JPS61205671A - Refractories for continuous casting - Google Patents

Refractories for continuous casting

Info

Publication number
JPS61205671A
JPS61205671A JP60047846A JP4784685A JPS61205671A JP S61205671 A JPS61205671 A JP S61205671A JP 60047846 A JP60047846 A JP 60047846A JP 4784685 A JP4784685 A JP 4784685A JP S61205671 A JPS61205671 A JP S61205671A
Authority
JP
Japan
Prior art keywords
refractory
continuous casting
sintered body
weight
refractories
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60047846A
Other languages
Japanese (ja)
Inventor
平尾 寿之
杉浦 謙次
黒木 智史
隆夫 鈴木
中井 健
正 平城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd, Toshiba Ceramics Co Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP60047846A priority Critical patent/JPS61205671A/en
Priority to US06/779,417 priority patent/US4640336A/en
Priority to FR858514261A priority patent/FR2571044B1/en
Priority to CA000491902A priority patent/CA1244483A/en
Priority to DE19853534824 priority patent/DE3534824A1/en
Publication of JPS61205671A publication Critical patent/JPS61205671A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、連続鋳造設備における鋳型とタンディツシュ
とを連結する鋳型注入口等に使用する耐火物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a refractory used in a mold inlet, etc. that connects a mold and a tundish in continuous casting equipment.

[従来の技術] 一般に、連続鋳造設備、例えば水平式の連続鋳造設備に
おいては、図に示すように、タンディツシュ1の下側部
に設けられたフィールドノズル2と鋳型3とが耐火物4
を介して連結されており、タンディツシュ1内の溶鋼5
がフィールドノズル2および耐火物4を通って鋳型3に
注入され、鋳型3内で冷却されて凝固シェル6を形成し
つつ引き抜かれて連続鋳造される。
[Prior Art] Generally, in continuous casting equipment, for example, horizontal continuous casting equipment, as shown in the figure, a field nozzle 2 and a mold 3 provided on the lower side of a tundish 1 are connected to a refractory material 4.
The molten steel 5 in the tundish 1
is injected into a mold 3 through a field nozzle 2 and a refractory 4, cooled in the mold 3 to form a solidified shell 6, and drawn out for continuous casting.

この連続鋳造設備に用いられる耐火物4は、耐熱衝撃性
が高いこと、溶鋼と濡れ難いこと、耐蝕性が大きいこと
、および高度の寸法精度の要求を満たすため加工が容易
であること等の性能が要求される。
The refractory 4 used in this continuous casting equipment has properties such as high thermal shock resistance, difficulty in getting wet with molten steel, high corrosion resistance, and ease of processing as it satisfies the requirements for high dimensional accuracy. is required.

従来、上記連続鋳造用耐火物としては、特開昭46−7
号公報、特開昭47−15332号公報等に所載の反応
焼結窒化ケイ素(3i s N4 )焼結体や特公昭5
0−27448号公報に所載のホットプレス窒化ホウ素
(8N)焼結体からなるものが、一般に使用されてきた
が、前者の3i 3 N4焼結体は、耐熱Ill性に劣
り、また、後者のBN焼結体は、硬度が低く、耐摩耗性
に劣る問題があった。
Conventionally, the above-mentioned refractory for continuous casting has been disclosed in Japanese Patent Application Laid-Open No. 46-7
Reactive sintered silicon nitride (3i s N4) sintered bodies and JP-A No. 15332/1983, etc.
A hot-pressed boron nitride (8N) sintered body described in Publication No. 0-27448 has been generally used, but the former 3i 3 N4 sintered body has poor heat resistance, and the latter The BN sintered body had a problem of low hardness and poor wear resistance.

上記問題に対処するため、Si 3 N4にBNを含有
させたSt 3 N4−BN系焼結体く特開昭56−1
20575号公報所載) 、Sr 3N4に窒化アルミ
ニウム(AIN)J5よびBNを含有させたSi 3 
N4−AIN−BN系焼結体(特開昭56−12966
6号公報所載)、Si:+N+にAIN、アルミナ(A
l2O2)およびBNを含有させたSi 3N4−A吏
N−A1303−BN系焼結体(特開昭59−5007
4号公報所載)からなる耐火物が知られている。
In order to deal with the above problem, a St 3 N4-BN sintered body containing BN in Si 3 N4 was developed.
20575 Publication), Si 3 containing aluminum nitride (AIN) J5 and BN in Sr 3N4
N4-AIN-BN series sintered body (JP-A-56-12966
6), Si: +N+, AIN, alumina (A
12O2) and BN-based sintered body containing Si3N4-A-N-A1303-BN (Japanese Patent Application Laid-Open No. 59-5007
A refractory made of the following materials (published in Publication No. 4) is known.

[発明が解決しようとする問題点] しかし、上記Si 3 N4−BN系焼結体からなるも
のは、炭素鋼の鋳込みには耐蝕性を示すものの、ステン
レス鋼の鋳込みにおいては浸蝕される問題がある。また
、Si 3 N4−AuN−BN系焼結体からなるもの
は、炭素鋼の長時間鋳込みあるいはステンレス鋼の鋳込
みにおいて溶損される問題がある。さらに、Si s 
N4  A吏N−Al203−BN系焼結体(サイアロ
ン−BN系焼結体)からなるものは、ステンレス鋼の長
時間鋳込みにおいて溶損される問題がある。
[Problems to be Solved by the Invention] However, although the Si 3 N4-BN-based sintered body exhibits corrosion resistance when cast into carbon steel, it suffers from corrosion when cast into stainless steel. be. Moreover, the Si 3 N4-AuN-BN based sintered body has the problem of being damaged by melting during long-time casting of carbon steel or casting of stainless steel. Furthermore, Si s
The N4A-N-Al203-BN-based sintered body (Sialon-BN-based sintered body) has a problem of being melted and damaged during long-term casting of stainless steel.

[問題点を解決するための手段] 本発明は、上述した問題点を解決するため、連続鋳造用
の鋳型とタンディツシュとを連結する耐火物であって、
窒化アルミニウム1〜80重足%、窒化ホウ素1〜50
重量%、粘土鉱物1〜30重R%、残部窒化ケイ素から
なるものである。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a refractory for connecting a continuous casting mold and a tundish,
Aluminum nitride 1-80% by weight, boron nitride 1-50%
% by weight, 1 to 30% by weight of clay mineral, and the balance is silicon nitride.

[作 用] Si 3 N4単独の焼結体からなる耐火物は、炭素鋼
に対しては耐蝕性を示すが、ステンレス鋼に対しては化
学的に反応し溶損される。このため、溶鋼に対して耐蝕
性のあるAILNを3i 3 N4に含有させたものと
することにより耐蝕性が著しく改善される。A吏Nの含
有mは、多いほど耐蝕性が大きくなるが、80重量%を
超えると強度が低下し、1重量%未満では耐蝕性を示さ
ない。
[Function] A refractory made of a sintered body of Si 3 N4 alone exhibits corrosion resistance against carbon steel, but chemically reacts with stainless steel and is eroded. Therefore, by incorporating AILN, which has corrosion resistance against molten steel, into 3i 3 N4, the corrosion resistance is significantly improved. The higher the m content of A-N, the higher the corrosion resistance; however, if it exceeds 80% by weight, the strength decreases, and if it is less than 1% by weight, no corrosion resistance is exhibited.

しかし、Si 3N4−AIN焼結体からなるものは、
ステンレス鋼等の長時間鋳込みでは溶損され、また、弾
性率が高くなり熱衝撃によってスポーリング割れを生ず
る。
However, the one made of Si3N4-AIN sintered body,
When stainless steel and other materials are cast for a long period of time, they are eroded and damaged, and their elastic modulus increases, causing spalling cracks due to thermal shock.

そこで、Si 3 N4−AIN焼結体中にBNを均一
に分散させることにより弾性率が低下し耐熱衝撃性が改
善される。BNは、粒子が細かいほどよく、また、含有
」が50重量%を超えると急激な強度低下をもたらし、
かつ1mm%未満では耐熱衝撃性を示さない。
Therefore, by uniformly dispersing BN in the Si 3 N4-AIN sintered body, the elastic modulus is reduced and the thermal shock resistance is improved. The finer the BN particles, the better, and if the content exceeds 50% by weight, the strength will drop sharply.
And if it is less than 1 mm%, thermal shock resistance is not exhibited.

上記Si 3 N4−AiN−BN系焼結体に粘土鉱物
、例えばベントナイト、酸性白土等のモンモリロ±イト
族またはセリサイト、白雲母等のイライト族を添加する
と、溶鋼と濡れ難くなり、かつ粘土鉱物の主成分である
アルミナ(A1203 >およびシリカ(Si 02 
)の一部は、Si 3 N4およびAINと反応してサ
イアロンを生成し、熱膨張率を低下する。また、粘土鉱
物のアルカリ成分は、Si 3 N4と反応してガラス
相を生成し、焼結性を向上するとともに、使用時に気孔
を塞ぎ溶鋼の浸入を防止する一方、耐火物と溶鋼との間
 −に介在して潤滑剤として機能する。したがって、耐
火物の耐蝕性が向上する。粘土鉱物は、含有針が30重
量%を超えるとガラス相の生成量が多くなり高温特性が
低下し、かつ1重量%未満では濡れ易くなるとともに焼
結性が低下する。
When a clay mineral such as a montmorilloid group such as bentonite or acid clay or an illite group such as sericite or muscovite is added to the Si3N4-AiN-BN-based sintered body, it becomes difficult to wet with molten steel, and the clay mineral Alumina (A1203 > and silica (Si 02
) reacts with Si 3 N 4 and AIN to form sialon and reduce the coefficient of thermal expansion. In addition, the alkaline component of clay minerals reacts with Si 3 N 4 to produce a glass phase, improving sinterability and blocking the pores during use to prevent molten steel from entering. - functions as a lubricant. Therefore, the corrosion resistance of the refractory is improved. When the content of clay mineral exceeds 30% by weight, the amount of glass phase produced increases and the high-temperature properties deteriorate, and when it is less than 1% by weight, it becomes easy to wet and the sinterability decreases.

なお、連続鋳造用耐火物を′@造するには、上述した各
構成成分、すなわちSi 3 N4 、AIN。
In addition, in order to make a refractory for continuous casting, each of the above-mentioned constituent components, namely Si 3 N4 and AIN.

BNおよび粘土鉱物を所要配合割合で配合し、十分に混
練し、適当な成形手段で成形し、成形体を非酸化性雰囲
気(例えばアルゴン、窒素ガス等)中で1450〜18
00℃の範囲の焼結温度で約1〜10時間に亘って焼結
して行う。また、3i 3 N4を用いた上記非酸化性
雰囲気中での焼結に限らず、3iを用いた窒素ガス中で
の反応焼結によって製造してもよい。
BN and clay minerals are blended in the required proportions, thoroughly kneaded, and molded using an appropriate molding means, and the molded body is heated to 1450 to 18
This is done by sintering at a sintering temperature in the range of 00°C for about 1 to 10 hours. Further, the manufacturing method is not limited to the sintering in the non-oxidizing atmosphere using 3i 3 N4, but may be produced by reaction sintering in nitrogen gas using 3i.

[発明の効果] 以上の如く本発明によれば、従来技術に比し、連続鋳造
用耐火物の耐蝕性および耐熱衝撃性を大幅に向上できる
とともに、凝固シェルによる耐火物の損傷を防止でき、
ひいてはステンレス鋼の長時間鋳込みのみならず高合金
鋼の連続鋳造をも可能にすることができる。
[Effects of the Invention] As described above, according to the present invention, the corrosion resistance and thermal shock resistance of continuous casting refractories can be significantly improved compared to the conventional technology, and damage to the refractories due to solidified shells can be prevented.
As a result, not only long-term casting of stainless steel but also continuous casting of high-alloy steel can be made possible.

[実施例] 本発明に係る連続鋳造用耐火物の供試体(供試体隘1〜
5)および比較するための従来の耐火物の供試体(供試
体NIL1)を第1表の上段に示す各組成によって製造
した。
[Example] Specimens of refractories for continuous casting according to the present invention (specimens 1 to 1)
5) and conventional refractory specimens (specimen NIL1) for comparison were manufactured with each composition shown in the upper row of Table 1.

第  1  表 各供試体は次のようにして製造した。Table 1 Each specimen was manufactured as follows.

まず、第1表に示す各成分を同表に示す配合割合で各供
試体とも500orを配合し、各配合物を撹拌描潰機を
用いて十分に混合した後、これらの混合物に有機バイン
ダー(PVA)を添加して均一に混練して坏土とした。
First, each component shown in Table 1 was mixed with 500 or of each sample at the mixing ratio shown in the same table, and after thoroughly mixing each compound using a stirring and crushing machine, an organic binder ( PVA) was added and kneaded uniformly to form a clay.

ついで、各坏土を油圧成形機により1トン/c1iの形
成圧力で、220mm(外径)X190Jl!(内径)
X15g+(厚さ)の円輪板形状と、20M(@)X2
0履(横)x120履(長さ)の角柱形状とに成形し乾
燥した後、窒素ガス雰囲気中に   ・おいて1700
℃の温度で5時間かけて焼結して  □本発明に係る供
試体および比較用の供試体を製造した。
Next, each clay was molded into 220 mm (outer diameter) x 190 Jl by a hydraulic forming machine at a forming pressure of 1 ton/c1i! (inner diameter)
X15g+(thickness) circular plate shape and 20M(@)X2
After forming into a prismatic shape of 0 shoes (width) x 120 shoes (length) and drying, place it in a nitrogen gas atmosphere for 1700 minutes.
□ A specimen according to the present invention and a specimen for comparison were manufactured by sintering at a temperature of 5 hours.

(1)  本発明に係る耐火物の物性は、第1表の中段
に示すように、従来のものに比し、気孔率が低下し、強
度がはるかに大きくなっていることがわかる。
(1) As shown in the middle row of Table 1, the physical properties of the refractory according to the present invention show that the porosity is lower and the strength is much higher than that of the conventional refractory.

(2)  供試体のうち角柱状のものは、溶鋼に対する
耐蝕性試験および溶鋼との接触角の測定に用いた。
(2) Among the specimens, the prismatic ones were used for corrosion resistance tests against molten steel and for measuring the contact angle with molten steel.

溶鋼に対する耐蝕性試験は、炭素鋼(S50C)および
ステンレス鋼(SLIS321)を高周波炉でそれぞれ
10Kg溶解し、1550℃に保持した溶鋼中に供試体
を浸漬し、1時間保持した後、供試体の浸蝕深さを測定
した。
The corrosion resistance test for molten steel was performed by melting 10 kg each of carbon steel (S50C) and stainless steel (SLIS321) in a high frequency furnace, immersing the specimen in the molten steel held at 1550°C, and holding it for 1 hour. The erosion depth was measured.

また、溶鋼との接触角の測定は、供試体上に炭素鋼およ
びステンレス鋼を置き、1500℃に昇温しかつこの温
度に保持してその時の接触角を高温顕微鏡を用いて行っ
た。
In addition, the contact angle with molten steel was measured by placing carbon steel and stainless steel on a specimen, raising the temperature to 1500°C and maintaining this temperature, and measuring the contact angle at that time using a high-temperature microscope.

耐蝕性の試験結果は、第1表下段に示すように、従来の
耐火物が炭素鉄鋼で3.0rras、ステンレス鋼で5
.0mmの浸蝕深さであるのに対し、本発明に係る耐火
物が炭素鋼では全く浸蝕されず、ステンレス鋼で0. 
1mg+以下のきわめて小さな浸蝕深さであり、本発明
に係る耐火物の耐蝕性が飛躍的に向上していることがわ
かる。
As shown in the lower part of Table 1, the corrosion resistance test results for conventional refractories are 3.0rras for carbon steel and 5.0rras for stainless steel.
.. The corrosion depth is 0 mm, whereas the refractory according to the present invention is not corroded at all in carbon steel, and is 0 mm in stainless steel.
The corrosion depth is extremely small, 1 mg+ or less, and it can be seen that the corrosion resistance of the refractory according to the present invention has been dramatically improved.

(3)  供試体のうち円輪板状のものは、水平式の連
続鋳造設備の鋳型とタンディツシュとの間にセットし、
鋳型径212m、引抜速度0.87FL/分、引抜長さ
75mの条件でオーステナイト系ステンレス鋼(SIJ
S321 :25Cr −2ON+ >の丸ビレットを
20トン鋳込んだ。
(3) The circular plate-shaped specimen was set between the mold and tundish of horizontal continuous casting equipment, and
Austenitic stainless steel (SIJ
S321: 20 tons of round billets of 25Cr -2ON+ were cast.

この時の耐火物の強固シェルによる浸蝕の程度を第2表
に示す。
Table 2 shows the degree of corrosion due to the strong shell of the refractory at this time.

第  2  表 上記第2表から明らかなように、耐火物内面の凝固シェ
ルによる浸蝕深さは、従来の耐火物では5.0taaま
で達し、モールド端面を損(口させるほど大きなもので
あり、安定鋳込みが不能であるのに対し、本発明に係る
耐火物では0.1〜0.2嗣とわずかで、鋳込み上全く
支障なく、鋳型表面も良好であり、安定した鋳込が可能
であることがわかる。
Table 2 As is clear from Table 2 above, the depth of corrosion due to the solidified shell on the inner surface of the refractory reaches up to 5.0 taa in the case of conventional refractories, which is so large that it damages the end face of the mold and is stable. Whereas casting is impossible, the refractory according to the present invention has only a small amount of 0.1 to 0.2 degrees, and there is no problem with casting at all, the mold surface is also good, and stable casting is possible. I understand.

なお、上記実施例においては、耐火物の形状を円輪板状
とした場合について説明したが、これに限らず耐火物を
角形やその他の形状としてもよい。
In addition, in the said Example, the case where the shape of the refractory was made into circular plate shape was demonstrated, but it is not limited to this and the refractory may have a rectangular or other shape.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に係る耐火物が使用される一例を示す水平式
の連続鋳造設備の概略断面図である。
The figure is a schematic sectional view of a horizontal continuous casting facility showing an example in which the refractory according to the present invention is used.

Claims (2)

【特許請求の範囲】[Claims] (1)連続鋳造用の鋳型とタンディッシュとを連結する
耐火物であつて、窒化アルミニウム1〜80重量%、窒
化ホウ素1〜50重量%、粘土鉱物1〜30重量%、残
部窒化ケイ素からなることを特徴とする連続鋳造用耐火
物。
(1) A refractory that connects the mold and tundish for continuous casting, consisting of 1 to 80% by weight of aluminum nitride, 1 to 50% by weight of boron nitride, 1 to 30% by weight of clay minerals, and the balance silicon nitride. A refractory for continuous casting characterized by the following.
(2)前記粘土鉱物がモンモリロナイト族であることを
特徴とする特許請求の範囲第1項記載の連続鋳造用耐火
物。
(2) The refractory for continuous casting according to claim 1, wherein the clay mineral is a montmorillonite group.
JP60047846A 1984-10-01 1985-03-11 Refractories for continuous casting Pending JPS61205671A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60047846A JPS61205671A (en) 1985-03-11 1985-03-11 Refractories for continuous casting
US06/779,417 US4640336A (en) 1984-10-01 1985-09-24 Refractory for continuous casting
FR858514261A FR2571044B1 (en) 1984-10-01 1985-09-26 REFRACTORY MATERIAL FOR CONTINUOUS CASTINGS
CA000491902A CA1244483A (en) 1984-10-01 1985-09-30 Refractory for continuous casting
DE19853534824 DE3534824A1 (en) 1984-10-01 1985-09-30 FIRE RESISTANT MATERIAL FOR CONTINUOUS CASTING

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60047846A JPS61205671A (en) 1985-03-11 1985-03-11 Refractories for continuous casting

Publications (1)

Publication Number Publication Date
JPS61205671A true JPS61205671A (en) 1986-09-11

Family

ID=12786729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60047846A Pending JPS61205671A (en) 1984-10-01 1985-03-11 Refractories for continuous casting

Country Status (1)

Country Link
JP (1) JPS61205671A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921581A (en) * 1982-07-27 1984-02-03 株式会社神戸製鋼所 Refractories for continuous casting
JPS5950074A (en) * 1982-09-09 1984-03-22 株式会社神戸製鋼所 Continuous casting refractories

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5921581A (en) * 1982-07-27 1984-02-03 株式会社神戸製鋼所 Refractories for continuous casting
JPS5950074A (en) * 1982-09-09 1984-03-22 株式会社神戸製鋼所 Continuous casting refractories

Similar Documents

Publication Publication Date Title
US5286685A (en) Refractory materials consisting of grains bonded by a binding phase based on aluminum nitride containing boron nitride and/or graphite particles and process for their production
US4885264A (en) Pressure-sintered polycpystalline mixed materials with a base of hexagonal boron nitride, oxides and carbides
GB2072220A (en) Composite sinter of silicon nitride/boron nitride and method for manufacturing thereof
AU2009229913A1 (en) Plate brick and manufacturing method therefor
JP3283883B2 (en) Alumina-magnesia-graphite refractory for continuous casting
EP1140730B1 (en) Composite material
EP0381360B1 (en) Zirconia mullite/boron nitride composites
US6548435B1 (en) Basic free-flowing casting material and preforms produced thereform
CA1244483A (en) Refractory for continuous casting
JPH09202667A (en) Castable refractory for slide gate
EP1493515A1 (en) Ceramic plate as side weir for twin drum type thin-sheet continuous casting
JPS5950074A (en) Continuous casting refractories
US7098159B2 (en) Articles for casting applications comprising ceramic composite and methods for making articles thereof
JPS61205671A (en) Refractories for continuous casting
EP0299441B1 (en) Slidding gate nozzle for special steel
JPH031369B2 (en)
JP3031192B2 (en) Sliding nozzle plate refractories
JPS5921581A (en) Refractories for continuous casting
GB1564927A (en) Bonds for refractory materials
KR100977448B1 (en) A base plate composition for side dam in twin-roll strip caster
JPH04342468A (en) Refractory for continuous casting and its production
JP2933943B2 (en) Break ring for horizontal continuous casting
JPH0251865B2 (en)
JPH0193470A (en) Ceramic sintered material
JPS63388B2 (en)