JPH03254340A - Manufacture of raw material for bearing having excellent service life to rolling fatigue - Google Patents

Manufacture of raw material for bearing having excellent service life to rolling fatigue

Info

Publication number
JPH03254340A
JPH03254340A JP5082490A JP5082490A JPH03254340A JP H03254340 A JPH03254340 A JP H03254340A JP 5082490 A JP5082490 A JP 5082490A JP 5082490 A JP5082490 A JP 5082490A JP H03254340 A JPH03254340 A JP H03254340A
Authority
JP
Japan
Prior art keywords
rolling
molten steel
fatigue life
rolling fatigue
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5082490A
Other languages
Japanese (ja)
Other versions
JP2986829B2 (en
Inventor
Satoshi Yasumoto
安本 聡
Kenichi Amano
虔一 天野
Shozaburo Nakano
中野 昭三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2050824A priority Critical patent/JP2986829B2/en
Publication of JPH03254340A publication Critical patent/JPH03254340A/en
Application granted granted Critical
Publication of JP2986829B2 publication Critical patent/JP2986829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture a raw material for bearing having excellent service life to rolling fatigue by continuously casting molten steel containing the specific wt.% of C, Si, Mn, Cr and Mo and executing the specific draft of squeezing work near crater end, which solidification in inner part of a cast billet is completed, and hot-working. CONSTITUTION:The molten steel containing wt.% of 0.60-1.50% C, 0.15-2.00% Si, 0.15-2.50% Mn, 0.05-1.00% Cr, >0.50-1.50% Mo and the balance of Fe and inevitable impurities, is continuously cast. The squeezing work is executed near the crater end, where the solidification in the inner part of cast billet is completed, at >=5% draft and successively, the hot-rolling is executed. In the molten steel, further, one or more kinds among 0.05-0.50% V, 0.05-0.50% Nb, 0.05-0.50% W, 0.10-2.00% Ni and 0.05-1.00% Cu, are incorporated. By this method, necessity for executing homogenized annealing at high temp. for long time, can be eliminated.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、自動車、その他産業機械等に用いられる転
がり軸受の素材として好適な、優れた転動疲労寿命特性
を有する軸受用素材の製造方法に関するものである。
[Detailed Description of the Invention] (Industrial Application Field) This invention provides a method for manufacturing a bearing material having excellent rolling fatigue life characteristics and suitable as a material for rolling bearings used in automobiles, other industrial machinery, etc. It is related to.

(従来の技術) 従来、軸受用鋼としては、機械構造用炭素鋼、機械構造
用合金鋼および高炭素クロム軸受鋼などが使用されてい
る。
(Prior Art) Conventionally, carbon steel for machine structures, alloy steel for machine structures, high carbon chromium bearing steel, etc. have been used as steel for bearings.

このうち高炭素クロム軸受鋼は、玉軸受、ころ軸受とし
て自動車、産業機械等に最も多く使用されている。この
鋼は、1wt%(以下単に%で示す)程度の炭素と0.
9〜1.6%程度のクロムが添加されており、連続鋳造
時、特に鋳片軸心部においてマクロ偏析(以下中心偏析
と称す)ならびに共晶炭化物が生威し、切断、打ち抜き
時における割れ発生を増大させると共に転動疲労寿命特
性を劣化させることから、素材中心部を打ち抜いて廃材
とするか、造塊法または長時間の拡散処理の実施により
共晶炭化物の消散を図ってから用いられていた。このた
め生産性や素材歩留りの低下を避けることができなかっ
た。
Among these, high carbon chromium bearing steel is most commonly used as ball bearings and roller bearings in automobiles, industrial machinery, etc. This steel contains about 1 wt% of carbon (hereinafter simply expressed as %) and 0.
Approximately 9 to 1.6% chromium is added, and macro segregation (hereinafter referred to as center segregation) and eutectic carbides occur during continuous casting, especially in the axial center of the slab, resulting in cracking during cutting and punching. Since this increases the occurrence of eutectic carbides and deteriorates the rolling contact fatigue life characteristics, it is best to either punch out the center of the material and dispose of it as waste, or to dissipate the eutectic carbide by performing an agglomeration method or a long-term diffusion process before use. was. For this reason, a decrease in productivity and material yield could not be avoided.

このような弊害をもたらす中心偏析および共晶炭化物は
、連続鋳造の場合、凝固先端部の凝固収縮のほか、凝固
シェルのバルジングなどによって生じる空隙の真空吸引
力が加わり、凝固先端部にC,Cr等の濃化溶綱威分が
吸い込まれることによって形成されたもので、製品加工
時の熱処理により、大型の共晶炭化物または球状化炭化
物の残留、残留オーステナイト量の増大およびこれらミ
クロ組織の不均一などが生じて、転動疲労寿命を低下さ
せる。
In continuous casting, center segregation and eutectic carbides that cause such problems are caused by solidification shrinkage at the solidified tip and vacuum suction force of the void created by bulging of the solidified shell, which causes C, Cr, etc. to appear at the solidified tip. It is formed by the suction of concentrated molten iron content such as molten steel, etc., and due to heat treatment during product processing, large eutectic carbides or spheroidized carbides remain, an increase in the amount of retained austenite, and non-uniformity of these microstructures. etc. occur, reducing rolling fatigue life.

その防止策としては、例えば2次冷却帯域における電磁
撹拌等が試みられたが、セミミクロ偏析を軽減するまで
には至らず、また大型の共晶炭化物の消散には効果が無
い。
As a preventive measure, attempts have been made, for example, to use electromagnetic stirring in the secondary cooling zone, but this has not resulted in alleviation of semi-micro segregation and is ineffective in dissipating large eutectic carbides.

その他、凝固末期に一対のロールを用いて大圧下を施す
いわゆるインラインリダクション法(鉄と鋼 第60年
(1974)第7号875〜884頁)の適用も試みら
れたが、未凝固層の大きい鋳片領域における圧下が不十
分だと、凝固界面に割れが発生し、逆に圧下が十分すぎ
る場合には鋳片の厚み方向中心部に強い負偏析が生じる
などの問題があった。
In addition, attempts have been made to apply the so-called in-line reduction method (Tetsu-to-Hagane 60th Year (1974) No. 7, pp. 875-884), in which a large reduction is applied using a pair of rolls at the final stage of solidification; If the reduction in the slab region is insufficient, cracks will occur at the solidification interface, while if the reduction is too sufficient, strong negative segregation will occur at the center of the slab in the thickness direction.

この点につき、特開昭49−121738号公報では、
鋳片の凝固先端部付近でロール対による軽圧下を施し、
該部分の凝固収縮量を圧下により補償する方法が、また
特開昭52−54625号公報では、鍛造金型を用いて
鋳片の凝固完了点近傍を大圧下する方法が、それぞれ提
案されている。
Regarding this point, Japanese Patent Application Laid-Open No. 49-121738,
Light reduction is applied with a pair of rolls near the solidified tip of the slab,
A method is proposed in which the amount of solidification shrinkage in the area is compensated by reduction, and Japanese Patent Application Laid-Open No. 52-54625 proposes a method in which a forging die is used to greatly reduce the area near the solidification completion point of the slab. .

しかしながらロールによる軽圧下の場合には、複数対の
ロールによる数mm/mの圧下を施したとしても、ロー
ルピッチ間で生じる凝固収縮やバルジングを十分に防止
することができず、また圧下位置が適切でなければかえ
って中心偏析が悪化するといった問題があった。
However, in the case of light reduction by rolls, even if several pairs of rolls apply a reduction of several mm/m, it is not possible to sufficiently prevent solidification shrinkage and bulging that occur between the roll pitches, and the reduction position is If it is not appropriate, there is a problem that center segregation will worsen.

他方、鍛造金型を用いて鋳片の凝固完了点近傍を大圧下
する場合は、インラインリダクション法の如きロールに
よる大圧下に比べて凝固界面が割れにくく、また負偏析
さらには七稟マクロ偏析をも飛躍的に改善できることが
明らかになってはいるけれども、依然として未凝固層の
大きい鋳片領域での圧下が不十分であると凝固界面に割
れが発生し、逆に圧下が十分すぎると鋳片の中心部に強
い負偏析を生じる不利があり、さらには未凝固厚の小さ
い領域を圧下してもその効果が得られないことから、最
適な圧下条件を模索しているのが現状である゛。
On the other hand, when a forging die is used to apply a large reduction near the solidification point of the slab, the solidification interface is less likely to crack compared to large reduction using rolls as in the in-line reduction method, and it also reduces negative segregation and even seven-dimensional macro-segregation. However, if the reduction in the area of the slab with a large unsolidified layer is insufficient, cracks will occur at the solidification interface, and conversely, if the reduction is too sufficient, the slab will The disadvantage is that strong negative segregation occurs in the center of the steel, and furthermore, the effect cannot be obtained even if the area where the unsolidified thickness is small is rolled down, so the current situation is to find the optimal rolling conditions. .

(発明が解決しようとする課題) この発明は、上記技術の問題点を有利に解決するもので
、成分調整に併せ、連鋳条件に工夫を加えることにより
、高温長時間の均質化焼鈍を必要とすることなしに、従
来の高炭素クロム軸受鋼と同等以上の優れた転動疲労寿
命を有しかつ生産性の高い軸受用素材の有利な製造方法
を提案することを目的とする。
(Problems to be Solved by the Invention) This invention advantageously solves the problems of the above-mentioned technology.In addition to component adjustment, continuous casting conditions are modified to require high-temperature and long-term homogenization annealing. The purpose of the present invention is to propose an advantageous manufacturing method for a bearing material that has an excellent rolling fatigue life equivalent to or better than conventional high carbon chromium bearing steel and is highly productive.

(課題を解決するための手段) すなわちこの発明は、 C: 0.60〜1.50%、 Si : 0.15〜2.00%、 Mn : 0.15〜2.50%、 Cr : 0.05〜1.00%およびMo : 0.
50超〜1.50% を含有し、残部はFeおよび不可避的不純物からなる溶
鋼を、連続鋳造し、鋳片内部が凝固を完了するクレータ
エンド近傍にて圧下率5%以上の鍛圧加工を施し、つい
で熱間圧延を施すことからなる転動疲労寿命に優れた軸
受用素材の製造方法(第1発明)である。
(Means for Solving the Problems) That is, this invention has the following properties: C: 0.60-1.50%, Si: 0.15-2.00%, Mn: 0.15-2.50%, Cr: 0 .05-1.00% and Mo: 0.
Molten steel containing more than 50% to 1.50%, with the remainder consisting of Fe and unavoidable impurities, is continuously cast and subjected to forging with a reduction rate of 5% or more near the crater end where the inside of the slab completes solidification. This is a method (first invention) for producing a material for a bearing having excellent rolling fatigue life, which comprises performing hot rolling.

またこの発明は、溶鋼の成分組成が、 C:0゜60〜1.50 %、 Si : 0.15〜2.00  %、Mn : 0.
15〜2.50  %、Cr : 0.05〜1.00
%およびMo : 0.50超〜1.50% を含み、さらに V : 0.05〜0.50%、 Nb : 0.05〜0.50%、 W : 0.05〜0.50%、 Ni : 0.10〜2.00%およびCu : 0.
05〜1.00% のうちかり選んだ1種または2種以上を含有し、残部は
Feおよび不可避′的不純物の組成になる転動疲労寿命
に優れた軸受用素材の製造方法(第2発明)である。
Further, in the present invention, the composition of the molten steel is as follows: C: 0.60 to 1.50%, Si: 0.15 to 2.00%, Mn: 0.
15-2.50%, Cr: 0.05-1.00
% and Mo: more than 0.50 to 1.50%, further including V: 0.05 to 0.50%, Nb: 0.05 to 0.50%, W: 0.05 to 0.50%, Ni: 0.10-2.00% and Cu: 0.
05 to 1.00%, and the remainder consists of Fe and unavoidable impurities (Second Invention) ).

(作 用) まずこの発明において、素材の威分組威を上記の範囲に
限定した理由について説明する。
(Function) First, in this invention, the reason why the strength of the material is limited to the above range will be explained.

C: 0.60〜1.50% Cは、基地に固溶することによって、強度、耐摩耗性ひ
いては転動疲労寿命特性を向上させる有用元素である。
C: 0.60 to 1.50% C is a useful element that improves strength, wear resistance, and rolling fatigue life characteristics by forming a solid solution in the matrix.

しかしながらあまりに多すぎると巨大炭化物が生威し、
かえって転動疲労寿命を劣化させるだけでなく、さらに
その消散のため長時間の拡散焼鈍が必要となり生産性の
低下を招く。
However, if there is too much, giant carbides will grow,
This not only deteriorates the rolling fatigue life but also requires a long diffusion annealing to dissipate the fatigue, resulting in a decrease in productivity.

そこで上記の点を勘案してC量は0.60〜1.50%
の範囲で添加するものとした。
Therefore, taking the above points into consideration, the amount of C should be 0.60 to 1.50%.
It was decided to add within the following range.

St : 0.15〜2.00% Siは、鋼の溶製時脱酸剤として作用するほか、基地に
固溶し焼戻しによる硬度低下を抑制して転動疲労寿命を
向上させる有用元素である。しかしながらあまりに多す
ぎると被削性ならびに鍛造性を劣化させるので、Siは
0.15〜2.00%の範囲で添加するものとした。
St: 0.15-2.00% Si is a useful element that not only acts as a deoxidizing agent during steel melting, but also dissolves in the matrix and suppresses the decrease in hardness due to tempering, improving rolling fatigue life. . However, if too much Si is added, machinability and forgeability deteriorate, so Si is added in a range of 0.15 to 2.00%.

Mn : 0.15〜2.50% Mnは、鋼の焼入れ性を向上させることにより、基地靭
性の向上、ひいては鋼材の転動疲労寿命の向上に有効に
寄与する。しかしながら多すぎると被削性ならびに鍛造
性を劣化させるので、Mnは0.15〜2.50%の範
囲で添加するものとした。
Mn: 0.15 to 2.50% Mn improves the hardenability of the steel, thereby effectively contributing to improving the base toughness and, in turn, improving the rolling fatigue life of the steel material. However, since too much Mn deteriorates machinability and forgeability, Mn is added in a range of 0.15 to 2.50%.

Cr : 0.05〜1.00% Crは、焼入れ性を向上させ基地の強度および靭性を高
めると共に、炭化物の形威を助長し耐摩耗性を向上させ
るのに有効である。かかる効果は、0.05%以上で顕
著になるのでこの値を下限とする。
Cr: 0.05 to 1.00% Cr is effective in improving hardenability, increasing the strength and toughness of the matrix, and promoting the formation of carbides to improve wear resistance. This effect becomes noticeable at 0.05% or more, so this value is set as the lower limit.

しかしながら1.00%を超えると耐衝撃性および切削
性が劣化し、また添加コストが上昇する。さらに鋳造時
共晶炭化物を生威して、転動疲労寿命を低下させるばか
りでなく、この悪影響を解消するために、高温、長時間
の均質化処理が必要となる。
However, if it exceeds 1.00%, impact resistance and machinability will deteriorate, and addition cost will increase. Furthermore, eutectic carbides are produced during casting, which not only reduces rolling fatigue life, but also requires high-temperature, long-term homogenization treatment to eliminate this negative effect.

よって、1.00%を上限とした。Therefore, the upper limit was set at 1.00%.

Mo : 0.50超〜1.50% Moは、焼入性を高めるだけでなく、強い固溶強化、析
出硬化機能を有することから、強度ならびに転動疲労寿
命の向上に有効に寄与する。しかしながら多すぎると切
削性を劣化させると共に、添加コストの上昇を招く。よ
って門0は0.50超〜1.50%き範囲で添加するも
のとした。
Mo: more than 0.50 to 1.50% Mo not only improves hardenability but also has strong solid solution strengthening and precipitation hardening functions, so it effectively contributes to improving strength and rolling fatigue life. However, if the amount is too large, machinability deteriorates and addition cost increases. Therefore, the content of element 0 was determined to be in the range of more than 0.50 to 1.50%.

この発明では、上記した基本成分の他、必要に応じてV
、 Nb、 W、 NiおよびCoのうちから選んだ1
種または2種以上を、強度向上成分として以下に述べる
範囲で添加することができる。
In this invention, in addition to the above-mentioned basic components, V
, Nb, W, Ni, and Co.
A species or two or more species can be added as strength-enhancing components within the ranges described below.

V、 Nb、 W :0.05〜0.50%V、Nbお
よびWはそれぞれ、高温で安定した炭化物を形威し、転
動疲労寿命特性を向上させる。
V, Nb, W: 0.05-0.50% V, Nb and W each form stable carbides at high temperatures and improve rolling fatigue life characteristics.

しかし、多すぎると焼戻後の硬度が低下し、かえって転
動疲労寿命特性を劣化させる。よってV。
However, if the amount is too high, the hardness after tempering will decrease and the rolling fatigue life characteristics will deteriorate. Therefore, V.

NbおよびWはそれぞれ、0.05〜0.50%の範囲
で添加するものとした。
Nb and W were each added in a range of 0.05 to 0.50%.

Ni : 0.10〜2.00% Niは、焼入れ性の向上に寄与するだけでなく、焼戻し
後の硬度低下を抑制させることから、強度および転動疲
労寿命の向上に有用な元素である。
Ni: 0.10-2.00% Ni not only contributes to improving hardenability, but also suppresses a decrease in hardness after tempering, so it is an element useful for improving strength and rolling fatigue life.

しかしながらあまりに多すぎると、残留γが多量に生威
し焼戻し後の鋼材硬度を低下させる。よってNiはo、
 io〜2.00%の範囲で添加するものとした。
However, if the amount is too large, a large amount of residual γ will grow and reduce the hardness of the steel material after tempering. Therefore, Ni is o,
It was supposed to be added in a range of io to 2.00%.

Cu : 0.05〜1.00% Cuは、Niと同様、焼入れ性の向上に寄与するだけで
なく、焼戻し後の硬度低下を抑制させることから、強度
および転動疲労寿命の向上に有用な元素である。しかし
ながら含有量が多すぎる場合には鍛造性の劣化を招く。
Cu: 0.05-1.00% Cu, like Ni, not only contributes to improving hardenability, but also suppresses the decrease in hardness after tempering, so it is useful for improving strength and rolling fatigue life. It is an element. However, when the content is too large, forgeability deteriorates.

よってCuは0.05〜1.00%の範囲で添加するも
のとした。
Therefore, Cu was added in a range of 0.05 to 1.00%.

なおその他、酸素量低減および介在物形態制御を目的と
してAI、Ca+ Na、  K、 MgおよびZrの
うちから選んだ1種または2種以上を、また被削性向上
を目的としてSI Ca、 pb、  B、Biおよび
REMのうちから選んだ1種または2種以上を、さらに
熱間強度向上を目的としてPおよびNのうちから選んだ
1種または2種を、またさらに脱炭低減を目的としてs
bをそれぞれ少量添加することもできる。
In addition, one or more selected from AI, Ca + Na, K, Mg, and Zr are used for the purpose of reducing the amount of oxygen and controlling the form of inclusions, and SI Ca, pb, and SI Ca are used for the purpose of improving machinability. One or more selected from B, Bi, and REM, one or two selected from P and N for the purpose of improving hot strength, and s for the purpose of reducing decarburization.
It is also possible to add a small amount of each of b.

さて上述したような好適成分組成に調整した溶鋼を、連
続鋳造して鋳片とするが、この発明では、得られた連続
鋳造鋳片の内部溶鋼が凝固完了するクレータエンド近傍
にて圧下率:5%以上の鍛圧加工を施すことが肝要であ
り、かくして鋳片中心部における偏析の生成を防止する
のである。
Now, the molten steel adjusted to the preferred composition as described above is continuously cast into slabs. In this invention, the reduction rate is set near the crater end where the internal molten steel of the obtained continuously cast slabs completes solidification. It is important to perform a forging process of 5% or more, thus preventing the formation of segregation in the center of the slab.

ここに、上記の如き鍛圧加工によって、鋳片中心に相当
する位置での偏析が改善される理由は、次のとおりと考
えられる。
Here, the reason why the forging process as described above improves segregation at a position corresponding to the center of the slab is considered to be as follows.

すなわち内部溶鋼の凝固末期には、大型の非金属介在物
を含んだ合金元素濃度の高い溶鋼がクレータエンド近傍
に存在するため、このまま凝固すると非金属介在物の残
存ならびに中心偏析が生じるわけであるが、凝固前に鍛
圧加工を施すと、かような非金属介在物を含む濃化溶鋼
は上方に押し出されるため、中心部の非金属介在物量な
らびに合金元素量はさほど上昇することはなく、その結
果、中心部における転動疲労寿命特性は向上する。
In other words, at the final stage of solidification of internal molten steel, molten steel containing large nonmetallic inclusions and a high concentration of alloying elements exists near the crater end, so if it solidifies as it is, nonmetallic inclusions will remain and central segregation will occur. However, when forging is performed before solidification, the concentrated molten steel containing such non-metallic inclusions is pushed upwards, so the amount of non-metallic inclusions and alloying elements in the center do not increase significantly; As a result, rolling fatigue life characteristics in the center area are improved.

そして上記したとおり中心偏析や共晶炭化物が効果的に
抑制される結果、従来均熱炉を用いて行われていた拡散
焼鈍処理時間が大幅に短縮されるのである。
As described above, as center segregation and eutectic carbides are effectively suppressed, the time required for diffusion annealing, which was conventionally performed using a soaking furnace, is significantly shortened.

第1図に、C: 1.01%、Si : 0.80%、
Mn : 0.45%、Cr : 0.25%およびM
o : 0.80%を含有するM戒になる溶鋼の連続鋳
造に際し、連続鋳造中に連続的に鍛圧加工を行って得た
鋳片、あるいは鍛圧加工を行わない従来法により得られ
た鋳片をそれぞれ、棒鋼圧延により65mmφ棒鋼とし
、中心部(棒鋼の中心が試験片の表面にくるように試験
片を採取)における転動疲労寿命特性について調べた結
果を示す。
In Figure 1, C: 1.01%, Si: 0.80%,
Mn: 0.45%, Cr: 0.25% and M
o: Slabs obtained by continuous forging during continuous casting of M-molten steel containing 0.80%, or slabs obtained by conventional methods without forging. 65 mm diameter steel bars were obtained by steel bar rolling, and the rolling contact fatigue life characteristics at the center portion (the test pieces were taken so that the center of the steel bars was on the surface of the test piece) were investigated. The results are shown below.

同図より明らかなように、棒鋼中心部材の転動疲労寿命
特性は、圧下率が5%以上の鍛圧加工を施すことによっ
て、かかる鍛圧加工を施さない従来法の5倍以上に向上
した。
As is clear from the figure, the rolling contact fatigue life characteristics of the central steel bar member were improved by more than five times the conventional method without such forging by applying forging with a rolling reduction of 5% or more.

従ってこの発明では、鍛圧加工による圧下率につき、5
%以上の範囲に限定したのである。とはいえ圧下率が6
0%を超えると圧延後の素材精度が低下するという問題
が生じるので、圧下率は60%以下とするのが好ましい
Therefore, in this invention, the rolling reduction rate by forging process is 5.
% or more. However, the reduction rate is 6
If it exceeds 0%, there will be a problem that the precision of the material after rolling will decrease, so the rolling reduction ratio is preferably 60% or less.

(実施例) 第1表に示す化学成分になる種々の溶鋼を、転炉→連続
鋳造法により、第2表に示す条件下に処理して鋳片とし
た。
(Example) Various molten steels having the chemical compositions shown in Table 1 were processed into slabs by a converter->continuous casting method under the conditions shown in Table 2.

ついで均熱炉にて、1240℃、2hまたは20hの均
質化処理を施したのち、65IIIlφ棒鋼に熱間圧延
後、球状化焼鈍処理を行い、D/4部および中心部(棒
鋼の中心が試験片の表面にくるように採取)より転動疲
労寿命試験片を採取し、焼入れ、焼戻し後、転動疲労寿
命試験を実施した。
Then, after homogenizing in a soaking furnace at 1240°C for 2 or 20 hours, the 65IIIlφ steel bar was hot rolled and then subjected to spheroidizing annealing. A rolling contact fatigue life test piece was taken from the surface of the piece), and after quenching and tempering, a rolling contact fatigue life test was conducted.

転動疲労寿命試験は、円筒型転動疲労寿命試験機を用い
、ヘルツ最大接触応力600kgf/mn+”、繰り返
し応力数46240 cpmの条件で行い、試験結果は
ワイブル分布に従うものと仮定して確率紙上にまとめ、
綱材漱1の20h拡散焼鈍処理材のD/4部L1゜(累
積破損確立が10%のときの、はく離までの応力負荷回
数)を1として、相対的に評価した。
The rolling contact fatigue life test was conducted using a cylindrical rolling contact fatigue life testing machine under the conditions of a maximum Hertzian contact stress of 600 kgf/mn+" and a repeated stress number of 46,240 cpm, and the test results were calculated on probability paper assuming that they follow the Weibull distribution. summarized in
A relative evaluation was made by setting D/4 part L1° (the number of stress loads until peeling when the cumulative probability of failure is 10%) of a 20-h diffusion annealed material of rope material Sou 1 as 1.

得られた結果を第2表に併記する。The obtained results are also listed in Table 2.

第2表より明らかなように、戒分組威範囲および鍛圧加
工における圧下率がこの発明の適正範囲を満足するもの
はいずれも、転動疲労寿命特性は鋼材l!Llの20h
拡散焼鈍処理材(従来材)に比べて格段に向上している
As is clear from Table 2, all steels whose rolling force range and rolling reduction during forging meet the appropriate ranges of this invention have rolling contact fatigue life characteristics of l! 20h of Ll
This is a significant improvement over diffusion annealed materials (conventional materials).

(発明の効果) かくしてこの発明によれば、高温長時間の均質化焼鈍を
施す必要なしに、従来の鋼材よりも優れた転動疲労寿命
を有する軸受用素材を得ることができる。
(Effects of the Invention) Thus, according to the present invention, it is possible to obtain a bearing material having a rolling contact fatigue life superior to that of conventional steel materials without the need for homogenizing annealing at high temperatures and for a long period of time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、鍛圧加工における圧下率と転動疲労寿命特性
との関係を示したグラフである。 圧下キ(%)
FIG. 1 is a graph showing the relationship between rolling reduction rate and rolling fatigue life characteristics in forging. Pressure reduction (%)

Claims (1)

【特許請求の範囲】 1、C:0.60〜1.50wt%、 Si:0.15〜2.00wt%、 Mn:0.15〜2.50wt%、 Cr:0.05〜1.00wt%および Mo:0.50超〜1.50wt% を含有し、残部はFeおよび不可避的不純物からなる溶
鋼を、連続鋳造し、鋳片内部が凝固を完了するクレータ
エンド近傍にて圧下率5%以上の鍛圧加工を施し、つい
で熱間圧延を施すことを特徴とする転動疲労寿命に優れ
た軸受用素材の製造方法。 2、溶鋼の成分組成が、 C:0.60〜1.50wt%、 Si:0.15〜2.00wt%、 Mn:0.15〜2.50wt%、 Cr:0.05〜1.00wt%および Mo:0.50超〜1.50wt% を含み、さらに V:0.05〜0.50wt%、 Nb:0.05〜0.50wt%、 W:0.05〜0.50wt%、 Ni:0.10〜2.00wt%および Cu:0.05〜1.00wt% のうちから選んだ1種または2種以上を含有し、残部は
Feおよび不可避的不純物の組成になる請求項1記載の
軸受用素材の製造方法。
[Claims] 1. C: 0.60 to 1.50 wt%, Si: 0.15 to 2.00 wt%, Mn: 0.15 to 2.50 wt%, Cr: 0.05 to 1.00 wt%. % and Mo: more than 0.50 to 1.50 wt%, with the remainder consisting of Fe and unavoidable impurities. Molten steel is continuously cast, and the reduction rate is 5% near the crater end where the inside of the slab completes solidification. A method for manufacturing a bearing material with excellent rolling fatigue life, characterized by subjecting the above forging process to hot rolling. 2. The composition of the molten steel is: C: 0.60 to 1.50 wt%, Si: 0.15 to 2.00 wt%, Mn: 0.15 to 2.50 wt%, Cr: 0.05 to 1.00 wt% % and Mo: more than 0.50 to 1.50 wt%, further V: 0.05 to 0.50 wt%, Nb: 0.05 to 0.50 wt%, W: 0.05 to 0.50 wt%, Claim 1: Contains one or more selected from Ni: 0.10 to 2.00 wt% and Cu: 0.05 to 1.00 wt%, and the remainder is Fe and inevitable impurities. A method of manufacturing the bearing material described above.
JP2050824A 1990-03-03 1990-03-03 Manufacturing method of bearing material with excellent rolling fatigue life Expired - Fee Related JP2986829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2050824A JP2986829B2 (en) 1990-03-03 1990-03-03 Manufacturing method of bearing material with excellent rolling fatigue life

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2050824A JP2986829B2 (en) 1990-03-03 1990-03-03 Manufacturing method of bearing material with excellent rolling fatigue life

Publications (2)

Publication Number Publication Date
JPH03254340A true JPH03254340A (en) 1991-11-13
JP2986829B2 JP2986829B2 (en) 1999-12-06

Family

ID=12869520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2050824A Expired - Fee Related JP2986829B2 (en) 1990-03-03 1990-03-03 Manufacturing method of bearing material with excellent rolling fatigue life

Country Status (1)

Country Link
JP (1) JP2986829B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295480A (en) * 1991-12-13 1993-11-09 Kawasaki Steel Corp Thick steel plate for welded structure excellent in toughness of electron beam weld zone
US5658666A (en) * 1993-10-29 1997-08-19 Nsk Ltd. Rolling bearing
NL1011805C2 (en) * 1999-04-15 2000-10-17 Skf Eng & Res Centre Bv Method for manufacturing a ball bearing steel.
WO2013060878A1 (en) * 2011-10-28 2013-05-02 Aktiebolaget Skf A bearing component
JP2013112834A (en) * 2011-11-25 2013-06-10 Nippon Steel & Sumitomo Metal Corp Bearing steel
CN104711486A (en) * 2015-01-19 2015-06-17 宜兴市永昌轧辊有限公司 High speed steel cold roller
CN108660358A (en) * 2018-06-08 2018-10-16 本钢板材股份有限公司 A kind of production technology of boiler heat resisting structural steel 12Cr1MoV
JP2019104955A (en) * 2017-12-11 2019-06-27 日本製鉄株式会社 Carbon steel slab and manufacturing method of the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05295480A (en) * 1991-12-13 1993-11-09 Kawasaki Steel Corp Thick steel plate for welded structure excellent in toughness of electron beam weld zone
US5658666A (en) * 1993-10-29 1997-08-19 Nsk Ltd. Rolling bearing
NL1011805C2 (en) * 1999-04-15 2000-10-17 Skf Eng & Res Centre Bv Method for manufacturing a ball bearing steel.
WO2000063449A1 (en) * 1999-04-15 2000-10-26 Skf Engineering & Research Centre B.V. Method for producing a rolling bearing steel
WO2013060878A1 (en) * 2011-10-28 2013-05-02 Aktiebolaget Skf A bearing component
US9546680B2 (en) 2011-10-28 2017-01-17 Aktiebolaget Skf Bearing component
JP2013112834A (en) * 2011-11-25 2013-06-10 Nippon Steel & Sumitomo Metal Corp Bearing steel
CN104711486A (en) * 2015-01-19 2015-06-17 宜兴市永昌轧辊有限公司 High speed steel cold roller
JP2019104955A (en) * 2017-12-11 2019-06-27 日本製鉄株式会社 Carbon steel slab and manufacturing method of the same
CN108660358A (en) * 2018-06-08 2018-10-16 本钢板材股份有限公司 A kind of production technology of boiler heat resisting structural steel 12Cr1MoV

Also Published As

Publication number Publication date
JP2986829B2 (en) 1999-12-06

Similar Documents

Publication Publication Date Title
KR101520208B1 (en) Case hardening steel, method for producing same, and mechanical structural part using case hardening steel
JP2007162128A (en) Case hardening steel having excellent forgeability and crystal grain-coarsening prevention property, its production method and carburized component
JPH06100924A (en) Production of shape steel subjected to controlled rolling excellent in fire resistance and toughness
JP2010229508A (en) Case hardening steel having excellent size-reduction property of maximum crystal grain
KR101286121B1 (en) High carbon forging work roll for hot rolling having superior high temperature abrasion resistance and mechanical strength, and the method for producing the work roll
JP3738004B2 (en) Case-hardening steel with excellent cold workability and prevention of coarse grains during carburizing, and its manufacturing method
JP2986829B2 (en) Manufacturing method of bearing material with excellent rolling fatigue life
JP2905243B2 (en) Manufacturing method of bearing material with excellent rolling fatigue life
JP3002392B2 (en) Method for manufacturing centrifugally cast composite roll
JP4500246B2 (en) Steel pipe for machine structural member and manufacturing method thereof
JP2905241B2 (en) Manufacturing method of bearing material with excellent rolling fatigue life
JP2905242B2 (en) Method for producing low Cr bearing steel material with excellent rolling fatigue life
JP3716073B2 (en) Manufacturing method of hot forged parts with excellent machinability and fatigue characteristics
JP4393344B2 (en) Manufacturing method of case hardening steel with excellent cold workability and grain coarsening resistance
JPH0762204B2 (en) Manufacturing method of high-toughness non-heat treated steel for hot forging and its steel bars and parts
JP3091795B2 (en) Manufacturing method of steel bars with excellent drawability
JPH03271319A (en) Production of bearing steel having long service life and high strength
JPH03258445A (en) Production of raw material for bearing having long service life and high strength
CN116463556B (en) High-temperature oxidation resistance and high-homogeneity die steel and preparation method thereof
JPH0292444A (en) Production of raw material for bearing steel ball
JPH10152754A (en) Case hardening steel and production of case hardening steel
JP2862607B2 (en) Manufacturing method of steel with excellent drilling workability
JPH0568528B2 (en)
JPH0814001B2 (en) Method for manufacturing hot forged non-heat treated parts
JPH05253644A (en) Manufacture of shaft parts having excellently extruding workability and forgeability for automobile

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees