JPH0561022B2 - - Google Patents

Info

Publication number
JPH0561022B2
JPH0561022B2 JP21053685A JP21053685A JPH0561022B2 JP H0561022 B2 JPH0561022 B2 JP H0561022B2 JP 21053685 A JP21053685 A JP 21053685A JP 21053685 A JP21053685 A JP 21053685A JP H0561022 B2 JPH0561022 B2 JP H0561022B2
Authority
JP
Japan
Prior art keywords
refractory
continuous casting
wear
aln
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21053685A
Other languages
Japanese (ja)
Other versions
JPS6268658A (en
Inventor
Tomohito Kuroki
Kenji Sugiura
Hideo Kyotoo
Takeyoshi Sakane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Toshiba Ceramics Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP21053685A priority Critical patent/JPS6268658A/en
Publication of JPS6268658A publication Critical patent/JPS6268658A/en
Publication of JPH0561022B2 publication Critical patent/JPH0561022B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/059Mould materials or platings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/02Linings

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、連続鋳造用の鋳型とタンデイツシユ
とを接続するブレークリング等に使用される耐火
物に関する。 [従来の技術] 一般に、連続鋳造設備、例えば水平式の連続鋳
造設備においては、第1図に示すように、タンデ
イツシユ1の下側部に設けられたフイードノズル
2と鋳型3とが耐火物4を介して接続されてお
り、タンデイツシユ1内の容鋼5がフイードノズ
ル2および耐火物4を通つて鋳型3に注入され、
鋳型3内で冷却されて凝固シエル6を形成しつつ
引き抜かれて連続鋳造される。 この連続鋳造用耐火物としては、耐熱衝撃性が
高いこと、耐食性および耐摩耗性が大きいこと等
の性能が要求される。 従来、上記連続鋳造用耐火物としては、窒化ケ
イ素(Si3N4)に窒化アルミニウム(AlN)およ
び窒化ホウ素(BN)を含有させたAlN−BN−
Si3N4系焼結体(特開昭56−129666号公報所載)
からなるもの、Si3N4にAlN、BNおよび酸化ア
ルミニウム(Al2O3)を含有させたサイアロン系
のAlN−BN−Al2O3−Si3N4系焼結体(特開昭59
−50074号公報所載)からなるもの等が知られて
いる。 [発明が解決しようとする問題点] しかし、前者のAlN−BN−Si3N4系焼結体か
らなるものは、炭素鋼の長時間鋳込みあるいはス
テンレス鋼の鋳込みにおいて溶損され、また、後
者のAlN−BN−Al2O3−Si3N4系焼結体からなる
ものは、ステレス鋼の長時間鋳込みにおいて溶損
され、安定した連続鋳造を行い得ない問題があ
る。 本発明者は、上記問題点に対処すべく種々実験
を行つた結果、耐火物の組成のみならず、動弾性
率、気孔径および熱伝導率が耐熱衝撃性その他の
性能の向上に関与していることを見出した。 [問題点を解決するための手段] 本発明は、前記問題点を解決するため、連続鋳
造用の鋳型とタンデイツシユとを接続する耐火物
であつて、動弾性率0.7×106Kgf/cm2以下、気孔
径40μm以下(望ましくは10μm以下)、熱伝導率
10.0kcal/mh℃以下(望ましくは6.0kcal/mh
℃)としたものである。 [作用] 動弾性率が0.7×106Kgf/cm2を越えると耐火物
にチツピングが発生し、また、気孔径が40μmを
超えると、気孔内に溶鋼が侵入し、耐火物が著し
く損耗し、さらに、熱伝導率が10.0kcal/mh℃
を超えると溶鋼の凝固がフイードノズルから始ま
り、フイードノズルが著しく損耗する。 なお、連続鋳造用耐火物を製造するには、
AlN、BN、Al2O3、ケイ素(Si)、二酸化ケイ素
(SiO2)およびSi3N4を原料(平均粒径5μm)と
し、これらを所要の割合で配合して十分に混練
し、適当な成形手段で形成した後、成形体を非酸
化性雰囲気(例えばアルゴン、窒素ガス等)中に
おいて1400〜1800℃の温度で約1〜10時間に亘り
焼結して行う。 [発明の効果] 以上のように本発明によれば、従来技術に比
し、チツピングが発生せず、かつフイードノズル
および耐火物の損耗を大幅に低減することができ
るので、ステンレス鋼、特に高Cr鋼を長時間に
亘り安定して連続鋳造することができる。 [実施例] 以下、本発明の実施例について説明する。 原料としてAlN、BN、Al2O3、Si、SiO2およ
びSi3N4の粉末(平均粒径5μm)を用い、これら
を第1表に示すように配合比を変えて11種類の供
試体を製造した。
[Industrial Application Field] The present invention relates to a refractory used for a break ring or the like that connects a continuous casting mold and a tundish. [Prior Art] Generally, in continuous casting equipment, for example, horizontal continuous casting equipment, as shown in FIG. The steel 5 in the tundish 1 is injected into the mold 3 through the feed nozzle 2 and the refractory 4,
It is cooled in the mold 3 to form a solidified shell 6 and then drawn out for continuous casting. Refractories for continuous casting are required to have high thermal shock resistance, high corrosion resistance, and high wear resistance. Conventionally, the continuous casting refractory mentioned above has been made of AlN-BN- which is silicon nitride (Si 3 N 4 ) containing aluminum nitride (AlN) and boron nitride (BN).
Si 3 N 4 based sintered body (published in JP-A-56-129666)
sialon-based AlN−BN−Al 2 O 3 −Si 3 N 4 sintered body made of Si 3 N 4 containing AlN, BN, and aluminum oxide (Al 2 O 3 ).
-50074 Publication)) are known. [Problems to be solved by the invention] However, the former AlN-BN-Si 3 N 4 based sintered body is eroded during long-term casting of carbon steel or stainless steel, and the latter The AlN-BN-Al 2 O 3 -Si 3 N 4 based sintered body is eroded during long-time casting of stainless steel, and there is a problem that stable continuous casting cannot be performed. As a result of conducting various experiments to address the above-mentioned problems, the present inventor found that not only the composition of refractories, but also dynamic elastic modulus, pore diameter, and thermal conductivity are involved in improving thermal shock resistance and other performance. I found out that there is. [Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a refractory for connecting a mold for continuous casting and a tundish, which has a dynamic elastic modulus of 0.7×10 6 Kgf/cm 2 Below, pore diameter is 40μm or less (preferably 10μm or less), thermal conductivity
10.0kcal/mh℃ or less (preferably 6.0kcal/mh
℃). [Function] If the dynamic elastic modulus exceeds 0.7×10 6 Kgf/cm 2 , chipping will occur in the refractory, and if the pore diameter exceeds 40 μm, molten steel will enter the pores and the refractory will wear out significantly. , furthermore, the thermal conductivity is 10.0kcal/mh℃
If the temperature exceeds 100 mL, solidification of molten steel will begin at the feed nozzle, causing significant wear and tear on the feed nozzle. In addition, in order to manufacture refractories for continuous casting,
AlN, BN, Al 2 O 3 , silicon (Si), silicon dioxide (SiO 2 ), and Si 3 N 4 are used as raw materials (average particle size 5 μm), and these are mixed in the required proportions and thoroughly kneaded to form a suitable powder. After the molded body is formed by a suitable molding method, the molded body is sintered in a non-oxidizing atmosphere (for example, argon, nitrogen gas, etc.) at a temperature of 1400 to 1800°C for about 1 to 10 hours. [Effects of the Invention] As described above, according to the present invention, compared to the prior art, chipping does not occur and wear and tear on feed nozzles and refractories can be significantly reduced. It is possible to stably and continuously cast steel over a long period of time. [Examples] Examples of the present invention will be described below. AlN, BN, Al 2 O 3 , Si, SiO 2 and Si 3 N 4 powders (average particle size 5 μm) were used as raw materials, and 11 types of specimens were prepared by changing the blending ratio as shown in Table 1. was manufactured.

【表】 各供試体の製造は、次のようにして行つた。 まず、第1表に示す成分を同表に示す配合比で
それぞれ1500gr配合し、各配合物を攪拌擂潰機を
用いて十分に混合した後、それぞれの混合物を有
機バインダー(例えばPVA)を添加して均一に
混練して坏土した。 ついで、各坏土を油圧成形機により1トン/cm2
の成形圧力で、20mm(縦)×20mm(横)×120mm
(長さ)の角柱形状と、220mm(外径)×190mm(内
径)×15mm(厚さ)の円輪板形状とに成形し乾燥
した後、これらの各成形体を窒素ガス雰囲気中に
おいて1400〜1800℃の温度で3〜10時間かけて焼
結して本発明に係る供試体および比較用の供試体
を製造した。 (1) 上記供試体のうち角柱形状のものは、溶鋼に
対する耐食性の測定に用いた。 溶鋼に対する耐食性試験は、オーステナイト
系ステンレス鋼(SUS 310:25Cr−20Ni)を
高周波炉で10Kg溶解し、1500℃の温度に保持し
た溶鋼中に供試体を浸漬し、1時間保持した
後、供試体の損耗量(溶損量)を測定した。 (2) また、円輪板形状のものは、水平式の連続鋳
造設備における鋳型とタンデイツシユとの間に
セツトし、鋳型径212mm、引抜速度0.8m/分、
引抜長さ75mの条件でオーステナイト系ステン
レス鋼(SUS 304)の丸ビレツトを約20トン
鋳込み、この時の耐火物、すなわち円輪板形状
の供試体の凝固シエルによる損耗量を測定し
た。 各供試体No.1〜11の物性値および(1)、(2)の損耗
量の測定結果は、第2表に示すようになつた。
[Table] Each specimen was manufactured as follows. First, 1500gr of each of the ingredients shown in Table 1 are mixed in the mixing ratio shown in the same table, and after thoroughly mixing each of the ingredients using a stirrer and crusher, an organic binder (for example, PVA) is added to each mixture. The mixture was then uniformly kneaded and molded. Next, each clay was molded to 1 ton/cm 2 using a hydraulic molding machine.
With a molding pressure of 20mm (vertical) x 20mm (horizontal) x 120mm
(length) and a circular plate shape of 220 mm (outer diameter) x 190 mm (inner diameter) x 15 mm (thickness). After drying, each of these molded bodies was heated in a nitrogen gas atmosphere for 1400 m Specimens according to the present invention and comparative specimens were manufactured by sintering at a temperature of ~1800° C. for 3 to 10 hours. (1) Among the above specimens, the prismatic specimen was used to measure corrosion resistance against molten steel. Corrosion resistance tests for molten steel were conducted by melting 10 kg of austenitic stainless steel (SUS 310: 25Cr-20Ni) in a high-frequency furnace, immersing the specimen in the molten steel held at a temperature of 1500°C, holding it for 1 hour, and then melting the specimen. The amount of wear (amount of erosion loss) was measured. (2) In addition, the circular plate shape is set between the mold and the tundish in horizontal continuous casting equipment, with a mold diameter of 212 mm and a drawing speed of 0.8 m/min.
Approximately 20 tons of round billets of austenitic stainless steel (SUS 304) were cast under conditions of a drawing length of 75 m, and the amount of wear due to the solidification shell of the refractory, that is, the circular plate-shaped specimen, was measured. The measurement results of the physical property values of each specimen No. 1 to No. 11 and the amount of wear (1) and (2) are shown in Table 2.

【表】 円輪板形状損耗量は、第2図においてAで示す
ように、耐火物4の内周面における深さを測定
し、評価は、鋳造品の表面性状もあわせて判断し
たものであり、○は良、△は可、×は不可を示し
ている。 しかして、No.1の供試体では、耐火物にチツピ
ングが発生し、また、No.2の供試体では、溶鋼の
凝固がフイードノズルまで達するためフイードノ
ズルの損傷が著しく、鋳片表層部にノズル破片の
食い込みが見られ、いずれもステンレス鋼の長時
間鋳込みには不適当であり、さらに、No.3と11の
供試体では、気孔内に容鋼が侵入し、この侵入し
た溶鋼が凝固して引き抜かれるため、耐火物の損
耗量がきわめて大きく、同様にステンレス鋼の長
時間鋳込みには不適当であつた。さらにまた、No.
4の供試体も本発明の効果を十分得るに至つてい
ない。 No.5〜10の供試体では、フイードノズルの損傷
もなく、損耗量も小さく、かつ鋳造品の表面性状
もきわめつ良好で、ステンレス鋼の長時間鋳込み
に好適であつた。 したがつて、動弾性率が0.7×106Kgf/cm2
下、気孔径が40μm以下(望ましくは10μm以
下)、熱伝導率が10.0kcfl/mh℃(望ましくは
6.0kcal/mh℃以下)の耐火物であれば、ステン
レス鋼を長時間にわたり良好に連続鋳造できるこ
とがわかる。
[Table] The amount of wear on the circular plate shape was determined by measuring the depth at the inner circumferential surface of the refractory 4, as shown by A in Figure 2, and also evaluating the surface quality of the cast product. Yes, ○ means good, △ means good, and × means bad. However, in the No. 1 specimen, chipping occurred in the refractory, and in the No. 2 specimen, the solidification of the molten steel reached the feed nozzle, so the feed nozzle was severely damaged, and nozzle fragments were found on the surface of the slab. In specimens No. 3 and 11, molten steel penetrated into the pores, and the molten steel solidified. Because the refractory is pulled out, the amount of wear and tear on the refractory is extremely large, and it is also unsuitable for long-term casting of stainless steel. Furthermore, No.
Sample No. 4 also did not achieve sufficient effects of the present invention. In the specimens No. 5 to 10, there was no damage to the feed nozzle, the amount of wear was small, and the surface quality of the cast product was extremely good, making it suitable for long-term casting of stainless steel. Therefore, the dynamic elastic modulus is 0.7×10 6 Kgf/cm 2 or less, the pore diameter is 40 μm or less (preferably 10 μm or less), and the thermal conductivity is 10.0 kcfl/mh°C (preferably
It can be seen that stainless steel can be continuously cast successfully over a long period of time if it is a refractory with a temperature of 6.0kcal/mh℃ or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る耐火物が使用される一例
を示す水平式の連続鋳造設備の概略断面図、第2
図は耐火物の損耗量測定位置を示す半截断面図で
ある。 1……ダンデイツシユ、2……フイールドノズ
ル、3……鋳型、4……耐火物、5……溶鋼、6
……凝固シエル。
Fig. 1 is a schematic sectional view of horizontal continuous casting equipment showing an example in which the refractory according to the present invention is used;
The figure is a half-cut sectional view showing the measurement position of the amount of wear on the refractory. 1...Dandite, 2...Field nozzle, 3...Mold, 4...Refractory, 5... Molten steel, 6
...Coagulation Ciel.

Claims (1)

【特許請求の範囲】[Claims] 1 連続鋳造用の鋳型とタンデイツシユとを接続
する耐火物であつて、動弾性率0.7×106Kgf/cm2
以下、気孔径40μm以下、熱伝導率10.0kcal/mh
℃以下としたことを特徴とする連続鋳造用耐火
物。
1 A refractory that connects the continuous casting mold and tundish, with a dynamic elastic modulus of 0.7×10 6 Kgf/cm 2
Below, pore diameter is 40μm or less, thermal conductivity is 10.0kcal/mh
A refractory for continuous casting characterized by having a temperature below ℃.
JP21053685A 1985-09-24 1985-09-24 Refractories for continuous casting Granted JPS6268658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21053685A JPS6268658A (en) 1985-09-24 1985-09-24 Refractories for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21053685A JPS6268658A (en) 1985-09-24 1985-09-24 Refractories for continuous casting

Publications (2)

Publication Number Publication Date
JPS6268658A JPS6268658A (en) 1987-03-28
JPH0561022B2 true JPH0561022B2 (en) 1993-09-03

Family

ID=16590979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21053685A Granted JPS6268658A (en) 1985-09-24 1985-09-24 Refractories for continuous casting

Country Status (1)

Country Link
JP (1) JPS6268658A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016111023A1 (en) * 2015-01-05 2016-07-14 イビデン株式会社 Metal member with coat layer

Also Published As

Publication number Publication date
JPS6268658A (en) 1987-03-28

Similar Documents

Publication Publication Date Title
JPS6022676B2 (en) Silicon nitride/boron nitride composite sintered body and its manufacturing method
US4885264A (en) Pressure-sintered polycpystalline mixed materials with a base of hexagonal boron nitride, oxides and carbides
JP3421917B2 (en) Immersion nozzle for continuous casting
CA1244483A (en) Refractory for continuous casting
KR0134955B1 (en) Method for manufacturing articles having thermal shock resistance and elasticity
JP3200378B2 (en) Nozzle for continuous casting of aluminum killed steel
JPH0561022B2 (en)
US3666507A (en) Fusion-cast carbide ceramic comprising free-silicon
CN113999008B (en) Low-carbon submersed nozzle lining and preparation method thereof
JP2698186B2 (en) Manufacturing method of casting nozzle member
JPH0251866B2 (en)
JP4118058B2 (en) Immersion nozzle for casting
JPH0617268B2 (en) Refractory for continuous casting
JPS61178465A (en) Manufacture of nozzle for casting
JPH0251865B2 (en)
JPS62104655A (en) Nozzle for continuous casting
JPH0641389B2 (en) Refractory for continuous casting of stainless steel
KR850001284B1 (en) Composite sinter of silicon nitride/boron nitride & method for manufacturing thereof
JPH075379B2 (en) Method for manufacturing refractory for molten steel
JPS6272568A (en) Refractories for continuous casting
JP4020224B2 (en) Molten metal processing parts
GB1564927A (en) Bonds for refractory materials
SU1139719A1 (en) High-temperature ceramic material
JP2002338347A (en) Zirconia-graphite fire resisting material and immersion nozzle for continuous casting using the material
JP3093862B2 (en) Refractories for continuous casting