JPH0251865B2 - - Google Patents

Info

Publication number
JPH0251865B2
JPH0251865B2 JP59205966A JP20596684A JPH0251865B2 JP H0251865 B2 JPH0251865 B2 JP H0251865B2 JP 59205966 A JP59205966 A JP 59205966A JP 20596684 A JP20596684 A JP 20596684A JP H0251865 B2 JPH0251865 B2 JP H0251865B2
Authority
JP
Japan
Prior art keywords
refractory
molten steel
continuous casting
erosion
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59205966A
Other languages
Japanese (ja)
Other versions
JPS6183679A (en
Inventor
Kazumi Arakawa
Kenji Sugiura
Tomohito Kuroki
Tadashi Hirashiro
Takao Suzuki
Takeshi Nakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Toshiba Ceramics Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59205966A priority Critical patent/JPS6183679A/en
Priority to US06/779,417 priority patent/US4640336A/en
Priority to FR858514261A priority patent/FR2571044B1/en
Priority to CA000491902A priority patent/CA1244483A/en
Priority to DE19853534824 priority patent/DE3534824A1/en
Publication of JPS6183679A publication Critical patent/JPS6183679A/en
Publication of JPH0251865B2 publication Critical patent/JPH0251865B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、連続鋳造設備における鋳型とタンデ
イツシユとを連結する鋳型注入口などに使用する
耐火物の製造方法に関するものである。 [従来の技術] 従来、接続耐火物としては反応焼結窒化けい素
やホツトプレス窒化ホウ素などが適用されてきた
が、窒化けい素(Si3N4)は鋳入初期のスポーリ
ング性に問題があり、また窒化ホウ素(BN)は
硬度が低いため耐摩耗性に問題があつた。これら
の欠点を改善するためにSi3N4にBNを3〜40%
含有させて耐熱衝撃性を改善したり(特開昭56−
120575号)、またはSi3N4−AlN−BN系のように
耐熱衝撃性と耐触性とを改善する手段(特開昭56
−129666号)などがある。 たとえば水平式の連続鋳造設備においては、第
1図に示すように鋳型4はタンデイツシユ1の下
側部に設けられたフイールドノズル2に対して接
続耐火物3を介して連結されており、タンデイツ
シユ1内の溶鋼5はフイールドノズル2および接
続耐火物3を通して鋳型4に注入され、ここで冷
却されて凝固シエル6を形成しつつ引き抜かれて
いく。この連続鋳造設備で使用される接続耐火物
3は、特に耐熱衝撃性が高いこと、溶鋼と濡れ難
いこと、耐触性が大きいこと、および高度な寸法
精度が要求されるために加工が容易であることな
どの性能が要求される。 このため、従来ではホツトプレスBN焼結体ま
たは反応焼結Si3N4焼結体の利用などが知られて
いるが、ホツトプレスBN焼結体は硬度が低く、
耐摩耗性に問題がある。また、反応焼結Si3N4
結体は焼結後の寸法変化が少なく、高強度で安価
に製造できるため水平連続鋳造用耐化物として有
望な材料であるが、Si3N4のみでは耐熱衝撃性が
低いために、その改善にBNを含有する方法や耐
蝕性の改善のために窒化アルミニウム(AlN)
を含有する方法などが知られているが、これらの
方法は炭素鋼の短時間鋳込には問題がないが、し
かし炭素鋼の長時間鋳込みまたはステンレス鋼の
鋳込に対しては耐火物が溶損されるため、更に耐
蝕性を改善するためにAl2O3を含有させ高温で焼
結しサイアロン系の固溶体とする技術があるが、
この場合でもステンレス鋼の長時間鋳込に対して
は溶損の問題がある。 [発明が解決しようとする問題点] 本発明は上述する種々の問題点に着目してなさ
れたもので、反応焼結体または常圧焼結法により
焼結した焼結体の溶損は焼結体の気孔率、気孔径
が大きく、強度が低いために鋳込時に溶鋼が気孔
中に侵入し凝固して間歇引抜時に耐火物が機械的
に除去されるものと考えられ、耐火物の長時間鋳
込に耐えうる耐蝕性、耐熱衝撃性などを向上する
ことを技術的課題とする。 [問題点を解決する手段] 本発明は上述する技術的課題を解決するために
鋳造用耐火物について幾多の研究の結果、(1)
Si3N4は炭素鋼に対しては耐蝕性を示すが、ステ
ンレス鋼には化学的に反応して溶損を生じ、そこ
でAlNおよびAl2O3を含有し高温で焼結すること
によりSi3N4はサイアロン系の固溶体を形成し著
しく耐蝕性を向上できること、(2)注入口に使用す
る耐火物は使用時に耐火物内外の温度差が大きく
なるにつれてスポーリング割れが発生し、このス
ポーリング割れの要因は耐火物の持つ特性のうち
熱膨張率や弾性率が大きいほど発生しやすく、こ
のためにBNを前記固溶体に均一に分散させるこ
とにより熱膨張率や弾性率を低下させることがで
きること(この効果はBN粒子の細かいほどよ
い)、および(3)機械的な損傷の改善に濡れ性の低
下並びに気孔径を小さくすることが効果的である
ことを確め、本発明ではサイアロン系固溶体にモ
ンモリロナイト族鉱物、特にベントナイトを添加
することにより溶鋼と濡れ難くし、またサイアロ
ンとの反応により粒子間の結合を促進して強度を
向上すると共に、焼結体中に一部生成したガラス
層が使用時に気孔を塞ぎ溶鋼の侵入を防止する一
方、耐火物と溶鋼との潤滑剤の役割をして耐触性
の向上を図ることができることを見出し、本発明
に到達したものである。 すなわち、本発明は窒化けい素(Si3N4)10〜
75%、窒化アルミニウム(AlN)1〜30%、窒
化ホウ素(BN)3〜30%、酸化アルミニウム2
〜50%およびモンモリロイト族鉱物5〜30%を配
合し、混練、成形後、非酸化性雰囲気で焼結する
方法である。BNを含有することにより耐熱衝撃
性を著しく改善することができる。BN含有量は
3〜30%の範囲にするが、3%以下ではその効果
がなく、30%以上になると焼結体の強度が著しく
低下する。Si3N4はAlNおよびAl2O3を含有させ
て高温で焼結してサイアロン系の固溶体を形成す
ることにより溶鋼に対する耐触性を向上すること
ができる。この場合、AlNは1〜30%および
Al2O3は2〜50%含有させる必要があるが、これ
らの下限値以下では耐熱衝撃性が低下する。 又モンモリロイト族鉱物として、例えばベンナ
イトを用いるとベントナイトの主成分のAl2O3
SiO2成分は一部サイアロン中に固溶されるが、
アルカリ成分はサイアロンと反応してガラス相を
生成して粒子間の結合を促進し気孔率を低下する
と共に、濡れ性も低下する。かかるモンモリロナ
イト族鉱物は5〜30%の範囲で配合し、5%以下
では濡れ性が低下し、かつ焼結性の向上の効果が
なく、30%以上ではガラス相の生成量が多くなり
高温特性が低下する。 本発明の連続鋳造用耐化物を製造するには、ま
ず上述する各構成成分、すなわち、Si3N4
AlN、BN、酸化アルミニウムおよびモンモリロ
ナイト族鉱物を上述する各配合量で配合し、混練
し、適当な成形手段で成形し、成形体を非酸化性
雰囲気(例えばアルゴン、窒素など)中で1500〜
1800℃の範囲で焼結温度で約1〜10時間にわたり
焼結するのが好ましい。 [発明の効果] 上述するように本発明は窒化けい素10〜75%、
窒化アルミニウム1〜30%、窒化ホウ素3〜30
%、酸化アルミニウム2〜50%およびモンモリロ
ナイト族鉱物5〜30%を配合し、混練、成形後、
非酸化性雰囲気中で焼結することにより、BNを
均一に分散させたサイアロン系固溶体粒子に、更
にモンモリロナイト族鉱物が添加されることとな
つて、溶鋼と濡れ難くなり、又、サイアロンとモ
ンモリロナイト族鉱物の反応により粒子間の結合
を促進して強度が向上すると共に、焼結体中に一
部生成したガラス層が気孔を塞ぎ使用時に溶鋼の
侵入を防止する一方、耐火物と溶鋼との潤滑剤の
役割をして耐蝕性の向上を図ることができる耐火
物が得られ、耐蝕性、耐熱衝撃性ならびに凝固シ
エルによる損傷を防止するという優れた水平鋳造
用の接続耐火物を形成でき、またこれにより高合
金鋼の鋳造をも可能にすることができた。 [実施例] 本発明の連続鋳造用耐火物の供試体(試験No.1
〜2)および比較の目的のための従来の耐火物の
供試体(比較試験No.1〜2)を表1に示す各成分
から作つた。
[Industrial Application Field] The present invention relates to a method for manufacturing a refractory used for a mold injection port connecting a mold and a tundish in continuous casting equipment. [Conventional technology] Conventionally, reaction-sintered silicon nitride and hot-pressed boron nitride have been used as connection refractories, but silicon nitride (Si 3 N 4 ) has problems with spalling in the initial stage of casting. Also, boron nitride (BN) has low hardness, so there are problems with wear resistance. To improve these drawbacks, add 3 to 40% BN to Si 3 N 4 .
In order to improve thermal shock resistance by incorporating
120575), or means to improve thermal shock resistance and corrosion resistance such as Si 3 N 4 -AlN-BN system (Japanese Patent Laid-Open No. 120575)
-129666). For example, in horizontal continuous casting equipment, as shown in FIG. The molten steel 5 inside is injected into the mold 4 through the field nozzle 2 and the connecting refractory 3, where it is cooled and drawn out while forming a solidified shell 6. The connecting refractory 3 used in this continuous casting equipment is easy to process because it requires particularly high thermal shock resistance, difficulty in getting wet with molten steel, high corrosion resistance, and high dimensional accuracy. Performance such as certain things is required. For this reason, it has been known to use hot-pressed BN sintered bodies or reaction-sintered Si 3 N 4 sintered bodies, but hot-pressed BN sintered bodies have low hardness,
There are problems with wear resistance. In addition, reaction-sintered Si 3 N 4 sintered bodies have little dimensional change after sintering, have high strength, and can be manufactured at low cost, making them promising materials as a resistant material for horizontal continuous casting. Due to its low thermal shock resistance, BN is added to improve it, and aluminum nitride (AlN) is used to improve its corrosion resistance.
These methods have no problem in short-time casting of carbon steel, but they have problems with long-term casting of carbon steel or casting of stainless steel. Therefore, there is a technology to further improve corrosion resistance by adding Al 2 O 3 and sintering it at high temperature to form a sialon-based solid solution.
Even in this case, there is a problem of melting loss when stainless steel is cast for a long time. [Problems to be Solved by the Invention] The present invention has been made by focusing on the various problems mentioned above. It is thought that because the porosity and pore size of the compact are large and the strength is low, molten steel enters the pores during casting and solidifies, and the refractory is mechanically removed during intermittent drawing. The technical challenge is to improve corrosion resistance, thermal shock resistance, etc. that can withstand time casting. [Means for Solving the Problems] In order to solve the above-mentioned technical problems, the present invention has been made as a result of numerous studies on cast refractories. (1)
Although Si 3 N 4 exhibits corrosion resistance against carbon steel, it chemically reacts with stainless steel and causes erosion loss . 3 N 4 forms a sialon-based solid solution and can significantly improve corrosion resistance. Pauling cracking is more likely to occur as the coefficient of thermal expansion and modulus of elasticity among the properties of refractories increases, and for this reason, it is possible to reduce the coefficient of thermal expansion and modulus of elasticity by uniformly dispersing BN in the solid solution. (The finer the BN particles, the better this effect) and (3) that reducing wettability and reducing pore size are effective in improving mechanical damage. By adding montmorillonite group minerals, especially bentonite, to the solid solution, it becomes difficult to wet with molten steel, and the reaction with sialon promotes bonding between particles to improve strength, and the glass layer that partially forms in the sintered body The present invention was achieved based on the discovery that during use, refractory blocks the pores and prevents the intrusion of molten steel, while also acting as a lubricant between the refractory and molten steel to improve corrosion resistance. That is, the present invention uses silicon nitride (Si 3 N 4 ) 10~
75%, aluminum nitride (AlN) 1-30%, boron nitride (BN) 3-30%, aluminum oxide 2
This is a method in which 50% to 50% of montmorilloid group minerals and 5 to 30% of montmorilloid group minerals are blended, kneaded, molded, and then sintered in a non-oxidizing atmosphere. By containing BN, thermal shock resistance can be significantly improved. The BN content is set in the range of 3 to 30%, but if it is less than 3%, there is no effect, and if it is more than 30%, the strength of the sintered body will decrease significantly. Si 3 N 4 can improve contact resistance to molten steel by containing AlN and Al 2 O 3 and sintering at high temperature to form a sialon-based solid solution. In this case, AlN is 1-30% and
Although it is necessary to contain Al 2 O 3 in an amount of 2 to 50%, below these lower limits, thermal shock resistance decreases. Furthermore, when bentonite is used as a montmorilloid group mineral, for example, Al 2 O 3 −, the main component of bentonite, is used.
Although some of the SiO 2 components are solidly dissolved in SiAlON,
The alkaline component reacts with Sialon to produce a glass phase, which promotes bonding between particles, lowering the porosity and also lowering the wettability. Such montmorillonite group minerals are blended in a range of 5 to 30%. If it is less than 5%, wettability will decrease and there will be no effect of improving sinterability, and if it is more than 30%, a large amount of glass phase will be formed, resulting in poor high-temperature properties. decreases. In order to manufacture the continuous casting reinforced material of the present invention, first, each of the above-mentioned constituent components, namely, Si 3 N 4 ,
AlN, BN, aluminum oxide, and montmorillonite group minerals are blended in the above-mentioned amounts, kneaded, and molded using an appropriate molding means.
Preferably, sintering is carried out at a sintering temperature in the range of 1800°C for about 1 to 10 hours. [Effect of the invention] As mentioned above, the present invention has silicon nitride of 10 to 75%,
Aluminum nitride 1-30%, boron nitride 3-30%
%, aluminum oxide 2-50% and montmorillonite group mineral 5-30%, after kneading and molding,
By sintering in a non-oxidizing atmosphere, montmorillonite group minerals are further added to the sialon-based solid solution particles in which BN is uniformly dispersed, making it difficult to wet with molten steel. The reaction of the minerals promotes bonding between particles and improves strength, while the glass layer partially formed in the sintered body closes the pores and prevents molten steel from entering during use, while providing lubrication between the refractory and molten steel. A refractory that can act as a refractory and improve corrosion resistance can be obtained, and a connection refractory for horizontal casting that has excellent corrosion resistance, thermal shock resistance, and prevention of damage due to solidification shells can be formed. This also made it possible to cast high-alloy steel. [Example] Specimen of continuous casting refractory of the present invention (Test No. 1
-2) and conventional refractory specimens (comparative test Nos. 1 and 2) for comparative purposes were made from each component shown in Table 1.

【表】 各供試体を次のようにして作つた:まず、表1
に示す各成分を同表に示す配合量で配合し、各配
合物を撹拌擂潰機型の混練機を用いて混合混練
し、しかる後これらの配合物に有機バインダーと
してPVAを添加し、更に混練機で均質に混練し
た。各混練物を油圧型の成形機を用いて220mm
(外径)×190mm(内径)×15mm(厚さ)のリング形
状と、20mm×20mm×120mmの棒形状とにそれぞれ
1トン/cm2の成形圧で各形状の成形体に成形し
た。ついで、これらの各成形体を窒素の非酸化性
雰囲気中1700℃で焼結して各形状の本発明の供試
体および比較供試体を作つた。 (1) 供試体のうち棒形状の供試体を溶鋼に対する
耐蝕性および溶鋼との接触角の測定試料に用い
た。 耐蝕性を調べる溶損試験では高周波炉で炭素
鋼S50Cおよびオーステナイト系ステンレス鋼
SUS321(25Cr−20Ti)をそれぞれ10Kg溶解し、
1550℃に保持した溶鋼中に試験片を浸漬し、1
時間保持した後、試験片の溶損量を測定した。
また、接触角については高温顕微鏡により試験
片のプレート上にステンレス鋼SUSを置き、
1500℃に昇温し、保持し、その時の接触角を測
定した。 これらの溶損試験および接触角測定結果を表
1の下段に示す。溶損試験において、ステンレ
ス鋼の場合では比較供試体の5.0〜1.5mmである
のに対して、本発明の供試体では0.1mm以下で
溶損量が極めて少なく、また炭素鋼の場合では
本発明の供試体は全く溶損しないことがわか
る。 また、接触角について、Si3N4−AlN−BN
系にAl2O3を含有すると接触角が大きくなり、
これに更にベントナイトを添加(試験No.1〜
2)すると、添加しない比較試験No.1〜2より
接触角が更に大きくなることがわかる。また、
試験No.1〜2の本発明供試体は比較試験No.1〜
2のものと比べて気孔率が低く、強度が著しく
向上することがわかる。 (2) 供試体のうちリング形状の供試体について
は、このリング耐火物を水平連続鋳造の鋳型と
タンデイツシユとの間にセツトし、鋳型径212
mm、引抜速度0.8m/分および引抜長さ75mmの
条件でステンレス鋼の丸ビレツトを20トン鋳込
だ。その時の耐火物の凝固シエルによる侵食の
程度を測定し、この結果を次の表2に示す。
[Table] Each specimen was made as follows: First, Table 1
Each component shown in the table is blended in the amount shown in the same table, each blend is mixed and kneaded using a stirrer and crusher type kneader, then PVA is added as an organic binder to these blends, and The mixture was homogeneously kneaded using a kneader. Each kneaded material was molded to 220 mm using a hydraulic molding machine.
The molded product was molded into a ring shape (outer diameter) x 190 mm (inner diameter) x 15 mm (thickness) and a bar shape (20 mm x 20 mm x 120 mm) at a molding pressure of 1 ton/cm 2 . Next, each of these molded bodies was sintered at 1700° C. in a non-oxidizing atmosphere of nitrogen to produce specimens of the present invention and comparative specimens of various shapes. (1) Among the specimens, rod-shaped specimens were used to measure corrosion resistance to molten steel and contact angle with molten steel. In erosion tests to investigate corrosion resistance, carbon steel S50C and austenitic stainless steel were tested in a high frequency furnace.
Melt 10Kg of SUS321 (25Cr-20Ti) each,
The test piece was immersed in molten steel kept at 1550℃,
After holding for a period of time, the amount of erosion of the test piece was measured.
In addition, the contact angle was determined by placing stainless steel SUS on the plate of the test piece using a high-temperature microscope.
The temperature was raised to 1500°C, held, and the contact angle at that time was measured. The results of these erosion tests and contact angle measurements are shown in the lower part of Table 1. In the erosion test, in the case of stainless steel, the amount of erosion was 5.0 to 1.5 mm in the comparison specimen, whereas in the specimen of the present invention, the amount of erosion was extremely small, 0.1 mm or less, and in the case of carbon steel, the amount of erosion was less than 0.1 mm. It can be seen that the specimens shown in Fig. 1 do not suffer from melting damage at all. Regarding the contact angle, Si 3 N 4 −AlN−BN
When the system contains Al 2 O 3 , the contact angle increases,
Bentonite is further added to this (Test No. 1~
2) It can be seen that the contact angle becomes even larger than that of Comparative Test Nos. 1 and 2 without addition. Also,
The test specimens of the present invention in Test Nos. 1 and 2 were compared with Comparative Tests Nos. 1 and 2.
It can be seen that the porosity is lower than that of No. 2, and the strength is significantly improved. (2) For ring-shaped specimens, this ring refractory was set between the horizontal continuous casting mold and the tundish, and the mold diameter was 212 mm.
20 tons of stainless steel round billets were cast under the following conditions: mm, drawing speed 0.8 m/min, and drawing length 75 mm. The degree of erosion of the refractories by the solidified shell at that time was measured, and the results are shown in Table 2 below.

【表】 上記表2から、凝固シエルによる耐火物内面
の侵食深さは、比較耐火物(比較試験No.1〜
2)では5.0〜2.5mmとモールド端部を損傷させ
るほど大きなものであり、安定鋳込は不能であ
るのにたいし、本発明の耐火物(試験No.1〜
2)は侵食深さは0.1mmとわずかで鋳込上全く
支障なく、鋳型も良好であり安定操業が可能で
あることがわかる。 上記実施例において耐火物の形状としてリング
形状のものについて説明したが、形状としては角
形であつてもよく、また水平連続鋳造以外の用
途、例えば従来方式の垂直型や湾曲型の連続鋳造
機の鋳型に接続して使用することもできる。
[Table] From Table 2 above, the depth of erosion of the inner surface of the refractory by the solidified shell is
In 2), the refractory was 5.0 to 2.5 mm, which was large enough to damage the mold edge, making stable casting impossible.
In case 2), the erosion depth was only 0.1 mm, which caused no problems during casting, and the mold was in good condition, indicating that stable operation was possible. In the above embodiments, a ring-shaped refractory was described, but the refractory may also be rectangular. It can also be used by connecting it to a mold.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の耐火物が使用される水平連続
鋳造設備の概略断面図である。 1……タンデイツシユ、2……フイールドノズ
ル、3……接続耐火物、4……鋳型、5……溶
鋼、6……凝固シエル。
FIG. 1 is a schematic sectional view of horizontal continuous casting equipment in which the refractory of the present invention is used. 1... Tandite, 2... Field nozzle, 3... Connecting refractory, 4... Mold, 5... Molten steel, 6... Solidifying shell.

Claims (1)

【特許請求の範囲】[Claims] 1 連続鋳造用の鋳型とタンデイツシユを連結す
る耐火物の製造に際し、窒化けい素10〜75%、窒
化アルミニウム1〜30%、窒化ホウ素3〜30%、
酸化アルミニウム2〜50%およびモンモリロイト
族鉱物5〜30%を配合し、混練、成形後、非酸化
性雰囲気中で焼結することを特徴とする連続鋳造
用耐火物の製造方法。
1. When manufacturing refractories that connect continuous casting molds and tundishes, 10 to 75% silicon nitride, 1 to 30% aluminum nitride, 3 to 30% boron nitride,
A method for producing a refractory for continuous casting, which comprises blending 2 to 50% of aluminum oxide and 5 to 30% of a montmorilloid group mineral, kneading and shaping, and then sintering in a non-oxidizing atmosphere.
JP59205966A 1984-10-01 1984-10-01 Refractories for continuous casting Granted JPS6183679A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59205966A JPS6183679A (en) 1984-10-01 1984-10-01 Refractories for continuous casting
US06/779,417 US4640336A (en) 1984-10-01 1985-09-24 Refractory for continuous casting
FR858514261A FR2571044B1 (en) 1984-10-01 1985-09-26 REFRACTORY MATERIAL FOR CONTINUOUS CASTINGS
CA000491902A CA1244483A (en) 1984-10-01 1985-09-30 Refractory for continuous casting
DE19853534824 DE3534824A1 (en) 1984-10-01 1985-09-30 FIRE RESISTANT MATERIAL FOR CONTINUOUS CASTING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59205966A JPS6183679A (en) 1984-10-01 1984-10-01 Refractories for continuous casting

Publications (2)

Publication Number Publication Date
JPS6183679A JPS6183679A (en) 1986-04-28
JPH0251865B2 true JPH0251865B2 (en) 1990-11-08

Family

ID=16515660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59205966A Granted JPS6183679A (en) 1984-10-01 1984-10-01 Refractories for continuous casting

Country Status (1)

Country Link
JP (1) JPS6183679A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950074A (en) * 1982-09-09 1984-03-22 株式会社神戸製鋼所 Continuous casting refractories

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950074A (en) * 1982-09-09 1984-03-22 株式会社神戸製鋼所 Continuous casting refractories

Also Published As

Publication number Publication date
JPS6183679A (en) 1986-04-28

Similar Documents

Publication Publication Date Title
US4885264A (en) Pressure-sintered polycpystalline mixed materials with a base of hexagonal boron nitride, oxides and carbides
US4412008A (en) Composite sinter of silicon nitride/boron nitride and method for manufacturing thereof
KR100605326B1 (en) Composite pressured-sintered material
KR102527358B1 (en) Refractory product with a SiAlON matrix
CA1244483A (en) Refractory for continuous casting
CN104446513A (en) Composite sintering aids for BN-ZrO2-SiC composite material
JPH0251865B2 (en)
JPH0251866B2 (en)
JPS6335593B2 (en)
JP3327883B2 (en) Refractories containing massive graphite
JP3212856B2 (en) Irregular cast refractories and their moldings
JPS5921581A (en) Refractories for continuous casting
JPH0561022B2 (en)
CN113999008B (en) Low-carbon submersed nozzle lining and preparation method thereof
CN115028435B (en) High-density tundish dry material and preparation method thereof
JPS61178465A (en) Manufacture of nozzle for casting
KR100349243B1 (en) digestion nozzle for continous casting
JP2933943B2 (en) Break ring for horizontal continuous casting
JPH0641389B2 (en) Refractory for continuous casting of stainless steel
JPS61205671A (en) Refractories for continuous casting
JPH04342468A (en) Refractory for continuous casting and its production
JPH03170367A (en) Refractory for continuous casting and its production
KR950001672B1 (en) Process for the preparation of siliconoxynitride using break ring
JP2820710B2 (en) Break ring for horizontal continuous casting
GB1564927A (en) Bonds for refractory materials