JPH0564475B2 - - Google Patents

Info

Publication number
JPH0564475B2
JPH0564475B2 JP5541684A JP5541684A JPH0564475B2 JP H0564475 B2 JPH0564475 B2 JP H0564475B2 JP 5541684 A JP5541684 A JP 5541684A JP 5541684 A JP5541684 A JP 5541684A JP H0564475 B2 JPH0564475 B2 JP H0564475B2
Authority
JP
Japan
Prior art keywords
piezoelectric
film
composite
charged particles
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5541684A
Other languages
Japanese (ja)
Other versions
JPS60198789A (en
Inventor
Hideyuki Okinaka
Seiichi Nakatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59055416A priority Critical patent/JPS60198789A/en
Publication of JPS60198789A publication Critical patent/JPS60198789A/en
Publication of JPH0564475B2 publication Critical patent/JPH0564475B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/092Forming composite materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrophotography Using Other Than Carlson'S Method (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、スピーカやブザーの振動板などに使
用されている複合圧電材料の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing a composite piezoelectric material used for diaphragms of speakers and buzzers, etc.

従来例の構成とその問題点 複合圧電材料はポリフツ化ビニリデン
(PVF2)などの高分子圧電材料の圧電率を向上
するために圧電性高分子中に圧電性無機材料を分
散させ複合化したものである。
Structure of conventional examples and their problems Composite piezoelectric materials are made by dispersing piezoelectric inorganic materials in piezoelectric polymers to improve the piezoelectric constant of polymer piezoelectric materials such as polyvinylidene fluoride (PVF 2 ). It is.

複合化は、通常、ロール法や溶媒法により行な
われている。ロール法は、高分子の軟化点近くの
温度で、ロールにより高分子材料と圧電性無機材
料とを混練して複合化したものを、プレス成形な
どによりシート状に成形するものである。また溶
媒法は、高分子材料を溶媒に溶かし、これに圧電
性無機材料を加えて混合し、得られた懸濁液をガ
ラス板上でフイルム状にするものである。
Composite formation is usually carried out by a roll method or a solvent method. In the roll method, a polymer material and a piezoelectric inorganic material are kneaded using rolls at a temperature close to the softening point of the polymer to form a composite, which is then formed into a sheet by press molding or the like. In the solvent method, a polymeric material is dissolved in a solvent, a piezoelectric inorganic material is added thereto, and the resulting suspension is formed into a film on a glass plate.

これらの成形法により得られる成形体は、殆ど
がシート状のものであり、これを各種用途に合わ
せて切断や打抜きを行なつて使用するため、シー
トの無駄が発生する。また、複合化した圧電性高
分子材料については、圧電率を向上するには、多
量の圧電性無機材料を加える必要があるが、この
場合、高分子材料との混練が十分になされず、成
形も困難になり、厚みの薄いシートは得られにく
くなる。従つて、複合化による高分子圧電材料の
特性向上には限界があり、通常の圧電磁器材料の
特性と比べれば、はるかに及ばないのが現状であ
る。
Most of the molded bodies obtained by these molding methods are in the form of sheets, which are then used by cutting or punching according to various uses, resulting in wasted sheets. In addition, with regard to composite piezoelectric polymer materials, it is necessary to add a large amount of piezoelectric inorganic material to improve the piezoelectric constant, but in this case, the kneading with the polymer material is not done sufficiently, and molding This makes it difficult to obtain thin sheets. Therefore, there is a limit to the improvement in the properties of polymer piezoelectric materials through compositing, and the current situation is that they are far inferior to the properties of ordinary piezoelectric ceramic materials.

発明の目的 本発明はスピーカやブザーなどの種々の用途に
応じた圧電膜を製造するにあたり、前記複合圧電
材料製造上の問題点を解決するための、無機圧電
材料の含有した任意形状の複合圧電膜の製造を可
能とする方法を提供するものである。
Purpose of the Invention The present invention provides a composite piezoelectric film containing an inorganic piezoelectric material in an arbitrary shape to solve the problems in manufacturing the composite piezoelectric material when manufacturing piezoelectric films for various uses such as speakers and buzzers. The present invention provides a method that allows the production of membranes.

発明の構成 即ち、本発明は、圧電性高分子と圧電無機材料
とを含む荷電粒子を現像剤とし、これを静電写真
プロセスを用いて任意の形状に印刷することによ
り、任意形状の複合圧電膜を容易に量産性良く作
製するものであり、また、現像剤中の圧電性無機
材料の含有量を種々に制御できるため、含有量の
多い複合圧電膜の作製も可能ならしめるものであ
る。
Structure of the Invention That is, the present invention uses charged particles containing a piezoelectric polymer and a piezoelectric inorganic material as a developer, and prints them into an arbitrary shape using an electrostatic photographic process, thereby producing a composite piezoelectric material having an arbitrary shape. The film can be easily produced with good mass production, and since the content of the piezoelectric inorganic material in the developer can be controlled in various ways, it is also possible to produce a composite piezoelectric film with a high content.

静電写真プロセスを用いた、いわゆる電子写真
法には、カールソン法、光電導性トナー法、光起
電力法、TESI法(静電転写法)、永久内部光分極
法(PIP法)、キヤノンNP法などがあり、その中
でもカールソン法が最も代表的な方法である。本
発明は、上記のような電子写真技術を利用して、
これに用いる静電潜像を顕像化するための現像剤
に無機圧電材料と圧電性高分子を含有せしめるこ
とにより、複合圧電薄膜を作製するものであり、
特に、厚みの薄い任意形状の圧電薄膜作製上、極
めて有効な製造方法となり得るものである。
So-called electrophotographic methods using electrostatic photographic processes include the Carlson method, photoconductive toner method, photovoltaic method, TESI method (electrostatic transfer method), permanent internal optical polarization method (PIP method), and Canon NP method. Among them, the Carlson method is the most representative method. The present invention utilizes the above electrophotographic technology,
A composite piezoelectric thin film is produced by incorporating an inorganic piezoelectric material and a piezoelectric polymer into the developer used for visualizing the electrostatic latent image.
In particular, it can be an extremely effective manufacturing method for producing thin piezoelectric thin films of arbitrary shapes.

実施例の説明 以下、本発明を実施例に基ずき詳細に説明す
る。
Description of Examples Hereinafter, the present invention will be described in detail based on Examples.

まず、ポリフツ化ビニリデン(PVF2)を40重
量部、電荷制御剤として塩素化ポリエステルを5
重量部、チタン酸ジルコン酸鉛〔Pb(Zr、Ti)
O3〕系粒子(平均粒径約1μm)を55重量部加え、
これらを溶融混練した後、微粉砕し、150℃の気
流中で球状化し、粒径を10〜20μmとしたものに
流動化剤として平均粒径1μm程度の疎水性シリ
カを1重量部加えたものを荷電粒子として用い
た。該荷電粒子において、熱可塑性樹脂であるポ
リフル化ビニリデンは結合剤としての機能を果し
ている。該荷電粒子を、四三酸化鉄(Fe3O4)の
安定な酸化被膜を表面に形成した平均粒径70μm
の鉄粉をキヤリヤとして、第1図から第5図に示
すカールソン法による電子写真法を用いて、厚さ
150μmのマイラフイルム(登録商標)上に、磁
気ブラシ現像方式により印刷成形した。
First, 40 parts by weight of polyvinylidene fluoride (PVF 2 ) and 5 parts of chlorinated polyester as a charge control agent were added.
Part by weight, lead zirconate titanate [Pb (Zr, Ti)
Add 55 parts by weight of O 3 ]-based particles (average particle size approximately 1 μm),
After melt-kneading these, they were pulverized and spheroidized in an air stream at 150°C to a particle size of 10 to 20 μm, to which 1 part by weight of hydrophobic silica with an average particle size of about 1 μm was added as a fluidizing agent. was used as a charged particle. In the charged particles, polyvinylidene fluoride, which is a thermoplastic resin, functions as a binder. The charged particles were formed with a stable oxide film of triiron tetraoxide (Fe 3 O 4 ) on the surface and had an average particle size of 70 μm.
Using iron powder as a carrier, electrophotography using the Carlson method shown in Figs.
Printing was carried out on 150 μm Mylar film (registered trademark) using a magnetic brush development method.

第1図は帯電工程を示し、感光体1上に帯電器
3を走査させ、コロナ放電によつて一様に帯電さ
せた。感光体としては、暗抵抗が1012〜1014Ω・
cm、光照射時の抵抗が107〜109Ω・cmの無定形セ
レンを用いた。なお2は帯電器用電源である。第
2図は露光工程を示し、レンズ4を通して感光体
1上に20×8mmの長方形パターンを露光し静電潜
像5を形成する。第3図は現像工程を示し、前記
荷電粒子が磁気ブラシ現像法によつて静電潜像上
に沈積され、静電潜像が顕在化される。6は現像
器、7は現像バイアス用電源、8は前記荷電粒子
からなる現像剤である。現像後、第4図に示すよ
うに現像された前記荷電粒子からなる現像剤をマ
イラフイルム(登録商標)11上に転写させる。
9は転写用コロナ帯電器、10は転写用コロナ帯
電器用電源である。転写後第5図に示すように転
写された前記荷電粒子からなる現像剤を熱ローラ
12,13によつて定着した。ここで熱ローラ温
度は165℃であり、定着と同時にポリフツ化ビニ
リデンは延伸される。
FIG. 1 shows the charging process, in which a charger 3 was scanned over the photoreceptor 1 to uniformly charge it by corona discharge. As a photoreceptor, the dark resistance is 10 12 to 10 14 Ω・
cm, and amorphous selenium with a resistance of 10 7 to 10 9 Ω·cm when irradiated with light was used. Note that 2 is a power source for the charger. FIG. 2 shows the exposure process, in which a rectangular pattern of 20×8 mm is exposed on the photoreceptor 1 through the lens 4 to form an electrostatic latent image 5. FIG. 3 shows the development step in which the charged particles are deposited on the electrostatic latent image by magnetic brush development to make the electrostatic latent image visible. 6 is a developing device, 7 is a power source for developing bias, and 8 is a developer made of the charged particles. After development, the developer made of the developed charged particles is transferred onto Myra film (registered trademark) 11 as shown in FIG.
9 is a transfer corona charger, and 10 is a power source for the transfer corona charger. After the transfer, the transferred developer made of the charged particles was fixed by heat rollers 12 and 13 as shown in FIG. Here, the heat roller temperature is 165° C., and the polyvinylidene fluoride is stretched at the same time as fixing.

上記工程により、20mm×8mmの長方形で厚みが
30μmのフイルムを得た。フイルムの両面にアル
ミニウムを蒸着し、100℃で150KV/cmの直流電
圧を30分間印加し、そのまま室温まで徐冷した。
このようにして得られた圧電膜の圧電率を測定し
たところ、d31=920×10-9cgsesuの値が得られ、
ポリフツ化ビニリデン単体の圧電率d31=200×
10-9cgsesuと比べて圧電率が向上し、チタン酸ジ
ルコン酸鉛〔Pb(Zr、Ti)O3〕を添加し複合化
した効果が顕著に認められた。
Through the above process, the thickness of the rectangle is 20mm x 8mm.
A 30 μm film was obtained. Aluminum was deposited on both sides of the film, a DC voltage of 150 KV/cm was applied at 100° C. for 30 minutes, and the film was allowed to cool slowly to room temperature.
When the piezoelectric constant of the piezoelectric film obtained in this way was measured, a value of d 31 =920×10 -9 cgsesu was obtained,
Piezoelectric constant of vinylidene polyfluoride alone d 31 = 200×
The piezoelectric constant was improved compared to 10 -9 cgsesu, and the composite effect of adding lead zirconate titanate [Pb(Zr,Ti)O 3 ] was clearly recognized.

次に第2の実施例としてポリフツ化ビニリデン
5重量部を含むジメチルホルムアミドに、ポリフ
ツ化ビニリデンに対して50〜95重量部のチタン酸
バリウム(BaTiO3)を加え、該混合溶液を180
℃に熱せられたステンレスパイプを通して10-2mm
Hgの排気容器中に放出させることにより、
BaTiO3の含有量の異なつた荷電粒子を数種類作
製した。
Next, as a second example, barium titanate (BaTiO 3 ) of 50 to 95 parts by weight based on polyvinylidene fluoride was added to dimethylformamide containing 5 parts by weight of polyvinylidene fluoride, and the mixed solution was heated to 180% by weight.
10 -2 mm through stainless steel pipe heated to ℃
By releasing Hg into the exhaust container,
Several types of charged particles with different BaTiO 3 contents were prepared.

該荷電粒子を用いて、前記実施例と同様に、カ
ールソン法による電子写真法によつて、20mm×8
mmの長方形で厚みが50μmのフイルムを得た。フ
イルムの両面にアルミニウム電極を蒸着し、前記
実施例と同じ条件で分極処理をした後、圧電率
d31を測定した。その結果、BaTiO3の含有量が
50、70、80、95重量部の場合、d31はそれぞれ450
×10-9cgsesu、750×10-9cgsu,1200×
10-9cgsesu、2000×10-9cgsesuであり、ポリフツ
化ビニリデン単体の圧電率d31=200×10-9cgsesu
と比べてBaTiO3の含有量が増加するに伴なつて
圧電率が向上していくことが確認された。
BaTiO3の含有量の増加と共に作製されたフイル
ムの可撓性は低下するが、含有率が95重量部以上
の場合でもシート状に印刷することが可能であつ
た。
Using the charged particles, a 20 mm x 8
A film having a rectangular size of mm and a thickness of 50 μm was obtained. After depositing aluminum electrodes on both sides of the film and polarizing it under the same conditions as in the previous example, the piezoelectric constant
d31 was measured. As a result, the content of BaTiO3
For 50, 70, 80, 95 parts by weight, d 31 is 450 respectively
×10 -9 cgsesu, 750×10 -9 cgsu, 1200×
10 -9 cgsesu, 2000×10 -9 cgsesu, and the piezoelectric constant of vinylidene polyfluoride alone d 31 = 200×10 -9 cgsesu
It was confirmed that the piezoelectric constant improved as the BaTiO 3 content increased.
Although the flexibility of the produced film decreased as the BaTiO 3 content increased, it was possible to print in sheet form even when the BaTiO 3 content was 95 parts by weight or more.

以上の実施例では、圧電性高分子材料として、
ポリフツ化ビニリデン(PVF2)を、また圧電性
無機材料としてチタン酸ジルコン酸鉛〔Pb(Zr、
Ti)O3〕系粒子とチタン酸バリウム(BaTiO3
粒子を用いたが、これ以外の圧電性高分子および
圧電性無機材料を含んだ現像剤であつても、全く
同様に任意形状の複合圧電膜が作製できることは
言うまでもない。また、印刷方法についても、実
施例以外に静電潜像を現像剤により顕像化する原
理に基ずくプロセスを含むものであれば、特に限
定される必要のないことは明らかである。
In the above examples, as the piezoelectric polymer material,
Polyvinylidene fluoride (PVF 2 ) and lead zirconate titanate [Pb(Zr,
Ti)O 3 ]-based particles and barium titanate (BaTiO 3 )
Although particles were used, it goes without saying that a composite piezoelectric film of any shape can be produced in the same manner using a developer containing other piezoelectric polymers and piezoelectric inorganic materials. Further, it is clear that there is no particular limitation on the printing method as long as it includes a process based on the principle of making an electrostatic latent image visible using a developer other than those in the examples.

発明の効果 以上のように本発明による複合圧電膜の製造方
法を用いることにより、種々の形状および厚みを
有する複合圧電膜が容易に得られるため、シート
状のものから所定形状の試料を打抜く従来法と比
べて、原料無駄の軽減や製造プロセスの合理化に
よる大幅なコストダウンを図ることができる。ま
た、圧電性無機材料を添加して複合化した圧電性
高分子において、圧電性無機材料の含有率を任意
に制御することにより圧電率の優れた圧電性シー
トの作製が可能になるなど、実用上の価値は極め
て高いものである。
Effects of the Invention As described above, by using the method for manufacturing a composite piezoelectric film according to the present invention, composite piezoelectric films having various shapes and thicknesses can be easily obtained. Compared to conventional methods, it is possible to significantly reduce costs by reducing raw material waste and streamlining the manufacturing process. In addition, in piezoelectric polymers made by adding piezoelectric inorganic materials into composites, it is possible to create piezoelectric sheets with excellent piezoelectric constant by arbitrarily controlling the content of piezoelectric inorganic materials. The above value is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は本発明の圧電性高分子と圧電
性無機材料とを含む荷電粒子を用いた圧電性フイ
ルムの作製プロセスを説明するための工程図であ
る。 1……感光基体、2……コロナ帯電器用電源、
3……コロナ帯電器、4……レンズ、5……静電
潜像、6……現像機、7……現像バイアス用電
源、8……現像剤、9……転写用コロナ帯電器、
10……転写用コロナ帯電器用電源、11……マ
イラフイルム(登録商標)、12,13……定着
用ローラ。
FIGS. 1 to 5 are process diagrams for explaining a process for producing a piezoelectric film using charged particles containing a piezoelectric polymer and a piezoelectric inorganic material according to the present invention. 1... Photosensitive substrate, 2... Power source for corona charger,
3...Corona charger, 4...Lens, 5...Electrostatic latent image, 6...Developer, 7...Power source for development bias, 8...Developer, 9...Corona charger for transfer,
10...Power supply for a corona charger for transfer, 11...Myrafilm (registered trademark), 12, 13...Fixing roller.

Claims (1)

【特許請求の範囲】[Claims] 1 圧電性高分子と圧電性無機材料とを含む荷電
粒子を用いて、静電潜像を顕像化せしめる印刷方
法により、複合圧電膜を作製することを特徴とす
る複合圧電材料の製造方法。
1. A method for producing a composite piezoelectric material, which comprises producing a composite piezoelectric film by a printing method that visualizes an electrostatic latent image using charged particles containing a piezoelectric polymer and a piezoelectric inorganic material.
JP59055416A 1984-03-22 1984-03-22 Manufacture of composite piezoelectric material Granted JPS60198789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59055416A JPS60198789A (en) 1984-03-22 1984-03-22 Manufacture of composite piezoelectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59055416A JPS60198789A (en) 1984-03-22 1984-03-22 Manufacture of composite piezoelectric material

Publications (2)

Publication Number Publication Date
JPS60198789A JPS60198789A (en) 1985-10-08
JPH0564475B2 true JPH0564475B2 (en) 1993-09-14

Family

ID=12997963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59055416A Granted JPS60198789A (en) 1984-03-22 1984-03-22 Manufacture of composite piezoelectric material

Country Status (1)

Country Link
JP (1) JPS60198789A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145381A (en) * 1979-04-27 1980-11-12 Mitsubishi Petrochem Co Ltd Piezoelectric element
JPS5889880A (en) * 1981-11-20 1983-05-28 Matsushita Electric Ind Co Ltd Piezoelectric macromolucular composite material and manufacture thereof
JPS5940597A (en) * 1982-08-30 1984-03-06 松下電器産業株式会社 Method of producing printed wired circuit board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145381A (en) * 1979-04-27 1980-11-12 Mitsubishi Petrochem Co Ltd Piezoelectric element
JPS5889880A (en) * 1981-11-20 1983-05-28 Matsushita Electric Ind Co Ltd Piezoelectric macromolucular composite material and manufacture thereof
JPS5940597A (en) * 1982-08-30 1984-03-06 松下電器産業株式会社 Method of producing printed wired circuit board

Also Published As

Publication number Publication date
JPS60198789A (en) 1985-10-08

Similar Documents

Publication Publication Date Title
US3992204A (en) Method and medium for producing electrostatic charge patterns
JPH0564475B2 (en)
US3899969A (en) Printing using pyroelectric film
US4106933A (en) Piezoelectric method and medium for producing electrostatic charge patterns
US3447957A (en) Method of making a smooth surfaced adhesive binder xerographic plate
US4047945A (en) Xeroprinting master and process
JPH0564476B2 (en)
JP2907438B2 (en) Electrostatic printing method
JPS59192261A (en) Developer
JPH0564474B2 (en)
JPS62272277A (en) Production of electrophotographic sensitive body
JPH0863008A (en) Roll member and transfer roll system capable of being self-biased
US4994342A (en) Electrophotographic lithographic printing plate precursor and a method of developing the same
JPS59222916A (en) Method of producing laminated capacitor
JPS59189617A (en) Method of producing laminated condenser
JPH0233155A (en) Electrophotographic sensitive body
JPS55118044A (en) Electrophotographic receptor
JPS6340181A (en) Electrophotographic image forming method
JPS63319150A (en) Manufacture of printing block
JP3166040B2 (en) Magnetic developing roller
DE19525786A1 (en) Imaging forming process for electrostatic images
JPS59127057A (en) Electrophotographic developing agent
JPH08286473A (en) Recording method and device
JPH025067A (en) Electrophotographic sensitive body and its production
JPH05265311A (en) Conductive roll