JPH0561343B2 - - Google Patents

Info

Publication number
JPH0561343B2
JPH0561343B2 JP62217981A JP21798187A JPH0561343B2 JP H0561343 B2 JPH0561343 B2 JP H0561343B2 JP 62217981 A JP62217981 A JP 62217981A JP 21798187 A JP21798187 A JP 21798187A JP H0561343 B2 JPH0561343 B2 JP H0561343B2
Authority
JP
Japan
Prior art keywords
width
press
slab
steel
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62217981A
Other languages
Japanese (ja)
Other versions
JPS6462444A (en
Inventor
Manabu Oohori
Noriaki Koshizuka
Shuzo Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21798187A priority Critical patent/JPS6462444A/en
Publication of JPS6462444A publication Critical patent/JPS6462444A/en
Publication of JPH0561343B2 publication Critical patent/JPH0561343B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明はプレス金型用鋼、とくに金型に対す
る熱間スラブの相対的な送り毎に幅方向の挟圧を
反復してスラブの先端から後端までを幅圧下する
連続幅プレスに用いられる金型に有利に適合する
鋼に関する。 熱間スラブの幅は、熱間圧延製品の幅に合致さ
せるために、種々の幅に鋳造されているが、同一
サイズのスラブから幅の異なる熱間圧延製品を得
ることができれば、一連の製造工程の効率を飛躍
することが可能である。そこで熱間スラブの幅圧
下を行う方法及びこの方法に用いるプレス装置が
提案されている(特開昭62−282738号公報参照)。
この連続幅圧下プレス装置は、1対のプレス金型
をスラブの幅方向に配置し、挟圧を反復して幅圧
下するものであり、高温にさらされる上に金型冷
却時に大きな熱応力をうけるため、通常の金型よ
りも優れた特性が要求される。 (従来の技術) 熱間金型用鋼は切削工具用、耐衝撃工具用およ
び冷間金型用などとともにJISG 404に規格があ
るほか、同用途の熱間工具用鋼に関し、特公昭54
−38570号公報に開示がある。 (発明が解決しようとする問題点) 上記の鋼は、通常の熱間圧延や鍛造には十分な
耐性を示すが、連続幅プレス用の金型としての適
合性は不十分である。 すなわち、連続幅プレス用金型は大形で1200℃
以上の熱間スラブの幅圧下に連続的に使用される
ため、熱間圧延ロールに比べて金型内部の奥深く
まで高温になり、冷却時に過大な熱応力が発生
し、熱疲労による割れを生じやすいところに問題
を残していた。 そこでこの発明の目的は、連続幅プレスなどに
おける厳しい条件下で使用されるプレス金型に有
利に適合する、耐熱疲労特性の高い鋼を提供する
ことにある。 (問題点を解決するための手段) この発明は、Cr−Ni−Mo−Vを基本成分と
し、これらにSi,Mnを組合わせた、とくに連続
幅プレスに適合するマクテンサイト型熱間金型用
鋼で、Cr/Ni≧10の範囲とすることで低Cr、高
Niの場合に発生するノツチ状高温酸化スケール
を防止して耐熱疲労特性を向上し、熱疲労による
プレス用金型の割れを防止したものである。 すなわち、この発明は、 C:0.10〜0.38wt%未満、 Si:0.10〜2.0wt%、 Mn:0.10〜2.0wt%、 Mo:0.50〜3.0wt%および V:0.50〜0.80wt% を含み、さらに Cr:3.0〜8.0wt%と Ni:0.05〜0.50wt%と をCR/Ni≧10において含有し、残部Feおよび不
可避不純物よりなる連続幅プレス金型用鋼であ
る。 (作用) 次にこの発明に従う鋼の各化学成分範囲の限定
理由について述べる。 C:0.10〜0.83wt%未満(以下単に%と示す) Cは焼入性を向上し焼入れ焼もどし硬さおよび
高温硬さを維持するのに必要である。またCr,
MoおよびVと結合して炭化物を形成し、耐摩耗
性、焼もどし軟化抵抗を向上させるが、多量に含
有するとじん性の劣化をまねくので0.83%未満と
し、一方0.10%未満では上記の各効果が得られな
いので下限は0.10%とした。 Si:0.10〜2.0% Siは耐酸化性の維持、変態点の上昇のために含
有するが、多量の含有はじん性の劣化をまねくの
で、2.0%以下とし、逆に少量では効果がないの
で0.1%以上とした。 Mn:0.10〜2.0% Mnは焼入性を向上するために必要であるが、
多すぎるとA1変態点を低下させるので上限を2.0
%とし、一方少なすぎると効果がないので0.1%
以上とした。 Mo:0.50〜3.0% Moは基地に固溶して焼入性を向上させるとと
もにCと結合して硬い炭化物を形成し、基地中に
分散析出し、耐摩耗性を向上させる。また焼もど
し軟化抵抗および高温強さを増加させ、A1変態
点を上昇させる。しかし含有量が3.0%をこえる
とじん性が劣化し、0.5%未満では十分な焼入れ
深さが得られないので、0.5〜3.0%とした。 V:0.50〜0.80% Vは微細炭化物を析出させ焼もどし軟化抵抗、
高温強さを向上させ、また結晶粒を微細化して、
じん性を向上させ、A1変態点を上昇させる。し
かし多すぎると粗大な炭化物を形成してじん性を
低下させ、少なすぎると効果が得られないので
0.5〜0.8%に限定した。 Cr:3.0〜8.0% Crは炭化物を形成して基地中に分散し、耐摩
耗性を向上させ、一部は固溶し、焼入性を増加す
る。また、スラブ幅圧下プレス用金型は高温のス
ラブに接触し、該金型表面自体も高温になるた
め、耐高温酸化特性も要求されるが、Crの含有
はこの特性を向上させ得る。しかしその効果は、
第1図に示した、高温酸化時における酸化減量に
及ぼすCr濃度の影響からわかるように、3.0%未
満では効果が十分でなく、8.0%を越える含有は、
効果が飽和し経済的に不利になるので、Cr含有
量は3.0〜8.0%とした。なお第1図は、100℃×
48hr大気中で加熱したときの実験結果を示した。 Ni:0.05〜0.20% Niはじん性および焼入性の向上に有利な元素
で、特に幅プレス金型は金型冷却時の熱応力に耐
えることが肝要であることころから、0.05%の含
有が必要である。一方0.50%をこえると、次に詳
しく説明する熱疲労特性の劣化をまねくため、
0.50%を上限とする。 一方この発明の対象とするスラブ連続幅圧下プ
レス用金型のように大形で、使用時には高温にさ
らされ冷却時に大きな熱応力をうける場合には、
熱疲労による割れが最も大きな問題となるが、酸
化雰囲気においてはNiの含有はこの熱疲労特性
を劣化させる。 Niの含有は選択酸化をうながし、高温酸化に
より第2図に示すような、ノツチ状のスケールを
生成する。ノツチ状スケールは、これを起点とし
てさらに割れを拡大し、耐熱疲労性を劣化させ
る。 第3図にノツチ状スケール深さに及ぼすCr/
Niの影響を示すように、ノツチ状スケールの生
成はCrの含有によつて抑えられる。なお第3図
は、C:0.40%、Si:1.0%、Mn:0.4%、Mo:
1.25%およびV:0.5%を含み、さらにNi:0.05〜
1.65%とCr:1.21〜7.9%とを種々に変化させて含
有する鋼塊を900℃×15hr加熱後大気中で冷却し
たそれぞれの供試材について第2図に示したとこ
ろに従いノツチ状スケールを測定し、この測定結
果をCr/Niの比に対応して示したものである。 同図から、Cr/Ni≧10とすればノツチ状スケ
ールの長さを10μm以下に抑えることができ、す
なわちノツチ状スケールの生成をほぼ抑制でき、
熱疲労特性を良好に保ち得る。 なお、この発明に従う鋼は転炉又は電気炉で溶
製し、ついで造塊又は連続鋳造により鋼塊又はス
ラブを製造し、鍛造又は圧延後、焼ならし−焼も
どし−焼入れ−焼もどしを含む熱処理を施したの
ち、機械加工により所定の形状に加工し、実機使
用に供することができる。 (実施例) 表1に示す各成分組成になる鋼を転炉にて溶製
し、造塊後450mm角の形状に鍛造し、焼入れ焼も
どしの熱処理を施したのち所定の寸法のプレス金
型に仕上げ、実機試験に供した。950℃×15hrの
熱処理後のノツチ状スケール長さおよび実機試験
における割れ深さを、表1に併記する。
(Industrial Application Field) This invention relates to steel for press molds, in particular, to reduce the width from the front end to the back end of the slab by repeatedly applying pressure in the width direction each time the hot slab is fed relative to the mold. It relates to a steel that is advantageously compatible with molds used in continuous width presses. The width of the hot slab is cast to various widths to match the width of the hot rolled product, but if hot rolled products of different widths can be obtained from the same size slab, it is possible to manufacture a series of hot rolled products. It is possible to dramatically increase the efficiency of the process. Therefore, a method of width reduction of a hot slab and a press apparatus used in this method have been proposed (see Japanese Patent Laid-Open No. 62-282738).
This continuous width reduction press equipment has a pair of press dies arranged in the width direction of the slab, and repeatedly presses to reduce the width of the slab.It is exposed to high temperatures and is subject to large thermal stress when cooling the dies. In order to achieve this goal, properties superior to those of ordinary molds are required. (Prior technology) In addition to JISG 404 standards for hot work tool steels for cutting tools, shock-resistant tools, cold work tools, etc., there is also a standard for hot work tool steels for the same purpose in JISG 404.
-Disclosure is in Publication No. 38570. (Problems to be Solved by the Invention) Although the above-mentioned steel exhibits sufficient resistance to normal hot rolling and forging, its suitability as a mold for continuous width presses is insufficient. In other words, the continuous width press mold is large and has a temperature of 1200℃.
As these hot slabs are continuously used for width reduction, the temperature reaches deeper inside the mold compared to hot rolling rolls, and excessive thermal stress is generated during cooling, resulting in cracking due to thermal fatigue. The problem was left in an easy place. Therefore, an object of the present invention is to provide a steel with high thermal fatigue resistance that is advantageously suitable for press dies used under severe conditions in continuous width presses and the like. (Means for Solving the Problems) The present invention provides a mactensitic hot-work metallization material which has Cr-Ni-Mo-V as a basic component and which is combined with Si and Mn, and which is particularly suitable for continuous width press. For mold steel, by setting Cr/Ni≧10, low Cr and high
It prevents the notched high-temperature oxidation scale that occurs with Ni, improves thermal fatigue resistance, and prevents press molds from cracking due to thermal fatigue. That is, this invention includes C: 0.10 to less than 0.38 wt%, Si: 0.10 to 2.0 wt%, Mn: 0.10 to 2.0 wt%, Mo: 0.50 to 3.0 wt%, and V: 0.50 to 0.80 wt%, and further It is a continuous width press die steel containing Cr: 3.0 to 8.0 wt% and Ni: 0.05 to 0.50 wt% at CR/Ni≧10, with the balance being Fe and unavoidable impurities. (Function) Next, the reason for limiting the range of each chemical component of the steel according to the present invention will be described. C: 0.10 to less than 0.83 wt% (hereinafter simply referred to as %) C is necessary to improve hardenability and maintain quenching and tempering hardness and high temperature hardness. Also Cr,
It combines with Mo and V to form carbides and improves wear resistance and tempering softening resistance, but if it is contained in a large amount, it will lead to deterioration of toughness, so it should be less than 0.83%, while less than 0.10% will have the above effects. could not be obtained, so the lower limit was set at 0.10%. Si: 0.10 to 2.0% Si is included to maintain oxidation resistance and raise the transformation point, but since a large amount of Si causes deterioration of toughness, it should be kept at 2.0% or less.On the other hand, a small amount has no effect. 0.1% or more. Mn: 0.10-2.0% Mn is necessary to improve hardenability, but
Too much will lower the A1 transformation point, so set the upper limit to 2.0
%, and on the other hand, if it is too small, there is no effect, so 0.1%
That's all. Mo: 0.50 to 3.0% Mo improves hardenability by dissolving in the matrix, and also combines with C to form hard carbides, which are dispersed and precipitated in the matrix, improving wear resistance. It also increases temper softening resistance and high temperature strength and raises the A1 transformation point. However, if the content exceeds 3.0%, the toughness deteriorates, and if it is less than 0.5%, sufficient quenching depth cannot be obtained, so it was set at 0.5 to 3.0%. V: 0.50-0.80% V precipitates fine carbides and improves tempering softening resistance.
Improved high temperature strength and refined crystal grains,
Improves toughness and raises A1 transformation point. However, if there is too much, coarse carbides will form and the toughness will decrease, and if there is too little, the effect will not be obtained.
Limited to 0.5-0.8%. Cr: 3.0 to 8.0% Cr forms carbides and disperses in the matrix, improving wear resistance, and some of it forms a solid solution, increasing hardenability. Furthermore, since the slab width reduction press mold comes into contact with a high-temperature slab and the surface of the mold itself becomes high temperature, high-temperature oxidation resistance is also required, and the inclusion of Cr can improve this property. However, the effect is
As can be seen from the effect of Cr concentration on oxidation loss during high-temperature oxidation shown in Figure 1, the effect is insufficient if the content is less than 3.0%, and if the content exceeds 8.0%,
Since the effect becomes saturated and becomes economically disadvantageous, the Cr content was set to 3.0 to 8.0%. In addition, Figure 1 is 100℃×
Experimental results when heated in air for 48 hours are shown. Ni: 0.05 to 0.20% Ni is an element that is advantageous in improving toughness and hardenability.In particular, since it is important for wide press molds to withstand thermal stress during mold cooling, the content of 0.05% is recommended. is necessary. On the other hand, if it exceeds 0.50%, it will lead to deterioration of thermal fatigue properties, which will be explained in detail next.
The upper limit is 0.50%. On the other hand, when the mold is large, such as the continuous slab width reduction press mold that is the object of this invention, and is exposed to high temperatures during use and subjected to large thermal stress during cooling,
The biggest problem is cracking due to thermal fatigue, but in an oxidizing atmosphere, the inclusion of Ni deteriorates this thermal fatigue property. The inclusion of Ni promotes selective oxidation, and high-temperature oxidation produces notch-shaped scales as shown in FIG. The notched scale further expands the cracks using this as a starting point and deteriorates the thermal fatigue resistance. Figure 3 shows the effect of Cr on the notch scale depth.
As shown by the influence of Ni, the formation of notched scales is suppressed by the inclusion of Cr. In addition, Figure 3 shows C: 0.40%, Si: 1.0%, Mn: 0.4%, Mo:
Contains 1.25% and V: 0.5%, and further Ni: 0.05~
Steel ingots containing various amounts of Cr: 1.65% and Cr: 1.21 to 7.9% were heated at 900°C for 15 hours and then cooled in the air. Notch-like scale was formed on each specimen according to the method shown in Figure 2. The measurement results are shown in relation to the Cr/Ni ratio. From the same figure, if Cr/Ni≧10, the length of the notch-like scale can be suppressed to 10 μm or less, that is, the formation of the notch-like scale can be almost suppressed.
Good thermal fatigue properties can be maintained. The steel according to the present invention is produced by melting in a converter or electric furnace, then producing a steel ingot or slab by ingot-forming or continuous casting, and after forging or rolling, includes normalizing, tempering, quenching, and tempering. After heat treatment, it can be machined into a predetermined shape and used in an actual machine. (Example) Steel having the respective compositions shown in Table 1 is melted in a converter, forged into a 450 mm square shape after ingot formation, and then heat treated by quenching and tempering, and then molded into a press mold with a predetermined size. It was completed and subjected to actual testing. Table 1 also shows the notched scale length after heat treatment at 950°C for 15 hours and the crack depth in the actual machine test.

【表】 (発明の効果) この発明によれば、従来の熱間金型用鋼に不足
していた耐熱疲労特性の向上を達成でき、したが
つて連続幅プレスに有利に適合するプレス金型の
提供を実現できる。
[Table] (Effects of the invention) According to the present invention, it is possible to achieve improvement in thermal fatigue resistance, which was lacking in conventional hot die steel, and therefore a press die that is advantageously suited for continuous width presses. It is possible to realize the provision of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCr含有率と酸化減量との関係を示す
グラフ、第2図はノツチ状スケールの説明図、第
3図はCr/Niとノツチ状スケール長さとの関係
を示すグラフである。
FIG. 1 is a graph showing the relationship between Cr content and oxidation loss, FIG. 2 is an explanatory diagram of notched scale, and FIG. 3 is a graph showing the relationship between Cr/Ni and notched scale length.

Claims (1)

【特許請求の範囲】 1 C:0.10〜0.38wt%未満、 Si:0.10〜2.0wt%、 Mn:0.10〜2.0wt%、 Mo:0.50〜3.0wt%および V:0.50〜0.80wt% を含み、さらに Cr:3.0〜8.0wt%と Ni:0.05〜0.50wt%と をCr/Ni≧10において含有し、残部Feおよび不
可避不純物よりなる連続幅プレス金型用鋼。
[Claims] 1 Contains C: 0.10 to less than 0.38 wt%, Si: 0.10 to 2.0 wt%, Mn: 0.10 to 2.0 wt%, Mo: 0.50 to 3.0 wt%, and V: 0.50 to 0.80 wt%, Further, a continuous width press mold steel containing Cr: 3.0 to 8.0 wt% and Ni: 0.05 to 0.50 wt% in a range of Cr/Ni≧10, with the balance being Fe and inevitable impurities.
JP21798187A 1987-09-02 1987-09-02 Press die steel Granted JPS6462444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21798187A JPS6462444A (en) 1987-09-02 1987-09-02 Press die steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21798187A JPS6462444A (en) 1987-09-02 1987-09-02 Press die steel

Publications (2)

Publication Number Publication Date
JPS6462444A JPS6462444A (en) 1989-03-08
JPH0561343B2 true JPH0561343B2 (en) 1993-09-06

Family

ID=16712755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21798187A Granted JPS6462444A (en) 1987-09-02 1987-09-02 Press die steel

Country Status (1)

Country Link
JP (1) JPS6462444A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2662291B2 (en) * 1989-03-28 1997-10-08 川崎製鉄株式会社 Steel for hot press tools
JPH04318148A (en) * 1991-04-18 1992-11-09 Hitachi Metals Ltd Tool steel for hot working
JP2959319B2 (en) * 1993-03-02 1999-10-06 住友金属工業株式会社 Hot forging die steel
DE19833594A1 (en) * 1998-07-25 2000-01-27 Mwp Mahle J Wizemann Pleuco Gm Cast steel camshaft, especially an i.c. engine camshaft for rolling contact valve operation, has an internal cavity and is produced by a lost foam casting technique
JP2011001572A (en) 2009-06-16 2011-01-06 Daido Steel Co Ltd Tool steel for hot work and steel product using the same
JP5515442B2 (en) 2009-06-16 2014-06-11 大同特殊鋼株式会社 Hot tool steel and steel products using the same
CN116024498A (en) * 2022-12-26 2023-04-28 河南中原特钢装备制造有限公司 Fine-grain high-strength-toughness mirror plastic die steel and heat treatment method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149808A (en) * 1977-05-06 1978-12-27 Hitachi Metals Ltd Abrasionnresistant steel for nitriding use
JPS6380938A (en) * 1986-09-24 1988-04-11 Daido Steel Co Ltd Manufacture of die

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53149808A (en) * 1977-05-06 1978-12-27 Hitachi Metals Ltd Abrasionnresistant steel for nitriding use
JPS6380938A (en) * 1986-09-24 1988-04-11 Daido Steel Co Ltd Manufacture of die

Also Published As

Publication number Publication date
JPS6462444A (en) 1989-03-08

Similar Documents

Publication Publication Date Title
JPH10273756A (en) Cold tool made of casting, and its production
CN103911556A (en) Hot work die steel material and preparation method thereof
JPH01268846A (en) Hot pressing tool steel
KR900006690B1 (en) Method of producing thin sheet of high si-fe alloy
JPH0561343B2 (en)
JP2905243B2 (en) Manufacturing method of bearing material with excellent rolling fatigue life
JP2905241B2 (en) Manufacturing method of bearing material with excellent rolling fatigue life
JP4488386B2 (en) Die for hot working and manufacturing method of mold material for hot working
JPH03254340A (en) Manufacture of raw material for bearing having excellent service life to rolling fatigue
CN102719758A (en) Anti-oxidation and anti-thermal fatigue hot working die steel and manufacturing method thereof
JP3911750B2 (en) Manufacturing method of hot working dies
JPH04358040A (en) Hot tool steel
JP3091795B2 (en) Manufacturing method of steel bars with excellent drawability
JP2662291B2 (en) Steel for hot press tools
JP3201711B2 (en) Age-hardened steel for die casting
JP2001123247A (en) Cold tool steel excellent in machinability
JP2004269981A (en) Production method of steel bar
JP2001234278A (en) Cold tool steel excellent in machinability
JPH0428837A (en) Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture
JPH0578750A (en) Manufacture of forged steel roll for cold rolling
JP2801652B2 (en) Steel for hot press tools
JPS59118861A (en) Free cutting steel and its production
JPH0577741B2 (en)
JPH073333A (en) Production of medium and high carbon martensitic stainless steel strip incorporating fine carbide
JP3090280B2 (en) Steel for hot press tools

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees