing same, and binary developer comprising same magnetic carrier
US3989364A (en) Electrophotographic copying apparatus
JPS59192261A (en) Developer
JPS59189698A (en) Method of producing ceramic circuit board
JPS60198789A (en) Manufacture of composite piezoelectric material
JPH0653634A (en) Circuit forming method for wiring board
JPS599680A (en) Manufacture of heater for copying machine
JPH02257696A (en) Manufacture of wiring board
JPS5697351A (en) Electrophotographic receptor
JPH0478191A (en) Formation of wiring substrate, charged powder for forming wiring substrate and manufacture thereof
JPS59189356A (en) Developer
JPS59220994A (en) Method of producing printed wiring circuit board
JPS5525030A (en) Electrophotographic photoreceptor
JPS59123848A (en) Developer for printing wiring board
JPS62138326A (en) Production of zinc oxide powder for electrophotography
JPS60137886A (en) Formation of through hole