JPH0562679A - Nonaqueous electrolyte lithium secondary battery and its manufacture - Google Patents

Nonaqueous electrolyte lithium secondary battery and its manufacture

Info

Publication number
JPH0562679A
JPH0562679A JP3222623A JP22262391A JPH0562679A JP H0562679 A JPH0562679 A JP H0562679A JP 3222623 A JP3222623 A JP 3222623A JP 22262391 A JP22262391 A JP 22262391A JP H0562679 A JPH0562679 A JP H0562679A
Authority
JP
Japan
Prior art keywords
battery
lithium
iron
active material
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3222623A
Other languages
Japanese (ja)
Other versions
JP3104321B2 (en
Inventor
Masaki Hasegawa
正樹 長谷川
Sukeyuki Murai
祐之 村井
Shuji Ito
修二 伊藤
Yasuhiko Mifuji
靖彦 美藤
Yoshinori Toyoguchi
吉徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP03222623A priority Critical patent/JP3104321B2/en
Publication of JPH0562679A publication Critical patent/JPH0562679A/en
Application granted granted Critical
Publication of JP3104321B2 publication Critical patent/JP3104321B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a nonaqueous electrolyte lithium secondary battery which can be supplied stably at a low cost, gives no fear of environmental pollution, and can provide a high voltage and a high energy density, by using the beta-phase lithium ferrite as the main component of a positive electrode active material. CONSTITUTION:A nonaqueous electrolyte lithium secondary battery is composed of a positive electrode 1, a nonaqueous electrolyte, and a negative electrode 4, as the main components, and the beta-phase lithium ferrite is used as the main component of a positive electrode active material. Such a positive electrode active material is made by making the mixing ratio of at least one compound selected from iron oxide, iron hydroxide, iron oxalate, and iron ammonium oxalate, and a lithium salt, 0.8:1.0 to 1.2 in the mole ratio of the lithium and the iron, and manufactured by baking at the baking temperature 350 deg.C to 500 deg.C. Consequently, a nonaqueous electrolyte lithium secondary battery which can be supplied stably at a low cost, gives no fear of environmental pollution, and has a high voltage and a high energy density can be obtained easily.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はリチウムまたはリチウム
化合物を負極とする、高電圧で高エネルギー密度を有す
る非水電解質リチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte lithium secondary battery having a high voltage and a high energy density, which uses lithium or a lithium compound as a negative electrode.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解質二次電池は、高電圧で高エネルギー密度
が期待され、近年、研究開発が活発に行われている。
2. Description of the Related Art Non-aqueous electrolyte secondary batteries using lithium or a lithium compound as a negative electrode are expected to have high voltage and high energy density, and in recent years, research and development have been actively conducted.

【0003】これまで非水電解質二次電池の正極活物質
には、LiCoO2、LiMn24、V25、Cr
25、MnO2、TiS2、MoS2などの遷移金属の酸
化物およびカルコゲン化合物が知られている。これらの
正極活物質は層状構造もしくはトンネル構造を形成し、
リチウムイオンが自由に出入りできる結晶構造を持って
いる。とくに、LiCoO2やLiMn24は4V級の
電圧を示す非水電解質リチウム二次電池用正極活物質と
して注目されている。
Hitherto, as positive electrode active materials for non-aqueous electrolyte secondary batteries, LiCoO 2 , LiMn 2 O 4 , V 2 O 5 and Cr have been used.
Oxides of transition metals such as 2 O 5 , MnO 2 , TiS 2 , MoS 2 and chalcogen compounds are known. These positive electrode active materials form a layered structure or a tunnel structure,
It has a crystal structure that allows lithium ions to freely move in and out. In particular, LiCoO 2 and LiMn 2 O 4 are attracting attention as a positive electrode active material for a non-aqueous electrolyte lithium secondary battery showing a voltage of 4V class.

【0004】[0004]

【発明が解決しようとする課題】しかし、このような従
来の正極活物質はCo、Mn、V、Cr、Moなどの重
金属や硫黄を含有しており、これらの活物質を用いた非
水電解質二次電池が廃棄された場合、重金属による汚染
や硫黄酸化物の発生などの環境汚染を引き起こす可能性
がある。また、コスト的にみてもこれらの重金属は鉄に
比べ高価なものであり、電池が高価になってしまう。さ
らには、原料の供給面で不安のあるものもあり、世界情
勢の変化による供給不足、価格の高騰などの可能性も考
えられる。
However, such a conventional positive electrode active material contains heavy metals such as Co, Mn, V, Cr and Mo and sulfur, and a non-aqueous electrolyte using these active materials. When the secondary battery is discarded, it may cause environmental pollution such as heavy metal pollution and sulfur oxide generation. Further, in terms of cost, these heavy metals are more expensive than iron, which makes the battery expensive. Furthermore, there are some concerns about the supply of raw materials, and there is a possibility that supply shortages due to changes in the world situation and price hikes may occur.

【0005】本発明はこのような課題を解決するもの
で、低価格で安定に供給され環境汚染の心配がなく、な
おかつ高電圧、高エネルギー密度を有する非水電解質リ
チウム二次電池およびその製造法を提供することを目的
とするものである。
The present invention is intended to solve such a problem and is a non-aqueous electrolyte lithium secondary battery which is stably supplied at a low price, has no fear of environmental pollution, has a high voltage and a high energy density, and a method for producing the same. It is intended to provide.

【0006】[0006]

【課題を解決するための手段】本発明はこのような課題
を解決するもので、正極、非水電解質および負極を主体
とする構成であって、正極活物質としてβ相リチウムフ
ェライトを主体とするものである。
SUMMARY OF THE INVENTION The present invention is intended to solve such a problem and has a structure mainly composed of a positive electrode, a non-aqueous electrolyte and a negative electrode, and mainly composed of β-phase lithium ferrite as a positive electrode active material. It is a thing.

【0007】また、酸化水酸化鉄、水酸化鉄、蓚酸鉄、
蓚酸鉄アンモニウムより選ばれる少なくとも1種の化合
物と、リチウム塩とを主体とする混合物を焼成して正極
活物質を調製するようにしたものである。
Further, iron oxide hydroxide, iron hydroxide, iron oxalate,
A positive electrode active material is prepared by firing a mixture mainly containing a lithium salt and at least one compound selected from ammonium iron oxalate.

【0008】また、焼成温度が350℃〜500℃であ
り、酸化水酸化鉄、水酸化鉄、蓚酸鉄、蓚酸鉄アンモニ
ウムより選ばれる少なくとも1種の化合物と、リチウム
塩との混合比が、リチウムと鉄のモル比で0.8:1.
0〜1.2:1.0であるようにしたものである。
The firing temperature is 350 ° C. to 500 ° C., and the mixing ratio of at least one compound selected from iron oxide hydroxide, iron hydroxide, iron oxalate, and ammonium iron oxalate to the lithium salt is lithium. And iron in a molar ratio of 0.8: 1.
It is set to be 0 to 1.2: 1.0.

【0009】[0009]

【作用】この構成によれば、酸化水酸化鉄、水酸化鉄、
蓚酸鉄、蓚酸鉄アンモニウムより選ばれる少なくとも1
種の化合物と、リチウム塩との混合物を焼成して得られ
る化合物はリチウムと鉄の複合酸化物である。鉄は非常
に豊富に存在する元素であるので、供給面での心配はな
く、コスト的にも非常に低価格である。また、環境汚染
などの問題もなく、コストおよび環境保護の面で最適の
非水電解質二次電池用正極活物質である。仕込組成がリ
チウムと鉄のモル比で0.8:1.0〜1.2:1.0
である場合、おもにリチウムフェライト(LiFe
2)が生成する。LiFeO2は結晶構造的にα、β、
γの3つの相の存在が確認されているが、焼成温度が3
50℃〜500℃である場合の生成物は、主にβ相が生
成される。
[Function] According to this structure, iron oxide hydroxide, iron hydroxide,
At least 1 selected from iron oxalate and ammonium iron oxalate
The compound obtained by firing a mixture of the seed compound and a lithium salt is a lithium-iron composite oxide. Since iron is a very abundant element, there are no worries on the supply side, and the cost is very low. Further, it is a positive electrode active material for non-aqueous electrolyte secondary batteries, which is optimal in terms of cost and environmental protection without problems such as environmental pollution. The charge composition is a molar ratio of lithium and iron of 0.8: 1.0 to 1.2: 1.0.
, Mainly lithium ferrite (LiFe
O 2 ) is produced. LiFeO 2 has a crystal structure of α, β,
The existence of three phases of γ has been confirmed, but the firing temperature is 3
As for the product at 50 ° C to 500 ° C, β phase is mainly produced.

【0010】LiFeO2の各相について電極特性を調
べたところ、可逆的にリチウムの吸蔵、放出を行うこと
がわかった。その中でもβ相が最も高容量であり、また
充放電サイクル特性も良好であった。これはβ相が最も
リチウムの出入りしやすい結晶構造であるためと考えら
れる。β相LiFeO2はα相もしくはγ相のLiFe
2を合成した後、400℃付近で熱処理することによ
り得られるが、非常に長い熱処理時間を要する。しか
し、酸化水酸化鉄、水酸化鉄、蓚酸第一鉄、蓚酸鉄(II
I)アンモニウムより選ばれる少なくとも1種の化合物
と、リチウム塩との混合物を焼成することにより短時間
で容易にβ相LiFeO2を得ることができる。 この
ように、β相LiFeO2を正極活物質として用いるこ
とにより、低価格で安定に供給され、環境汚染の心配が
なく、なおかつ高電圧、高エネルギー密度を有する非水
電解質リチウム二次電池を得ることができることとな
る。
When the electrode characteristics of each phase of LiFeO 2 were examined, it was found that lithium was occluded and desorbed reversibly. Among them, the β phase had the highest capacity and the charge / discharge cycle characteristics were good. It is considered that this is because the β phase has the crystal structure in which lithium is most likely to enter and exit. β-phase LiFeO 2 is α-phase or γ-phase LiFe
It can be obtained by synthesizing O 2 and then heat-treating at around 400 ° C., but it requires a very long heat-treatment time. However, iron oxide hydroxide, iron hydroxide, ferrous oxalate, iron oxalate (II
I) β-phase LiFeO 2 can be easily obtained in a short time by baking a mixture of at least one compound selected from ammonium and a lithium salt. Thus, by using β-phase LiFeO 2 as the positive electrode active material, a non-aqueous electrolyte lithium secondary battery that is stably supplied at a low price, has no fear of environmental pollution, and has high voltage and high energy density is obtained. It will be possible.

【0011】[0011]

【実施例】以下に本発明の一実施例の非水電解質リチウ
ム二次電池およびその製造法を説明する。
EXAMPLE A non-aqueous electrolyte lithium secondary battery of one example of the present invention and a method for manufacturing the same will be described below.

【0012】(実施例1)本実施例では、出発原料とし
てLi2CO3(炭酸リチウム)とFeO(OH)(酸化
水酸化鉄)を用いた場合の焼成物を正極活物質に用い、
負極活物質にリチウムを用いた構成の電池について説明
する。
Example 1 In this example, a fired product obtained by using Li 2 CO 3 (lithium carbonate) and FeO (OH) (iron oxide hydroxide) as starting materials was used as a positive electrode active material.
A battery having a configuration in which lithium is used as the negative electrode active material will be described.

【0013】まず、Li2CO3とFeO(OH)をリチ
ウムと鉄がモル比で1:1となるように混合し加圧成型
したものを、大気中400℃で40時間焼成した。この
焼成物を活物質aとする。比較例としてLi2CO3とF
23(酸化鉄(III))をリチウムと鉄がモル比で
1:1となるように混合し加圧成型したものを、大気中
680℃で2時間仮焼した後、粉砕、加圧成型し大気中
1000℃で5時間焼成して得られた焼成物を活物質
b、Li2CO3とFe23をリチウムと鉄がモル比で
1:1となるように混合し加圧成型したものを、大気中
600℃で6日間焼成することにより得られた焼成物を
活物質cとして用いた。X線回折の結果、活物質aは主
にβ相リチウムフェライト(LiFeO2)からなり、
活物質bはα相LiFeO2、活物質cはγ相LiFe
2であることを確認した。
First, Li 2 CO 3 and FeO (OH) were mixed in such a manner that lithium and iron were mixed at a molar ratio of 1: 1 and pressure-molded, followed by firing in the atmosphere at 400 ° C. for 40 hours. This fired product is used as an active material a. As a comparative example, Li 2 CO 3 and F
e 2 O 3 (iron (III) oxide) was mixed with lithium and iron in a molar ratio of 1: 1 and pressure-molded, and the mixture was calcined in the air at 680 ° C. for 2 hours, then crushed and added. The calcined product obtained by pressure molding and calcining at 1000 ° C. for 5 hours in the atmosphere was mixed with active material b, Li 2 CO 3 and Fe 2 O 3 so that the molar ratio of lithium and iron was 1: 1. The pressure-formed product was fired in the air at 600 ° C. for 6 days, and the fired product was used as the active material c. As a result of X-ray diffraction, the active material a was mainly composed of β-phase lithium ferrite (LiFeO 2 ),
The active material b is α phase LiFeO 2 , and the active material c is γ phase LiFe
It was confirmed to be O 2 .

【0014】つぎに、上記のようにして得られた活物質
を用いて正極を作製した。まず、活物質と、導電剤であ
るアセチレンブラックと、結着剤としてのポリフッ化エ
チレン樹脂を重量比で7:2:1となるように混合し、
充分に乾燥したものを正極合剤とした。この正極合剤
0.15gを2ton/cm2で直径17.5mmのペレット
状に加圧成型し正極とした。
Next, a positive electrode was produced using the active material obtained as described above. First, an active material, acetylene black as a conductive agent, and polyfluorinated ethylene resin as a binder are mixed in a weight ratio of 7: 2: 1,
The sufficiently dried product was used as the positive electrode mixture. 0.15 g of this positive electrode mixture was pressure-molded at 2 ton / cm 2 into a pellet having a diameter of 17.5 mm to obtain a positive electrode.

【0015】上記のようにして作製した電極を用いて製
造した電池の構成を図1に示す。正極1をケース2内に
置き、正極1上にセパレータ3としての多孔性ポリプロ
ピレンフィルムを置いた。負極4としては、厚さ0.8
mm、直径17.5mmのリチウム板をポリプロピレン
製ガスケット5および負極集電体6を付けた封口板7に
圧着した。非水電解質として、1mol/lの過塩素酸リチ
ウムを溶解したプロピレンカーボネートを用いた。これ
をセパレータ3、正極1および負極4の上にそれぞれ加
えた後、電池を封口した。
FIG. 1 shows the structure of a battery manufactured by using the electrode manufactured as described above. The positive electrode 1 was placed in the case 2, and the porous polypropylene film as the separator 3 was placed on the positive electrode 1. The negative electrode 4 has a thickness of 0.8.
A lithium plate having a diameter of 17.5 mm and a diameter of 17.5 mm was pressure-bonded to the sealing plate 7 provided with the polypropylene gasket 5 and the negative electrode current collector 6. As the non-aqueous electrolyte, propylene carbonate in which 1 mol / l lithium perchlorate was dissolved was used. After adding this on the separator 3, the positive electrode 1, and the negative electrode 4, respectively, the battery was sealed.

【0016】以上、活物質a、b、cのそれぞれを正極
活物質として用いた電池を用いて充放電特性の比較を行
った。充放電の条件は、2mAの定電流で電圧範囲3.
0V〜4.6Vの電圧規制とした。(表1)にそれぞれ
の電池の初期放電容量と50サイクル目の放電容量を示
す。活物質aを用いた電池を電池A、活物質bを用いた
電池を電池B、活物質cを用いた電池を電池Cとし、サ
ンプル数nはそれぞれ50個とした。
As described above, the charge / discharge characteristics were compared using the batteries using the active materials a, b and c as the positive electrode active materials. Charge / discharge conditions are a constant current of 2 mA and a voltage range of 3.
The voltage was regulated from 0V to 4.6V. Table 1 shows the initial discharge capacity and the discharge capacity at the 50th cycle of each battery. The battery using the active material a was battery A, the battery using the active material b was battery B, the battery using the active material c was battery C, and the number of samples n was 50 each.

【0017】[0017]

【表1】 [Table 1]

【0018】(表1)に示すように初期放電容量は電池
Aでは14.91mAh、電池Bでは5.98mAh、
電池Cでは9.03mAhであり、電池Aが最も初期放
電容量が大きいことがわかった。また、サイクル特性に
ついても50サイクル目の放電容量は電池Aが14.6
8mAh、電池Bが4.41mAh、電池Cが7.46
mAhで、電池Aの容量維持率が最も優れていた。以上
の結果から、活物質aが最も優れた特性を有しており、
正極活物質としては、Li2CO3とFe23を出発原料
とし、おもにβ相LiFeO2を含む焼成物を用いるこ
とが望ましい。
As shown in (Table 1), the initial discharge capacity of Battery A was 14.91 mAh, and that of Battery B was 5.98 mAh.
It was found that Battery C had 9.03 mAh, and Battery A had the largest initial discharge capacity. Regarding the cycle characteristics, the discharge capacity at the 50th cycle was 14.6 for Battery A.
8 mAh, Battery B 4.41 mAh, Battery C 7.46
In mAh, the capacity retention rate of Battery A was the best. From the above results, the active material a has the most excellent characteristics,
As the positive electrode active material, it is desirable to use a fired product containing Li 2 CO 3 and Fe 2 O 3 as starting materials and mainly containing β-phase LiFeO 2 .

【0019】なお、本実施例では負極にリチウムを用い
た場合について説明したが、負極に炭素材料やリチウム
ーアルミニウム合金などのリチウムを可逆的に出し入れ
することのできるリチウム化合物を用いた場合でも、同
様の効果が得られる。
In this embodiment, the case where lithium is used for the negative electrode has been described, but even when a lithium compound such as a carbon material or a lithium-aluminum alloy capable of reversibly taking in and out lithium is used for the negative electrode, The same effect can be obtained.

【0020】(実施例2)本実施例では、出発原料とし
てLi2CO3(炭酸リチウム)とFe(OH)3(水酸
化第二鉄)を用いた場合の焼成物を正極活物質に用い、
負極活物質にリチウムを用いた構成について説明する。
Example 2 In this example, a fired product obtained by using Li 2 CO 3 (lithium carbonate) and Fe (OH) 3 (ferric hydroxide) as starting materials was used as a positive electrode active material. ,
A structure using lithium as the negative electrode active material will be described.

【0021】まず、Li2CO3とFe(OH)3をリチ
ウムと鉄がモル比で1:1となるように混合し加圧成型
したものを、大気中400℃で40時間焼成した。この
焼成物を活物質dとする。比較例としてLi2CO3とF
23を用い実施例1と同様の方法で焼成して得られた
活物質b、cを用いた。X線回折の結果、活物質aは主
にβ相LiFeO2から成ることを確認した。活物質b
はα相LiFeO2、活物質cはγ相LiFeO2であ
る。
First, Li 2 CO 3 and Fe (OH) 3 were mixed so that lithium and iron were mixed at a molar ratio of 1: 1 and pressure-molded, followed by firing in the atmosphere at 400 ° C. for 40 hours. This fired product is used as an active material d. As a comparative example, Li 2 CO 3 and F
Active materials b and c obtained by firing using e 2 O 3 in the same manner as in Example 1 were used. As a result of X-ray diffraction, it was confirmed that the active material a was mainly composed of β-phase LiFeO 2 . Active material b
Is the α-phase LiFeO 2 and the active material c is the γ-phase LiFeO 2 .

【0022】つぎに、上記のようにして得られた活物質
を用いて実施例1と同様の方法で正極、および電池を作
製した。
Next, using the active material obtained as described above, a positive electrode and a battery were manufactured in the same manner as in Example 1.

【0023】さらに、活物質d、b、cをそれぞれ正極
活物質として用いた電池について充放電特性の比較を行
った。充放電の条件は、2mAの定電流で電圧範囲3.
0V〜4.6Vの電圧規制とした。(表2)にそれぞれ
の電池の初期容量と50サイクル目の放電容量を示す。
活物質dを用いた電池を電池D、活物質bを用いた電池
を電池B、活物質cを用いた電池を電池Cとし、サンプ
ル数nはそれぞれ50個とした。
Further, the charge / discharge characteristics of the batteries using the active materials d, b, and c as the positive electrode active materials were compared. Charge / discharge conditions are a constant current of 2 mA and a voltage range of 3.
The voltage was regulated from 0V to 4.6V. (Table 2) shows the initial capacity and the discharge capacity at the 50th cycle of each battery.
The battery using the active material d was battery D, the battery using the active material b was battery B, the battery using the active material c was battery C, and the number of samples n was 50 each.

【0024】[0024]

【表2】 [Table 2]

【0025】(表2)に示すように、初期容量は電池D
では12.15mAh、電池Bでは5.98mAh、電
池Cでは9.03mAhであり、電池Dが最も初期容量
が大きいことがわかった。また、サイクル特性について
も50サイクル目の放電容量は電池Dが11.83mA
h、電池Bが4.41mAh、電池Cが7.46mAh
で、電池Dの放電容量維持率が最も優れている。以上の
結果から、活物質dが最も優れた特性を有しており、正
極活物質としては、Li2CO3とFe(OH) 3を出発
原料とし主にβ相LiFeO2を含む焼成物を用いるこ
とが望ましい。
As shown in (Table 2), the initial capacity is battery D
12.15 mAh for battery B and 5.98 mAh for battery B
The pond C has 9.03 mAh, and the battery D has the highest initial capacity.
Was found to be large. Also, regarding cycle characteristics
The discharge capacity at the 50th cycle is 11.83 mA for Battery D.
h, Battery B is 4.41 mAh, Battery C is 7.46 mAh
Therefore, the discharge capacity retention rate of the battery D is the best. More than
From the results, the active material d has the most excellent characteristics,
As a polar active material, Li2CO3And Fe (OH) 3Depart
Mainly as a raw material β phase LiFeO2Use a fired product containing
And is desirable.

【0026】なお、本実施例では負極にリチウムを用い
た場合について説明したが、負極に炭素材料やリチウム
ーアルミニウム合金などのリチウムを可逆的に出し入れ
することのできるリチウム化合物を用いた構成であって
も、同様の効果が得られる。
In the present embodiment, the case where lithium is used for the negative electrode has been described. However, the negative electrode uses a lithium compound such as a carbon material or a lithium-aluminum alloy that can reversibly take in and out lithium. However, the same effect can be obtained.

【0027】また、水酸化第二鉄の代わりに水酸化第一
鉄を用いても同様のことが得られる。
The same thing can be obtained by using ferrous hydroxide instead of ferric hydroxide.

【0028】(実施例3)本実施例では、出発原料とし
てLi2CO3(炭酸リチウム)とFeC24・2H2
(蓚酸第一鉄二水和物)を用いた場合の焼成物を正極活
物質に用い、負極活物質にリチウムを用いた構成の電池
について説明する。
Example 3 In this example, Li 2 CO 3 (lithium carbonate) and FeC 2 O 4 .2H 2 O were used as starting materials.
A battery having a configuration in which a fired product obtained by using (ferrous oxalate dihydrate) is used as the positive electrode active material and lithium is used as the negative electrode active material will be described.

【0029】まず、Li2CO3とFeC24・H2Oを
リチウムと鉄がモル比で1:1となるように混合し加圧
成型したものを、大気中400℃で40時間焼成した。
この焼成物を活物質eとする。比較例としてLi2CO3
とFe23を用い実施例1と同様の方法で焼成して得ら
れた活物質b、cを用いた。X線回折の結果、活物質e
は主にβ相LiFeO2からなることを確認した。活物
質bはα相LiFeO2、活物質cはγ相LiFeO2
ある。
Firstly, Li 2 CO 3 and FeC 2 O 4 · H 1 to 2 O with lithium and iron molar ratio: 1 so as mixing those molded under pressure, the calcined 40 hours at 400 ° C. in air did.
This fired product is used as an active material e. As a comparative example, Li 2 CO 3
And active materials b and c obtained by firing with Fe 2 O 3 in the same manner as in Example 1 were used. As a result of X-ray diffraction, the active material e
Was confirmed to consist mainly of β-phase LiFeO 2 . The active material b is α-phase LiFeO 2 and the active material c is γ-phase LiFeO 2 .

【0030】つぎに、以上のようにして得られた活物質
を用いて実施例1と同様の方法で正極、および電池を作
製した。
Next, using the active material obtained as described above, a positive electrode and a battery were manufactured in the same manner as in Example 1.

【0031】また、活物質e、b、cをそれぞれ正極活
物質として用いた電池を用いて充放電特性の比較を行っ
た。充放電の条件は、2mAの定電流で電圧範囲3.0
V〜4.6Vの電圧規制とした。(表3)にそれぞれの
電池の初期放電容量と50サイクル目の放電容量を示
す。活物質e用いた電池を電池E、活物質bを用いた電
池を電池B、活物質cを用いた電池を電池Cとし、サン
プル数nはそれぞれ50個とした。
Further, the charge / discharge characteristics were compared using batteries using the active materials e, b, and c as the positive electrode active materials. Charge and discharge conditions were 2 mA constant current and voltage range 3.0.
The voltage was regulated from V to 4.6V. Table 3 shows the initial discharge capacity and the discharge capacity at the 50th cycle of each battery. The battery using the active material e was battery E, the battery using the active material b was battery B, the battery using the active material c was battery C, and the number of samples n was 50 each.

【0032】[0032]

【表3】 [Table 3]

【0033】(表3)に示すように初期容量は電池Eで
は13.26mAh、電池Bでは5.98mAh、電池
Cでは9.03mAhであり、電池Eが最も初期容量が
大きいことがわかった。また、充放電サイクル特性につ
いても50サイクル目の放電容量は電池Eが12.93
mAh、電池Bが4.41mAh、電池Cが7.46m
Ahで、電池Eの容量維持率が最も優れている。以上の
結果から、活物質eが最も優れた特性を有しており、正
極活物質としては、Li2CO3とFeC24・2H2
を出発原料とし、おもにβ相LiFeO2を含む焼成物
を用いることが望ましい。
As shown in (Table 3), the initial capacity was 13.26 mAh for battery E, 5.98 mAh for battery B, and 9.03 mAh for battery C, indicating that battery E had the largest initial capacity. Regarding the charge / discharge cycle characteristics, the discharge capacity at the 50th cycle was 12.93 for Battery E.
mAh, Battery B is 4.41 mAh, Battery C is 7.46 m
With Ah, the capacity maintenance ratio of the battery E is the best. From the above results, the active material e has the most excellent characteristics, and as the positive electrode active material, Li 2 CO 3 and FeC 2 O 4 .2H 2 O are used.
It is desirable to use a calcined product containing as a starting material and mainly containing β-phase LiFeO 2 .

【0034】なお、本実施例では負極にリチウムを用い
た構成の電池につて説明したが、負極に炭素材料やリチ
ウムーアルミニウム合金などのリチウムを可逆的に出し
入れすることのできるリチウム化合物を用いた構成であ
っても、同様の効果が得られる。
In this embodiment, a battery having a structure in which lithium is used for the negative electrode has been described, but a lithium compound such as a carbon material or a lithium-aluminum alloy capable of reversibly taking in and out lithium is used for the negative electrode. Even with the configuration, the same effect can be obtained.

【0035】また、蓚酸第一鉄の代わりに蓚酸第二鉄を
用いても同様の効果が得られる。 (実施例4)本実施例では、出発原料としてLi2CO3
(炭酸リチウム)とFe(NH43(C243・3H2
O(蓚酸鉄(III)アンモニウム三水和物)を用いた場
合の焼成物を正極活物質に用い、負極活物質にリチウム
を用いた構成の電池について説明する。
The same effect can be obtained by using ferric oxalate instead of ferrous oxalate. Example 4 In this example, Li 2 CO 3 was used as a starting material.
(Lithium carbonate) and Fe (NH 4) 3 (C 2 O 4) 3 · 3H 2
A battery having a structure in which a fired product obtained by using O (iron (III) oxalate ammonium trihydrate) is used as the positive electrode active material and lithium is used as the negative electrode active material will be described.

【0036】まず、Li2CO3とFe(NH43(C2
43・3H2Oをリチウムと鉄がモル比で1:1とな
るように混合し加圧成型したものを、大気中400℃で
40時間焼成した。この焼成物を活物質fとする。比較
例としてLi2CO3とFe23を用い実施例1と同様の
方法で焼成して得られた活物質b、cを用いた。X線回
折の結果、活物質fは主にβ相LiFeO2からなるこ
とを確認した。活物質bはα相LiFeO2、活物質c
はγ相LiFeO2である。
First, Li 2 CO 3 and Fe (NH 4 ) 3 (C 2
O 4) 3 · 3H 1 to 2 O with lithium and iron molar ratio: 1 so as mixing those molded under pressure to and calcined 40 hours at 400 ° C. in air. This fired product is used as an active material f. As comparative examples, active materials b and c obtained by firing Li 2 CO 3 and Fe 2 O 3 in the same manner as in Example 1 were used. As a result of X-ray diffraction, it was confirmed that the active material f was mainly composed of β-phase LiFeO 2 . Active material b is α-phase LiFeO 2 , active material c
Is the γ-phase LiFeO 2 .

【0037】つぎに、以上のようにして得られた活物質
を用いて実施例1と同様の方法で正極、及び電池を作製
した。
Next, using the active material obtained as described above, a positive electrode and a battery were prepared in the same manner as in Example 1.

【0038】さらに、活物質f、b、cをそれぞれ正極
活物質として用いた電池を用いて充放電特性の比較を行
った。充放電の条件は、2mAの定電流で電圧範囲3.
0V〜4.6Vの電圧規制とした。(表4)にそれぞれ
の電池の初期放電容量と50サイクル目の放電容量を示
す。活物質fを用いた電池を電池F、活物質bを用いた
電池を電池B、活物質cを用いた電池を電池Cとし、サ
ンプル数nはそれぞれ50個とした。
Further, the charge / discharge characteristics were compared using batteries using the active materials f, b, and c as the positive electrode active materials. Charge / discharge conditions are a constant current of 2 mA and a voltage range of 3.
The voltage was regulated from 0V to 4.6V. (Table 4) shows the initial discharge capacity and the discharge capacity at the 50th cycle of each battery. The battery using the active material f was battery F, the battery using the active material b was battery B, the battery using the active material c was battery C, and the number of samples n was 50 each.

【0039】[0039]

【表4】 [Table 4]

【0040】(表4)に示すように初期放電容量は電池
Fでは13.84mAh、電池Bでは5.98mAh、
電池Cでは9.03mAhであり、電池Fが最も初期容
量が大きいことがわかった。また、サイクル特性につい
ても50サイクル目の放電容量は電池Fが13.01m
Ah、電池Bが4.41mAh、電池Cが7.46mA
hで、電池Fの容量維持率が最も優れている。以上の結
果から、活物質fが最も優れた特性を有しており、正極
活物質としては、Li2CO3とFe(NH43(C
243・3H2Oを出発原料とし主にβ相LiFeO2
を含む焼成物を用いることが望ましい。
As shown in (Table 4), the initial discharge capacity of the battery F was 13.84 mAh and that of the battery B was 5.98 mAh.
It was found that the battery C had 9.03 mAh, and the battery F had the largest initial capacity. Regarding the cycle characteristics, the discharge capacity at the 50th cycle was 13.01 m for Battery F.
Ah, battery B is 4.41 mAh, battery C is 7.46 mA
At h, the capacity retention rate of the battery F is the best. From the above results, the active material f has the most excellent characteristics, and as the positive electrode active material, Li 2 CO 3 and Fe (NH 4 ) 3 (C
2 O 4) 3 · 3H 2 O was used as a starting material mainly β phase LiFeO 2
It is desirable to use a fired product containing.

【0041】なお、本実施例では負極にリチウムを用い
た構成について説明したが、負極に炭素材料やリチウム
ーアルミニウム合金などのリチウムを可逆的に出し入れ
することのできるリチウム化合物を用いた構成であって
も、同様の効果が得られる。
In this embodiment, the structure using lithium for the negative electrode has been described. However, it is a structure using a lithium compound such as a carbon material or a lithium-aluminum alloy capable of reversibly taking in and out lithium in the negative electrode. However, the same effect can be obtained.

【0042】(実施例5)本実施例ではα相LiFeO
2を400℃で長時間焼成することによって得られたβ
相LiFeO2を正極活物質に用い、リチウムを負極活
物質に用いた構成について説明する。
Example 5 In this example, α phase LiFeO 2 is used.
Β obtained by firing 2 at 400 ° C. for a long time
A structure in which phase LiFeO 2 is used as the positive electrode active material and lithium is used as the negative electrode active material will be described.

【0043】α相LiFeO2にはLi2CO3とFe2
3を用いて実施例1と同様の方法で焼成して得られた活
物質bを用い、これを大気中400℃で150時間焼成
することによりβ相LiFeO2を得た。これを活物質
gとする。なお、焼成時間を40時間とした場合には焼
成時間が短くβ相LiFeO2は得られなかった。
The α-phase LiFeO 2 contains Li 2 CO 3 and Fe 2 O.
3 with using the active material b obtained by firing in the same manner as in Example 1, which was obtained β-phase LiFeO 2 by firing 150 hours at 400 ° C. in air. This is designated as an active material g. When the firing time was 40 hours, the firing time was short and β-phase LiFeO 2 could not be obtained.

【0044】つぎに、以上のようにして得られた活物質
を用いて実施例1と同様の方法で正極、および電池を作
製した。また、実施例1と同様の方法で焼成して得られ
た活物質b,cについても、同様に正極、および電池を
作製した。活物質bはα相LiFeO2、活物質cはγ
相LiFeO2である。
Next, using the active material thus obtained, a positive electrode and a battery were produced in the same manner as in Example 1. Further, with respect to the active materials b and c obtained by firing in the same manner as in Example 1, a positive electrode and a battery were similarly prepared. The active material b is α-phase LiFeO 2 and the active material c is γ
The phase is LiFeO 2 .

【0045】上記の活物質g、b、cをそれぞれ正極活
物質として用いた電池について充放電特性の比較を行っ
た。充放電の条件は、2mAの定電流で電圧範囲3.0
V〜4.6Vの電圧規制とした。(表4)にそれぞれの
電池の初期容量と50サイクル目の放電容量を示す。活
物質gを用いた電池を電池G、活物質bを用いた電池を
電池B、活物質cを用いた電池を電池Cとし、サンプル
数nはそれぞれ50個とした。
The charge / discharge characteristics of the batteries using the above active materials g, b, and c as the positive electrode active materials were compared. Charge and discharge conditions were 2 mA constant current and voltage range 3.0.
The voltage was regulated from V to 4.6V. (Table 4) shows the initial capacity and the discharge capacity at the 50th cycle of each battery. The battery using the active material g was battery G, the battery using the active material b was battery B, the battery using the active material c was battery C, and the number of samples n was 50 each.

【0046】[0046]

【表5】 [Table 5]

【0047】(表5)に示すように初期容量は電池Fで
は10.53mAh、電池Bでは5.98mAh、電池
Cでは9.03mAhであり、電池Gが最も初期容量が
大きいことがわかった。また、サイクル特性についても
50サイクル目の放電容量は電池Gが9.85mAh、
電池Bが4.41mAh、電池Cが7.46mAhで、
電池Gの容量維持率が最も優れている。以上の結果か
ら、活物質gが最も優れた特性を有しており、α相Li
FeO2を400℃で長時間焼成することによって得ら
れたβ相LiFeO2を用いても、α相およびγ相Li
FeO2を用いた場合よりも優れた特性を有することが
わかる。しかし、酸化水酸化鉄、水酸化鉄、蓚酸第一
鉄、蓚酸鉄(III)アンモニウム、より選ばれる少なく
とも1種の化合物と、リチウム塩との混合物を焼成して
得られる、おもにβ相LiFeO2を含む焼成物を正極
活物質として用いた場合よりもやや特性が劣る。このこ
とから、正極活物質としては、酸化水酸化鉄、水酸化
鉄、蓚酸第一鉄、蓚酸鉄(III)アンモニウム、より選
ばれる少なくとも1種の化合物と、リチウム塩との混合
物を焼成して得られる焼成物を用いることが望ましい。
As shown in (Table 5), the initial capacity of the battery F was 10.53 mAh, the battery B was 5.98 mAh, and the battery C was 9.03 mAh, and it was found that the battery G had the largest initial capacity. Regarding the cycle characteristics, the discharge capacity at the 50th cycle was 9.85 mAh for Battery G,
Battery B is 4.41 mAh, Battery C is 7.46 mAh,
The capacity retention rate of the battery G is the best. From the above results, the active material g has the most excellent characteristics, and the α-phase Li
Even if β-phase LiFeO 2 obtained by firing FeO 2 at 400 ° C. for a long time is used, α-phase and γ-phase Li
It can be seen that it has better characteristics than the case of using FeO 2 . However, mainly β-phase LiFeO 2 obtained by firing a mixture of at least one compound selected from iron oxide hydroxide, iron hydroxide, ferrous oxalate, and iron (III) oxalate ammonium and a lithium salt. The characteristics are slightly inferior to the case where a fired product containing is used as the positive electrode active material. From this, as the positive electrode active material, a mixture of at least one compound selected from iron oxide hydroxide, iron hydroxide, ferrous oxalate, and ammonium iron (III) oxalate, and a lithium salt is fired. It is desirable to use the obtained fired product.

【0048】なお、本実施例では負極にリチウムを用い
た構成につて説明したが、負極に炭素材料やリチウムー
アルミニウム合金などのリチウムを可逆的に出し入れす
ることのできるリチウム化合物を用いた構成でも、同様
の効果が得られる。
In the present embodiment, the structure using lithium for the negative electrode has been described, but a structure using a lithium compound such as a carbon material or a lithium-aluminum alloy capable of reversibly taking in and out lithium is also used for the negative electrode. , A similar effect is obtained.

【0049】以上、実施例1から実施例5に出発原料と
して酸化水酸化鉄、水酸化鉄、蓚酸第一鉄、蓚酸鉄(II
I)アンモニウムを用いた場合、およびα相LiFeO2
を400℃で長時間焼成することによって得られた、お
もにβ相LiFeO2を含む焼成物を正極活物質として
用いた電池について説明した。これらの結果より、特性
としては、酸化水酸化鉄を用いた場合が最も優れてお
り、以下、蓚酸鉄(III)アンモニウム、蓚酸第一鉄、
水酸化鉄を用いた場合の順であり、いずれもα相LiF
eO2を400℃で150時間焼成することによって得
られたものよりも優れた特性を示すことがわかる。
As described above, iron oxide hydroxide, iron hydroxide, ferrous oxalate, iron oxalate (II
I) With ammonium and α-phase LiFeO 2
A battery using a fired product containing β-phase LiFeO 2 mainly obtained by firing at 400 ° C. for a long time as a positive electrode active material was described. From these results, as a property, the case where iron oxide hydroxide was used is the most excellent, and the iron (III) oxalate ammonium, ferrous oxalate,
The order is the case when iron hydroxide is used, both of which are α-phase LiF
It can be seen that it exhibits better properties than those obtained by firing eO 2 at 400 ° C. for 150 hours.

【0050】(実施例6)本実施例では、焼成温度、お
よびリチウムと鉄の混合比を種々に変化させた場合の生
成物の電極特性について説明する。電極特性は実施例1
と同様の方法で作製したリチウム二次電池の初期放電容
量の変化について調べた。
(Embodiment 6) In this embodiment, the electrode characteristics of the product when the firing temperature and the mixing ratio of lithium and iron are variously changed will be described. The electrode characteristics are shown in Example 1.
The change in the initial discharge capacity of the lithium secondary battery manufactured by the same method as in (1) was investigated.

【0051】リチウム源としてLi2CO3を、鉄源とし
てFeO(OH)を用いた。まず、混合比をリチウムと
鉄のモル比で1.0:1.0とし、200℃から600
℃の範囲内の温度で焼成した場合の生成物を正極活物質
とした場合の初期容量を調べた。リチウム電池は実施例
1と同様の方法で作製した。焼成温度と初期容量の関係
を図2に示す。この結果よりリチウムと鉄の混合比がモ
ル比で0.8:1.0から1.2:1.0の範囲でよい
特性を示すことがわかる。X線回折の結果、この混合比
の範囲での生成物は主にβ相LiFeO2であった。つ
ぎに、焼成温度を400℃とし、混合比をリチウムと鉄
のモル比で0.5:1.0から1.5:1.0の範囲で
変化させた場合の、生成物を正極活物質とした構成の初
期容量の変化を調べた。リチウムと鉄の混合比と初期放
電容量の関係を図3に示す。これより焼成温度は350
℃から500℃の範囲の温度で良い特性を示すことがわ
かる。この場合においても、350℃から500℃の範
囲の焼成温度での生成物は主にβ相LiFeO2であっ
た。
Li 2 CO 3 was used as a lithium source and FeO (OH) was used as an iron source. First, the mixing ratio was set to 1.0: 1.0 in terms of the molar ratio of lithium and iron, and the temperature was changed from 200 ° C to 600
The initial capacity was investigated when the product obtained by firing at a temperature within the range of ° C was used as the positive electrode active material. The lithium battery was manufactured in the same manner as in Example 1. The relationship between the firing temperature and the initial capacity is shown in FIG. From these results, it can be seen that good characteristics are exhibited when the mixing ratio of lithium and iron is 0.8: 1.0 to 1.2: 1.0 in terms of molar ratio. As a result of X-ray diffraction, the products in this mixing ratio range were mainly β-phase LiFeO 2 . Next, when the firing temperature was set to 400 ° C. and the mixing ratio was changed in the molar ratio of lithium and iron within the range of 0.5: 1.0 to 1.5: 1.0, the product was used as the positive electrode active material. The change in the initial capacity of the above structure was investigated. The relationship between the mixing ratio of lithium and iron and the initial discharge capacity is shown in FIG. From this, the firing temperature is 350
It can be seen that good characteristics are exhibited at a temperature in the range of ℃ to 500 ℃. Also in this case, the product at the firing temperature in the range of 350 ° C. to 500 ° C. was mainly β-phase LiFeO 2 .

【0052】以上の結果からもわかるように、リチウム
と鉄の混合比がモル比で0.8:1.0から1.2:
1.0の範囲であり、また焼成温度は350℃から50
0℃の範囲の温度である合成条件により合成したLiF
eO2を正極活物質として用いることが望ましい。
As can be seen from the above results, the mixing ratio of lithium and iron is 0.8: 1.0 to 1.2: in molar ratio.
The range is 1.0 and the firing temperature is from 350 ° C to 50 ° C.
LiF synthesized under the synthesis conditions having a temperature in the range of 0 ° C
It is desirable to use eO 2 as the positive electrode active material.

【0053】なお、本実施例では出発原料として、Li
2CO3とFeO(OH)を用いた場合について説明した
が、鉄源として水酸化鉄、蓚酸鉄、蓚酸鉄アンモニウム
のいずれを用いた場合でも同様の効果が得られる。
In this example, Li was used as a starting material.
Although the case where 2 CO 3 and FeO (OH) are used has been described, the same effect can be obtained when any of iron hydroxide, iron oxalate, and ammonium iron oxalate is used as the iron source.

【0054】また、実施例1〜実施例6にリチウム塩と
して炭酸リチウムを用いた構成について説明したが、水
酸化リチウムなどのリチウム塩を用いた場合でも同様の
効果が得られる。
Although the structures using lithium carbonate as the lithium salt have been described in Examples 1 to 6, the same effect can be obtained when a lithium salt such as lithium hydroxide is used.

【0055】[0055]

【発明の効果】以上の実施例の説明からも明らかなよう
に、正極、非水電解質、負極からなるリチウム二次電池
において、正極活物質として、β相リチウムフェライト
(LiFeO2)を主体とすることにより、低価格で安
定に供給され、環境汚染の心配がなく、なおかつ高電
圧、高エネルギー密度を有する非水電解質リチウム二次
電池を容易に得ることができる。
As is apparent from the above description of the embodiments, in a lithium secondary battery comprising a positive electrode, a non-aqueous electrolyte and a negative electrode, β-phase lithium ferrite (LiFeO 2 ) is mainly used as a positive electrode active material. As a result, it is possible to easily obtain a non-aqueous electrolyte lithium secondary battery that is stably supplied at a low price, has no fear of environmental pollution, and has high voltage and high energy density.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の非水電解質リチウム二次電
池の縦断面図
FIG. 1 is a vertical sectional view of a non-aqueous electrolyte lithium secondary battery of Example 1 of the present invention.

【図2】同活物質の焼成温度とそれお用いた電池の放電
容量の関係を示す図
FIG. 2 is a graph showing the relationship between the firing temperature of the active material and the discharge capacity of the battery used therein.

【図3】同活物質の出発源料のリチウムと鉄の混合比と
電池の放電容量の関係を示す図
FIG. 3 is a diagram showing a relationship between a mixture ratio of lithium and iron as a starting material of the active material and a discharge capacity of a battery.

【符号の説明】[Explanation of symbols]

1 正極 2 ケース 3 セパレータ 4 負極 5 ガスケット 6 負極集電体 7 封口板 1 Positive Electrode 2 Case 3 Separator 4 Negative Electrode 5 Gasket 6 Negative Electrode Current Collector 7 Sealing Plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 美藤 靖彦 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiko Mito 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】正極と、非水電解質と、負極とを主体とす
る構成であって、正極活物質としてβ相リチウムフェラ
イトを主体とする非水電解質リチウム二次電池。
1. A non-aqueous electrolyte lithium secondary battery having a positive electrode, a non-aqueous electrolyte and a negative electrode as a main component, and a β-phase lithium ferrite as a main component as a positive electrode active material.
【請求項2】酸化水酸化鉄、水酸化鉄、蓚酸鉄、蓚酸鉄
アンモニウム、より選ばれる少なくとも1種の化合物
と、リチウム塩とを主体とする混合物を焼成して正極活
物質を調製する非水電解質リチウム二次電池の製造法。
2. A positive electrode active material is prepared by firing a mixture containing at least one compound selected from iron oxide hydroxide, iron hydroxide, iron oxalate, and iron ammonium oxalate, and a lithium salt. Manufacturing method of water electrolyte lithium secondary battery.
【請求項3】焼成温度が350℃〜500℃であり、酸
化水酸化鉄、水酸化鉄、蓚酸鉄、蓚酸鉄アンモニウム、
より選ばれる少なくとも1種の化合物と、リチウム塩と
の混合比が、リチウムと鉄のモル比で0.8:1.0〜
1.2:1.0である請求項2記載の非水電解質リチウ
ム二次電池の製造法。
3. A firing temperature of 350 ° C. to 500 ° C., iron oxide hydroxide, iron hydroxide, iron oxalate, ammonium iron oxalate,
The mixing ratio of at least one compound selected from the above and the lithium salt is 0.8: 1.0 to a molar ratio of lithium and iron.
The method for producing a non-aqueous electrolyte lithium secondary battery according to claim 2, wherein the ratio is 1.2: 1.0.
JP03222623A 1991-09-03 1991-09-03 Non-aqueous electrolyte lithium secondary battery and method for producing the same Expired - Fee Related JP3104321B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03222623A JP3104321B2 (en) 1991-09-03 1991-09-03 Non-aqueous electrolyte lithium secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03222623A JP3104321B2 (en) 1991-09-03 1991-09-03 Non-aqueous electrolyte lithium secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0562679A true JPH0562679A (en) 1993-03-12
JP3104321B2 JP3104321B2 (en) 2000-10-30

Family

ID=16785357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03222623A Expired - Fee Related JP3104321B2 (en) 1991-09-03 1991-09-03 Non-aqueous electrolyte lithium secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP3104321B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0825661A1 (en) * 1996-08-23 1998-02-25 Toda Kogyo Corp. Lithium Battery
US7045250B2 (en) 2000-11-13 2006-05-16 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery
JP2008257894A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Method of manufacturing positive electrode material for lithium ion secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0825661A1 (en) * 1996-08-23 1998-02-25 Toda Kogyo Corp. Lithium Battery
US6270925B1 (en) 1996-08-23 2001-08-07 Toda Kogyo Corporation Lithium battery
US7045250B2 (en) 2000-11-13 2006-05-16 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery
JP2008257894A (en) * 2007-03-30 2008-10-23 Mitsui Eng & Shipbuild Co Ltd Method of manufacturing positive electrode material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP3104321B2 (en) 2000-10-30

Similar Documents

Publication Publication Date Title
JP3162437B2 (en) Non-aqueous electrolyte secondary battery
JP3611188B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JPH05299092A (en) Nonaqueous electrolytic lithium secondary battery and manufacture thereof
JP3611190B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4106741B2 (en) Nonaqueous electrolyte secondary battery
JPH0746607B2 (en) Non-aqueous secondary battery
JPH08273665A (en) Positive electrode material for lithium secondary battery and its manufacture and lithium secondary battery using it
JP3260282B2 (en) Non-aqueous electrolyte lithium secondary battery
JPH1064516A (en) Lithium battery
JP3229425B2 (en) Positive electrode for lithium secondary battery and method for producing the same
US6475455B2 (en) Manufacturing method of spinel lithium manganese oxide for lithium secondary cell
JP2512241B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JP3219352B2 (en) Non-aqueous electrolyte secondary battery
JP2512239B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JPH04141954A (en) Nonaqueous electrolytic secondary battery and manufacture of positive electrode active material
JP2979826B2 (en) Method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP3104321B2 (en) Non-aqueous electrolyte lithium secondary battery and method for producing the same
JPH08171900A (en) Nonaqueous electrolyte lithium secondary battery
JPH0487268A (en) Nonaqueous electrolyte secondary battery
JP2517176B2 (en) Non-aqueous electrolyte secondary battery and method for producing positive electrode active material thereof
JPH0521067A (en) Nonaqueous electrolytic battery
JPH07320741A (en) Preparation of high-voltage cathodic material for lithium secondary battery
JP4244427B2 (en) Non-aqueous electrolyte battery
JPH0822826A (en) Synthesizing method for positive active material of nonaqueous secondary battery
JP2002184404A (en) Positive electrode material and nonaqueous electrolyte battery

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees