JPH05253644A - Manufacture of shaft parts having excellently extruding workability and forgeability for automobile - Google Patents

Manufacture of shaft parts having excellently extruding workability and forgeability for automobile

Info

Publication number
JPH05253644A
JPH05253644A JP16623092A JP16623092A JPH05253644A JP H05253644 A JPH05253644 A JP H05253644A JP 16623092 A JP16623092 A JP 16623092A JP 16623092 A JP16623092 A JP 16623092A JP H05253644 A JPH05253644 A JP H05253644A
Authority
JP
Japan
Prior art keywords
shaft
molten steel
content
forging
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16623092A
Other languages
Japanese (ja)
Other versions
JP3091794B2 (en
Inventor
Tsutomu Nakajima
力 中島
Kazuo Asao
一夫 朝生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Publication of JPH05253644A publication Critical patent/JPH05253644A/en
Application granted granted Critical
Publication of JP3091794B2 publication Critical patent/JP3091794B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a manufacturing method of a shaft parts intergratively forming a head part having the diameter larger than a shaft part to the end part of the shaft part, such as rear axle, gear shaft, propeller shaft, particularly, a manufacturing method, by which chevron crack is not developed at the time of extrusion working and forging. CONSTITUTION:Molten metal having composition composed of 0.20-0.8wt.% C, 0.01-1.0wt.% Si, 0.3-2.0wt.% Mn, 0.05-1.0wt.% Cr, 0.005-0.050wt.% P, 0.005-0.050wt.% S and the balance Fe with inevitable impurities is continuously cast. At this time, a component concentration preventing treatment, in which the ratio C/C0 of C content (C) in the axial part of a cast slab to C content (C0) in molten steel in a ladle near the crater end completing the solidification of the molten steel in the inner part of a cast slab becomes 0.8-1.1, is applied. Successively, the formation of the shaft part by the extrusion working and formation of the head part by the forging are applied, and by integratively forming the head part having the diameter larger than the shaft part to the end of the shaft part, the development of the chevron crack is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、自動車用軸部品、例
えばリヤアクスルシャフト、ギヤシャフト及びプロペラ
シャフト等の軸部の端部に軸部よりも大径の頭部を一体
に成形した軸部品の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automobile shaft component such as a rear axle shaft, a gear shaft, and a propeller shaft, which are integrally formed with a head having a diameter larger than that of the shaft portion. It relates to a manufacturing method.

【0002】[0002]

【従来の技術】この種の軸部品、例えばリヤアクスルシ
ャフトは、丸棒に押出し加工を施して所定径の軸部を形
成する工程及び、軸部端面側から鍛造を施し、軸部の所
定領域を軸部よりも大径の頭部とする工程、にて製造す
ることが多い。この製造において問題となるのは、押出
し加工工程では丸棒の軸芯、また鍛造工程では頭部の中
心をそれぞれ起点とする割れ、いわゆるシェブロンクラ
ックが高い頻度で生じることである。特に押出し加工
は、通常の引き抜き加工に比較してより高い減面率でか
つ冷間で行われるためシェブロンクラックが発生し易
く、また押出し加工で発生した微小の割れが、次の鍛造
工程で成長することもある。このシェブロンクラック
は、連続鋳造中の凝固時に生成する鋳片中心部近傍のマ
クロ及びセミマクロ偏析に起因して生じるものである。
2. Description of the Related Art A shaft part of this type, for example, a rear axle shaft, is formed by extruding a round bar to form a shaft part having a predetermined diameter, and forging from the end face of the shaft part so that a predetermined region of the shaft part is formed. It is often manufactured in a process in which the head has a larger diameter than the shaft. A problem in this manufacturing is that a so-called chevron crack, which originates from the axial center of the round bar in the extrusion process and from the center of the head in the forging process, is frequently generated. In particular, extrusion processing has a higher surface reduction rate and colder than ordinary drawing processing, so chevron cracks are likely to occur, and minute cracks generated during extrusion processing grow in the next forging process. There are also things to do. This chevron crack is caused by macro and semi-macro segregation in the vicinity of the center of the slab, which is generated during solidification during continuous casting.

【0003】かかる中心偏析の防止策として、例えば2
次冷却帯域における電磁攪拌などが試みられたが、セミ
マクロ偏析までを軽減するには至ってなく、その効果は
十分とはいえない。また鋳片の凝固末期に一対のロール
を用いて大圧下を施す、いわゆるインラインリダクショ
ン法{鉄と鋼 第60年(1974) 第7号 875〜884 頁}の
適用も試みられたが、この方法では、未凝固層の大きい
鋳片領域における圧下が不十分な場合にはC、Mn、P及
びS等の偏析している凝固界面に割れ(以下内部割れと
示す)が発生するという問題があった。
As a measure for preventing such center segregation, for example, 2
Although electromagnetic stirring in the subcooling zone has been attempted, it has not been possible to reduce even semi-macro segregation, and its effect is not sufficient. Also, the so-called in-line reduction method {iron and steel 60th (1974) No. 7 pages 875-884}, in which a large reduction is performed using a pair of rolls at the final stage of solidification of the slab, was also tried, but this method was also tried. However, there is a problem that cracking (hereinafter referred to as internal cracking) occurs at the solidified interface where C, Mn, P, S, etc. are segregated when the reduction in the cast area having a large unsolidified layer is insufficient. It was

【0004】その他、特開昭49-121738 号公報には、鋳
片の凝固先端部付近でロール対による軽圧下を施して、
該部分の凝固収縮量を圧下により補償する方法が、また
特開昭52-54623号公報には、鍛造金型を用いて鋳片の凝
固完了点近傍を大圧下する方法がそれぞれ提案されてい
る。
In addition, in JP-A-49-121738, a light reduction is applied by a pair of rolls near the solidification tip of the cast slab,
A method of compensating the amount of solidification shrinkage of the portion by reduction is proposed, and Japanese Patent Application Laid-Open No. 52-54623 proposes a method of greatly reducing the vicinity of the solidification completion point of a cast piece by using a forging die. ..

【0005】しかしながらロールによる軽圧下の場合に
は、複数対のロールにより数mm/mの圧下を施したとして
も、ロールピッチ間に生じる凝固収縮やバルジングを十
分に防止することができず、中心偏析の軽減及び内部割
れ防止に対する効果は不十分で、また圧下位置が適切で
なければかえって中心偏析の発生を促す不利があった。
他方、鍛造金型を用いて鋳片の凝固完了点近傍を大圧下
する方法は、インラインリダクション法のようなロール
による大圧下に比べて凝固界面が割れにくく、また負偏
析も極力回避することが可能で、セミマクロ偏析まで改
善できることが明らかになっているものの、依然として
未凝固層の大きい鋳片領域における圧下が不十分だと内
部割れが発生し、また未凝固層の小さい領域を圧下して
もその効果が得られないことから、最適な圧下条件を模
索しているのが現状である。
However, in the case of light reduction by rolls, even if a plurality of pairs of rolls are applied to reduce the pressure by several mm / m, it is not possible to sufficiently prevent solidification shrinkage and bulging which occur between roll pitches. The effects of reducing segregation and preventing internal cracking are insufficient, and if the rolling position is not appropriate, there is a disadvantage of promoting the occurrence of center segregation.
On the other hand, the method of using a forging die to largely reduce the vicinity of the solidification completion point of the slab is less likely to crack the solidification interface as compared to large reduction with a roll as in the in-line reduction method, and it is possible to avoid negative segregation as much as possible. Although it has been clarified that it is possible and can improve to semi-macro segregation, internal cracking occurs if the reduction in the cast area of the large unsolidified layer is still insufficient, and even if the area of the small unsolidified layer is reduced. Since the effect cannot be obtained, it is the current situation to seek the optimum rolling reduction condition.

【0006】従って鋳片に生成する中心偏析を飛躍的に
改善するまでには至ってなく、偏析部のC、P及びS等
の濃度を低下するために溶鋼のC濃度の目標値を下げた
り、P及びSを0.005 %未満にしたり、また鋼種や用途
によっては鋳片段階において拡散焼鈍などを施して対処
しているのが実状であり、大幅なコストアップにもなっ
ている。
Therefore, the center segregation generated in the cast slab has not been dramatically improved, and the target value of the C concentration of the molten steel is lowered in order to reduce the concentrations of C, P, S and the like in the segregated portion, It is the actual situation that P and S are set to less than 0.005%, and depending on the type of steel and the application, diffusion annealing or the like is performed at the stage of the slab, which is a substantial increase in cost.

【0007】[0007]

【発明が解決しようとする課題】この発明は、上記の問
題を有利に解決するもので、連続鋳造法を利用する場合
であっても、中心偏析の生成を極力低減し、もって押出
し加工及び鍛造時にシェブロンクラックが生じない、押
出し加工性及び鍛造性に優れた自動車用軸部品の有利な
製造方法について提案することを目的とする。
SUMMARY OF THE INVENTION The present invention advantageously solves the above problems. Even when a continuous casting method is used, the formation of center segregation is reduced as much as possible, and therefore extrusion and forging are performed. It is an object of the present invention to propose an advantageous manufacturing method of an automobile shaft component which is excellent in extrudability and forgeability without causing chevron crack at times.

【0008】[0008]

【課題を解決するための手段】すなわちこの発明は、
C:0.20〜0.8 wt%(以下単に%で示す)、Si:0.1 〜
1.0 %、Mn:0.3 〜2.0 %、Cr:0.1 〜1.0 %、P:0.
005 〜0.050 %及びS:0.005 〜0.050 %を含有し、残
部はFeおよび不可避的不純物の組成になる溶鋼を連続鋳
造し、その際、鋳片内部溶鋼が凝固を完了するクレータ
エンド近傍にて、取鍋中溶鋼のC含有量(C0)に対する鋳
片軸心部におけるC含有量(C)の比C/C0が0.8 〜1.
1 となる鍛圧加工を施し、次いで押出し加工を施して軸
部を成形し、その後軸部端に鍛造を施して軸部よりも大
径の頭部を一体成形することを特徴とする押出し加工性
及び鍛造性に優れた自動車用軸部品の製造方法(第1発
明)である。
That is, the present invention is
C: 0.20 to 0.8 wt% (hereinafter simply indicated as%), Si: 0.1 to
1.0%, Mn: 0.3 to 2.0%, Cr: 0.1 to 1.0%, P: 0.
Molten steel containing 005 to 0.050% and S: 0.005 to 0.050% with the balance being Fe and inevitable impurities is continuously cast. At that time, in the vicinity of the crater end where the molten steel inside the slab completes solidification, The ratio C / C 0 of the C content (C) in the slab axial center to the C content (C 0 ) of the molten steel in the ladle is 0.8 to 1.
Extrusion workability characterized by performing forging pressure processing that becomes 1, then extruding to form the shaft part, and then forging the shaft end to integrally form a head with a diameter larger than the shaft part And a method for manufacturing an automobile shaft component having excellent forgeability (first invention).

【0009】またこの発明は、上記した第1発明におい
て、素材成分としてさらに、Mo:0.01〜0.5 %、V:0.
005 〜0.050 %、Ti:0.002 〜0.050 %、Nb:0.005 〜
0.050 %、Al:0.002 〜0.100 %及びB:0.0002〜0.00
30%を含有させた、自動車用軸部品の製造方法(第2発
明)である。
Further, the present invention is the same as the above-mentioned first invention, further containing Mo: 0.01 to 0.5% and V: 0.
005 to 0.050%, Ti: 0.002 to 0.050%, Nb: 0.005 to
0.050%, Al: 0.002-0.100% and B: 0.0002-0.00
It is a manufacturing method (second invention) of a shaft part for an automobile containing 30%.

【0010】[0010]

【作用】まず、この発明において溶鋼の成分組成を上記
の範囲に限定した理由について説明する。 C:0.20〜0.8 % C量は、主に焼き入れ後の製品の要求強度(表面硬さ、
焼き入れ有効硬化深さ)により決定されるが、C濃度が
高くなればなるほど押出し加工性が低下し、さらにCが
0.8 %を超えると衝撃値低下の問題が生じて実用的では
ないため、0.8%を上限とする。一方Cが0.20%未満で
あれば、十分な加工性を確保できることから、0.20%を
下限とした。
First, the reason why the composition of molten steel is limited to the above range in the present invention will be explained. C: 0.20-0.8% C content is mainly required strength of the product after quenching (surface hardness,
It depends on the effective hardening depth of quenching), but the higher the C concentration, the lower the extrudability and the more C
If it exceeds 0.8%, the problem of reduction of impact value occurs and it is not practical, so 0.8% is made the upper limit. On the other hand, if C is less than 0.20%, sufficient workability can be secured, so 0.20% was made the lower limit.

【0011】Si:0.01〜1.0 % Siは、脱酸剤として少なくとも 0.01 %は必要とする。
一方SiはCの活量を上げる作用があり、特に1.0 %を超
えると脱炭層の生成が顕著となり、焼入性及び疲労強度
の低下を招くため、上限は1.0 %とした。
Si: 0.01 to 1.0% Si requires at least 0.01% as a deoxidizing agent.
On the other hand, Si has the effect of increasing the activity of C, and especially when it exceeds 1.0%, the formation of a decarburized layer becomes prominent, which causes deterioration in hardenability and fatigue strength, so the upper limit was made 1.0%.

【0012】Mn:0.3 〜2.0 % Mnは、Siと同様、脱酸剤として作用するだけでなく、鋼
の脆化をもたらすSを固定させ、またさらには焼入性を
向上させて強度及び延性を高める上でも有用な元素であ
るが、含有量が 0.3%に満たないとその添加効果に乏し
く、一方 2.0%を超えると高価となるばかりか熱間圧延
後の制御冷却あるいは加工途中の熱処理工程においてミ
クロマルテンサイトの生成を促し、特に冷間での加工性
を害するので、0.3 〜2.0 %の範囲で添加するものとし
た。
Mn: 0.3-2.0% Mn not only acts as a deoxidizer like Si but also fixes S that causes embrittlement of steel, and further improves hardenability to improve strength and ductility. Although it is a useful element for increasing the content of steel, if its content is less than 0.3%, its effect is poor. On the other hand, if it exceeds 2.0%, it not only becomes expensive, but it also becomes a controlled cooling after hot rolling or a heat treatment process during processing. In this case, since it promotes the formation of micro martensite and impairs the workability especially in the cold, it was added in the range of 0.3 to 2.0%.

【0013】Cr:0.05〜1.0 % Crは焼入れ性を確保するのに不可欠の成分であり、また
冷間押出しにおける変形能を向上する働きもあるため、
0.05%以上の含有が必要である。一方1.0 %をこえると
変形能の向上効果は飽和する上高価な元素でもあるの
で、1.0 %を上限とする。
Cr: 0.05 to 1.0% Cr is an essential component for ensuring the hardenability, and also has the function of improving the deformability in cold extrusion,
It is necessary to contain 0.05% or more. On the other hand, if it exceeds 1.0%, the effect of improving the deformability is saturated and it is also an expensive element, so the upper limit is 1.0%.

【0014】Mo:0.01〜0.5 % Moは、焼入れ性の向上に有効な成分であり、また冷間加
工時の変形抵抗も増大させないため、0.01%以上は含有
させる。一方、0.5 %をこえると変形抵抗が大きくなる
上、高価な元素であるところから、0.5 %を上限とす
る。
Mo: 0.01 to 0.5% Mo is a component effective for improving the hardenability and does not increase the deformation resistance during cold working, so 0.01% or more is contained. On the other hand, if it exceeds 0.5%, the deformation resistance increases, and since it is an expensive element, the upper limit is 0.5%.

【0015】 V:0.005 〜0.050 %、Nb:0.005 〜0.050 % V及びNbはそれぞれ、強度の向上に有効に寄与すると共
に、結晶粒径を細かくする作用をもつ。しかしながら含
有量が 0.005%に満たないとその添加効果に乏しく、一
方 0.050%を超えるとその効果は飽和に達するので、そ
れぞれ 0.005〜0.050 %の範囲で含有させるものとし
た。
V: 0.005 to 0.050%, Nb: 0.005 to 0.050% V and Nb each contribute effectively to the improvement of strength and have the effect of making the crystal grain size finer. However, if the content is less than 0.005%, the effect of addition is poor, while if it exceeds 0.050%, the effect reaches saturation, so the content was made 0.005 to 0.050% respectively.

【0016】Ti:0.002 〜0.050 % Tiは、Alと同様、強脱酸剤であると同時に、結晶粒径を
細かくし、焼入性を制御する作用をもつ。しかしながら
含有量が 0.002%に満たないとその添加効果に乏しく、
一方 0.050%を超えるとその効果は飽和に達するので、
0.002〜0.050%の範囲で含有させるものとした。
Ti: 0.002 to 0.050% Ti, like Al, is a strong deoxidizing agent and, at the same time, has the function of making the crystal grain size fine and controlling the hardenability. However, if the content is less than 0.002%, the addition effect is poor,
On the other hand, if it exceeds 0.050%, the effect reaches saturation, so
It was made to contain in 0.002 to 0.050% of range.

【0017】Al:0.002 〜0.100 % Alは、強脱酸剤であると同時に、結晶粒径を細かくし、
焼入性を制御する作用をもつ。しかしながら含有量が
0.002%に満たないとその添加効果に乏しく、一方 0.10
0%を超えるとその効果は飽和に達するだけでなく、ア
ルミナ系の非金属酸化物の増加を招くので、 0.002〜0.
100 %の範囲で含有させるものとした。
Al: 0.002 to 0.100% Al is a strong deoxidizing agent and at the same time makes the crystal grain size fine,
It has the function of controlling hardenability. However, if the content is
If less than 0.002%, the effect of addition is poor, while 0.10%
If it exceeds 0%, not only the effect reaches saturation, but it also leads to an increase in alumina-based nonmetal oxides, so 0.002 to 0.
The content was set to be 100%.

【0018】B:0.0002〜0.0030% Bは、焼入性の向上に有用な成分であるが、含有量が0.
0002%に満たないとその添加効果に乏しく、一方0.0030
%を超えてもその効果は飽和し、それ以上の効果は望め
ないので、0.0002〜0.0030%の範囲で含有させるものと
した。
B: 0.0002 to 0.0030% B is a component useful for improving the hardenability, but its content is 0.
If it is less than 0002%, its effect is poor, while 0.0030
Even if it exceeds%, the effect is saturated, and no further effect can be expected, so the content was made 0.0002 to 0.0030%.

【0019】なお一般に焼入れを施して最終製品で所定
の強度とする鋼材は、その他の品質要求(例えば製品使
用時の軟化抵抗等)も含め、適宜上記の成分組成範囲内
で添加量を決定することが好ましい。
Generally, a steel material which is hardened to give a predetermined strength in a final product is appropriately determined in an amount within the above-mentioned compositional range, including other quality requirements (for example, softening resistance during use of the product). Preferably.

【0020】P及びS:0.005 〜0.050 % P及びSは有害元素として極力抑制する必要がある。そ
こで従来は中心偏析又は鋳片内部割れに起因した焼割れ
を防止するために、偏析部のP及びS濃度を0.005 %未
満に抑制していた。しかしながらこの発明に従い鍛圧加
工を施すと、中心偏析の軽減と内部割れの防止とを同時
にはかることができるため、P及びS濃度を0.005 %未
満に抑制する必要はない。しかし0.050 %をこえると、
鍛圧加工を施しても内部割れが発生し、冷間加工時又は
焼入れ時に割れが発生するため、0.050 %を上限とす
る。
P and S: 0.005 to 0.050% P and S should be suppressed as harmful elements as much as possible. Therefore, conventionally, in order to prevent quenching cracks caused by center segregation or internal cracking of cast slabs, the P and S concentrations in the segregated portion are suppressed to less than 0.005%. However, if the forging is performed according to the present invention, it is possible to reduce the central segregation and prevent the internal cracks at the same time, so it is not necessary to suppress the P and S concentrations to less than 0.005%. But if it exceeds 0.050%,
Since internal cracking occurs even after forging, and cracking occurs during cold working or quenching, the upper limit is 0.050%.

【0021】さてこの発明では、上述したような好適成
分組成になる溶鋼の連続鋳造に際し、鋳片の内部溶鋼が
凝固を完了するクレータエンド近傍にて成分濃化防止処
理を施すことによって、取鍋中溶鋼のC含有量(C0)に対
する鋳片軸心部におけるC含有量(C)の比C/C0を0.
8 〜1.1 に制御する。ここに成分濃化防止処理として
は、鍛圧加工がとりわけ有利に適合するけれども、この
発明は、これだけに限るものではなく、C/C0比を0.8
〜1.1 に制御することができるならば、他の手段であっ
ても良い。
According to the present invention, in continuous casting of molten steel having the above-described preferable composition, the ladle is subjected to a component concentration preventing treatment near the crater end where the molten steel inside the slab completes solidification. The ratio C / C 0 of the C content (C) in the slab axial center to the C content (C 0 ) of the medium molten steel is 0.
Control to 8 to 1.1. Forging treatment is particularly advantageous here as a component thickening prevention treatment, but the present invention is not limited to this, and the C / C 0 ratio is 0.8.
Other means may be used as long as it can be controlled to ~ 1.1.

【0022】以下、上記した鍛圧加工によってC/C0
の制御が可能な理由について説明する。すなわち内部溶
鋼の凝固末期には、Cの濃化が進んだ溶鋼がクレータエ
ンド近傍に存在するため、そのまま凝固すれば中心偏析
となるわけであるが、凝固前に鍛圧加工を施すと、かよ
うなC濃化溶鋼は上方に押し出される結果、中心部にお
けるC濃度はさほど上昇することはない。従って鍛圧加
工の実施時期をCの濃化程度に応じて調節すれば、鋳片
軸心部におけるC含有量を調整できるわけである。
The reason why the C / C 0 ratio can be controlled by the above forging process will be described below. That is, at the final stage of solidification of the internal molten steel, molten steel with a high concentration of C exists near the crater end, so if it solidifies as it is, central segregation will occur, but if forging processing is performed before solidification, As a result of the C-rich molten steel being extruded upward, the C concentration in the central portion does not rise so much. Therefore, by adjusting the timing of forging according to the degree of enrichment of C, the C content in the slab axial center can be adjusted.

【0023】ここでC/C0比の上限を1.1 としたのは、
1.1 をこえるとシェブロンクラックが発生するためであ
る。一方C/C0比の下限を0.8 としたのは、焼入れ焼戻
し後の製品の引張り強さが低下し、最終製品に使用上の
不都合が生じるためである。これは鋳片中心部のC/C0
比が0.8 未満の負偏析となり、強度保証に必要なCやMn
の含有量が維持できなくなるからである。
Here, the upper limit of the C / C 0 ratio is 1.1,
This is because if it exceeds 1.1, chevron cracks will occur. On the other hand, the lower limit of the C / C 0 ratio is set to 0.8 because the tensile strength of the product after quenching and tempering is lowered, and the final product has inconvenience in use. This is C / C 0 at the center of the slab
Negative segregation with a ratio of less than 0.8 results in C and Mn required for strength assurance.
This is because the content of can not be maintained.

【0024】従ってこの発明では、鍛圧加工の如き成分
濃化防止処理によって制御すべき鋳片軸心部におけるC
/C0比を0.8 〜1.1 の範囲に限定したのである。なお、
好ましい鍛圧加工法としては、発明者らが先に特開昭60
-82257号公報において開示した連続鍛圧法がある。
Therefore, in the present invention, C in the axial center of the cast slab to be controlled by a component concentration preventing treatment such as forging.
The / C 0 ratio is limited to the range of 0.8 to 1.1. In addition,
As a preferred forging processing method, the inventors have previously described in JP-A-60
There is a continuous forging method disclosed in Japanese Patent Publication No. 82257.

【0025】[0025]

【実施例】表1に示す化学組成になる溶鋼(記号A〜
F)を400 ×560 mmのモールドで連続鋳造し、引き抜き
中の鋳片に対し、鋳片内部の溶鋼が凝固を完了するクレ
ータエンド近傍にて、鋳片軸心部のC/C0比:0.85〜1.
0 を目標として連続的に鍛圧加工を施し、ブルームを製
造した。その後、鋼片ミルによって150 ×150 mmのビレ
ットに熱間圧延した。さらに棒鋼ミルにて34mmφの丸棒
に熱間圧延した。その後この丸棒を1回の押出し加工で
24mmφの軸部を成形し、次いで軸部端面に熱間鍛造を施
して90mmφの頭部を成形した。
EXAMPLES Molten steel having the chemical composition shown in Table 1 (symbols A to
F) is continuously cast in a 400 x 560 mm mold, and the C / C 0 ratio of the slab axial center is near the crater end where the molten steel inside the slab completes the solidification with respect to the slab being drawn. 0.85 to 1.
A bloom was manufactured by continuously performing forging processing with a target of 0. Then, it was hot rolled into a 150 x 150 mm billet by a billet mill. Further, it was hot rolled into a round bar of 34 mmφ with a steel bar mill. Then this round bar is extruded once
A shaft portion having a diameter of 24 mm was formed, and then the end surface of the shaft portion was hot forged to form a head portion having a diameter of 90 mm.

【0026】[0026]

【表1】 [Table 1]

【0027】なお比較例は、従来工程どうり、連続鋳造
後、鍛圧加工を行わずに同様に軸部品とする加工を行っ
た。また出鋼時の溶鋼加熱度はすべて20〜30℃の範囲で
鋳込み、さらに分塊圧延から棒鋼圧延までの熱間圧延温
度は、この発明の実施例及び比較例共に同一温度履歴と
なるよう配慮した。かくして得られた軸部品について、
超音波探傷法によってシェブロンクラックの有無を調べ
た。さらに焼入れ焼戻し後の製品の絞りについても、調
査した。その結果を表2に示すように、この発明に従っ
て得られた軸部品におけるシェブロンクラックの発生は
皆無であった。
In the comparative example, a shaft component was similarly processed after the continuous casting, without performing the forging process, as in the conventional process. Further, the molten steel heating degree at the time of tapping is all cast in the range of 20 to 30 ° C., and the hot rolling temperature from the slab rolling to the bar rolling should be the same temperature history in both Examples and Comparative Examples of the present invention. did. About the shaft parts thus obtained,
The presence or absence of chevron cracks was examined by ultrasonic flaw detection. Furthermore, the drawing of the product after quenching and tempering was also investigated. As the result is shown in Table 2, no chevron crack was generated in the shaft component obtained according to the present invention.

【0028】[0028]

【表2】 [Table 2]

【0029】[0029]

【発明の効果】かくしてこの発明に従い、連続鋳造時に
成分濃化防止処理を連続的に付与し鋳片軸心部のC/C0
比を制御することによって、シェブロンクラックを発生
することなしに軸部品を製造できる。また鍛圧加工を施
すことにより、P及び/又はS濃度を0.005 %未満に抑
制することなしに、シェブロンクラックを防止できるた
め、製鋼の精錬コストを低減できる。
As described above, according to the present invention, the component concentration preventing treatment is continuously applied during the continuous casting, and C / C 0 of the slab axial center portion is obtained.
By controlling the ratio, the shaft part can be manufactured without causing chevron cracks. Further, by performing the forging process, chevron cracks can be prevented without suppressing the P and / or S concentration to less than 0.005%, so that the refining cost of steelmaking can be reduced.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.20〜0.8 wt%、 Si:0.01〜1.0 wt%、 Mn:0.3 〜2.0 wt%、 Cr:0.05〜1.0 wt%、 P:0.005 〜0.050 wt%及び S:0.005 〜0.050 wt% を含有し、残部はFeおよび不可避的不純物の組成になる
溶鋼を連続鋳造し、その際、鋳片内部溶鋼が凝固を完了
するクレータエンド近傍にて、取鍋中溶鋼のC含有量(C
0)に対する鋳片軸心部におけるC含有量(C)の比C/
C0が0.8 〜1.1 となる、成分濃化防止処理を施し、次い
で押出し加工による軸部の成形と鍛造による頭部の成形
とを施し、軸部端に軸部よりも大径の頭部を一体成形す
ることを特徴とする押出し加工性及び鍛造性に優れた自
動車用軸部品の製造方法。
1. C: 0.20-0.8 wt%, Si: 0.01-1.0 wt%, Mn: 0.3-2.0 wt%, Cr: 0.05-1.0 wt%, P: 0.005-0.050 wt% and S: 0.005-0.050. Molten steel containing wt% and the balance of Fe and unavoidable impurities is continuously cast. At that time, the C content of the molten steel in the ladle near the crater end where the molten steel inside the slab completes solidification ( C
Ratio of C content (C) in the axial center of the slab to ( 0 )
A component thickening prevention treatment that makes C 0 0.8 to 1.1 is performed, then the shaft part is formed by extrusion and the head part is formed by forging, and a head with a larger diameter than the shaft part is attached to the end of the shaft part. A method for manufacturing an automobile shaft component having excellent extrusion processability and forgeability, which is characterized by being integrally molded.
【請求項2】 C:0.20〜0.8 wt%、 Si:0.01〜1.0 wt%、 Mn:0.3 〜2.0 wt%、 Cr:0.05〜1.0 wt%、 P:0.005 〜0.050 wt%及び S:0.005 〜0.050 wt% を含み、さらに Mo:0.01〜0.5 wt%、 V:0.005 〜0.050 wt%、 Ti:0.002 〜0.050wt %、 Nb:0.005 〜0.050 wt%、 Al:0.002 〜0.100 wt%及び B:0.0002〜0.0030wt% のうちから選んだ少なくとも1種を含有し、残部はFeお
よび不可避的不純物の組成になる溶鋼を連続鋳造し、そ
の際、鋳片内部溶鋼が凝固を完了するクレータエンド近
傍にて、取鍋中溶鋼のC含有量(C0)に対する鋳片軸心部
におけるC含有量(C)の比C/C0が0.8 〜1.1 とな
る、成分濃化防止処理を施し、次いで押出し加工による
軸部の成形と鍛造による頭部の成形とを施し、軸部端に
軸部よりも大径の頭部を一体成形することを特徴とする
押出し加工性及び鍛造性に優れた自動車用軸部品の製造
方法。
2. C: 0.20-0.8 wt%, Si: 0.01-1.0 wt%, Mn: 0.3-2.0 wt%, Cr: 0.05-1.0 wt%, P: 0.005-0.050 wt% and S: 0.005-0.050. including wt%, Mo: 0.01-0.5 wt%, V: 0.005-0.050 wt%, Ti: 0.002-0.050 wt%, Nb: 0.005-0.050 wt%, Al: 0.002-0.100 wt% and B: 0.0002- Molten steel containing at least one selected from 0.0030 wt% and the balance being Fe and unavoidable impurities is continuously cast. At that time, in the vicinity of the crater end where the molten steel inside the slab completes solidification, The ratio C / C 0 of the C content (C) in the slab axis to the C content (C 0 ) of the molten steel in the ladle is 0.8 to 1.1. Extrudability and forgeability, characterized by forming a shaft and a head by forging, and integrally forming a head with a larger diameter than the shaft at the end of the shaft Excellent production method for shaft parts automobiles.
JP04166230A 1991-06-28 1992-06-24 Method of manufacturing automotive shaft parts excellent in extrudability and forgeability Expired - Fee Related JP3091794B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP18412291 1991-06-28
JP3-184122 1991-06-28

Publications (2)

Publication Number Publication Date
JPH05253644A true JPH05253644A (en) 1993-10-05
JP3091794B2 JP3091794B2 (en) 2000-09-25

Family

ID=16147763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04166230A Expired - Fee Related JP3091794B2 (en) 1991-06-28 1992-06-24 Method of manufacturing automotive shaft parts excellent in extrudability and forgeability

Country Status (1)

Country Link
JP (1) JP3091794B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103667922A (en) * 2013-11-18 2014-03-26 首钢水城钢铁(集团)有限责任公司 Method of producing high-strength HRB400 hot-rolled ribbed bars
CN103924165A (en) * 2014-03-26 2014-07-16 首钢水城钢铁(集团)有限责任公司 Production method of HRB500 screw bar having yield point jog
KR101448358B1 (en) * 2012-11-28 2014-10-07 현대다이모스(주) Boron alloy steel for hollow type axle shaft manufacturing method of axle shaft for vehicle using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448358B1 (en) * 2012-11-28 2014-10-07 현대다이모스(주) Boron alloy steel for hollow type axle shaft manufacturing method of axle shaft for vehicle using the same
CN103667922A (en) * 2013-11-18 2014-03-26 首钢水城钢铁(集团)有限责任公司 Method of producing high-strength HRB400 hot-rolled ribbed bars
CN103924165A (en) * 2014-03-26 2014-07-16 首钢水城钢铁(集团)有限责任公司 Production method of HRB500 screw bar having yield point jog

Also Published As

Publication number Publication date
JP3091794B2 (en) 2000-09-25

Similar Documents

Publication Publication Date Title
JP5277315B2 (en) Environmentally friendly lead-free free-cutting steel and method for producing the same
JP2007319872A (en) Method for producing high-s free cutting steel wire rod
US5662747A (en) Bainite wire rod and wire for drawing and methods of producing the same
JPH03254342A (en) Manufacture of raw material for bearing having excellent service life to rolling fatigue
JP3399780B2 (en) Manufacturing method of steel bars for hot forging
JP2905241B2 (en) Manufacturing method of bearing material with excellent rolling fatigue life
JP3091794B2 (en) Method of manufacturing automotive shaft parts excellent in extrudability and forgeability
JP3091795B2 (en) Manufacturing method of steel bars with excellent drawability
KR101027246B1 (en) Free-Cutting Steel with Excellent Machinability and Manufacturing Method Thereof
JP2905242B2 (en) Method for producing low Cr bearing steel material with excellent rolling fatigue life
JPH03254340A (en) Manufacture of raw material for bearing having excellent service life to rolling fatigue
JPH0762204B2 (en) Manufacturing method of high-toughness non-heat treated steel for hot forging and its steel bars and parts
US5647918A (en) Bainite wire rod and wire for drawing and methods of producing the same
JPS6121301B2 (en)
KR101091275B1 (en) Eco-Friendly Pb-Free Free-Cutting Steel
JP2927823B2 (en) Method of manufacturing hot-rolled material for high carbon steel wire rod with high workability
JPH05192736A (en) Manufacture of hexagon socket head cap screw
RU2764045C1 (en) Method for manufacturing high-strength steel reinforcement
JPS6364516B2 (en)
JPH0814001B2 (en) Method for manufacturing hot forged non-heat treated parts
JPH031371B2 (en)
JP2862607B2 (en) Manufacturing method of steel with excellent drilling workability
JPS62253725A (en) Production of high-toughness non-heattreated bar steel for hot forging
JP3139560B2 (en) Manufacturing method of high strength and high toughness ultrafine wire
JP3091792B2 (en) Method of manufacturing a stepped shaft

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees