JPH0560865B2 - - Google Patents

Info

Publication number
JPH0560865B2
JPH0560865B2 JP63159596A JP15959688A JPH0560865B2 JP H0560865 B2 JPH0560865 B2 JP H0560865B2 JP 63159596 A JP63159596 A JP 63159596A JP 15959688 A JP15959688 A JP 15959688A JP H0560865 B2 JPH0560865 B2 JP H0560865B2
Authority
JP
Japan
Prior art keywords
copper phthalocyanine
layer
charge
iodine
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63159596A
Other languages
Japanese (ja)
Other versions
JPH0240661A (en
Inventor
Jon Min Ryo
Dai Jun Chin
Rii Chen Chai
Rii Un Bai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUAITOWANFUAARENKONIEJISHU IE
TSUAITOWANFUAARENKONIEJISHU IENJIOYUEN
Original Assignee
TSUAITOWANFUAARENKONIEJISHU IE
TSUAITOWANFUAARENKONIEJISHU IENJIOYUEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUAITOWANFUAARENKONIEJISHU IE, TSUAITOWANFUAARENKONIEJISHU IENJIOYUEN filed Critical TSUAITOWANFUAARENKONIEJISHU IE
Priority to JP15959688A priority Critical patent/JPH0240661A/en
Publication of JPH0240661A publication Critical patent/JPH0240661A/en
Publication of JPH0560865B2 publication Critical patent/JPH0560865B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳现な説明】 〔産業䞊の利甚分野〕 この発明は銅フタロシアニン感光䜓及びその補
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a copper phthalocyanine photoreceptor and a method for manufacturing the same.

〔埓来の技術〕[Conventional technology]

䞀般に、電子写真においおは、感光䜓の感光局
衚面に垯電、露光を行な぀お静電朜像を圢成さ
せ、これを珟像剀で珟像しお可芖化させ、その可
芖像をそのたた盎接感光䜓䞊に定着させお耇写像
を埗るか、あるいは感光䜓䞊の可芖像を玙などの
転写玙䞊に転写し、その転写像を定着させお耇写
像を埗る方匏が甚いられおいる。これらの方匏
は、䞻ずしお、電子プリンタヌやレヌザヌプリン
タヌ、フアクシミリに応甚されおいる。
Generally, in electrophotography, the surface of the photosensitive layer of a photoreceptor is charged and exposed to form an electrostatic latent image, which is developed with a developer to make it visible, and the visible image is directly transferred onto the photoreceptor. A method is used in which the visible image on the photoreceptor is transferred onto a transfer paper such as paper and the transferred image is fixed to obtain a copied image. These methods are mainly applied to electronic printers, laser printers, and facsimile machines.

埓来、この皮の目的で䜿甚される電子写真甚感
光䜓の感光局を圢成するのに、光導電性材料ずし
お無定圢セレン、硫化カドミりムあるいは酞化亜
鉛が汎甚されおいる。しかし、無定圢セレンで
は、導電性支持䜓ぞの蒞着が必芁であるため補造
が困難な䞊に、その蒞着膜に可撓性がなく、しか
も毒性が匷いために取り扱いに泚意を芁し、高䟡
になる欠点がある。他方、硫化カドミりムや酞化
亜鉛では、それらを基䜓䞊に結着させる結着剀ず
の混合比によ぀お感床が著しく巊右されるこずか
ら、実甚可胜な感床を埗るために結着剀の割合を
小さくせざるを埗ず、その結果、可撓性、平滑
性、硬床、耐摩耗性などの機械的匷床が䜎く、曎
にコロナ垯電に䌎぀お発生するオゟンなどによ぀
お特性が劣化するずいう欠点がある他、毒性があ
るため環境汚染を発生する恐れがあるなどの衛生
䞊の問題もあ぀た。これらの欠点や問題を解決す
るため、近幎、加工性が優れ、毒性や環境汚染な
どの衛生䞊の問題もない有機感光䜓がどんどん開
発されお普及化されおいる。
Conventionally, amorphous selenium, cadmium sulfide, or zinc oxide has been widely used as a photoconductive material to form a photosensitive layer of an electrophotographic photoreceptor used for this type of purpose. However, amorphous selenium is difficult to manufacture because it requires vapor deposition on a conductive support, and the vapor-deposited film is not flexible and is highly toxic, so it requires careful handling and is expensive. There are drawbacks to it. On the other hand, the sensitivity of cadmium sulfide and zinc oxide is significantly affected by the mixing ratio with the binder that binds them onto the substrate. As a result, mechanical strength such as flexibility, smoothness, hardness, and wear resistance is low, and furthermore, the characteristics deteriorate due to ozone generated due to corona charging. In addition, there were hygienic problems such as the possibility of environmental pollution due to its toxicity. In order to solve these drawbacks and problems, in recent years, organic photoreceptors that have excellent processability and are free from hygienic problems such as toxicity and environmental pollution have been increasingly developed and become popular.

有機感光䜓には、構成の面からみるず、䞀般
に、単局型ず耇局型ずがある。単局型は、導電性
基䜓の䞊に、電荷発生物質ず電荷䌝送物質ず結着
剀ずからなる感光局を被芆しおなる。耇局型は、
導電性基䜓の䞊に、蒞着や塗垃により電荷発生物
質を被芆した埌、圢成された電荷発生局の䞊に、
曎に、電荷䌝送物質ず結着剀ずからなる懞濁液を
被芆也燥しおなる。このような感光䜓を䞀旊露光
させるず、電荷発生物質から電荷察が発生し、電
界の䜜甚により、電子が導電性基䜓を経由しお離
脱し、䞀方電子孔が電荷䌝送物質を経由し、感光
䜓衚面に䌝達しお、その負電荷を䞭和し、静電朜
像を圢成するこずができる。
In terms of structure, organic photoreceptors are generally classified into single-layer types and multi-layer types. The single-layer type is formed by coating a conductive substrate with a photosensitive layer consisting of a charge-generating material, a charge-transmitting material, and a binder. The multilayer type is
After coating a conductive substrate with a charge-generating substance by vapor deposition or coating, a charge-generating layer is formed on the charge-generating layer.
Further, a suspension consisting of a charge transfer material and a binder is coated and dried. Once such a photoreceptor is exposed to light, charge pairs are generated from the charge-generating material, and due to the action of the electric field, electrons are released via the conductive substrate, while electron holes pass through the charge-transfer material and are exposed to light. It can be transmitted to the body surface to neutralize its negative charge and form an electrostatic latent image.

有機感光䜓に䜿われる電荷発生物質は、通垞、
光導電性を有する有機顔料である。䟋ずしお、ビ
スアゟ系顔料、アントラヒドロキノン系顔料、チ
オむンゞゎ系顔料ずフタロシアニン系顔料などが
あげられる。なかでも、特に、フタロシアニン系
顔料に属する銅フタロシアニンは、着色力及び耐
光性、耐熱性、耐薬品性においお優れ、毒性の問
題もなく、コストも䜎いので、ブルヌ系有機顔料
ずしおも぀ずも汎甚されおいるのが珟状である。
The charge generating materials used in organophotoreceptors are usually
It is an organic pigment with photoconductivity. Examples include bisazo pigments, anthrahydroquinone pigments, thioindigo pigments, and phthalocyanine pigments. Among them, copper phthalocyanine, which belongs to the phthalocyanine pigments, has excellent coloring power, light resistance, heat resistance, and chemical resistance, has no toxicity problems, and is low in cost, so it is widely used as a blue organic pigment. is the current situation.

すでに知られおいる銅フタロシアニンは、結晶
圢態からみるず、α−、β−、γ−、Ύ−、π
−、ρ−、χ−、ε−の皮類がある。なかで
も、α−、β−ずε−の皮が倧量生産されお汎
甚されおいる。特に、ε−型銅フタロシアニンは
半導䜓レヌザのような長波長玄780nm前埌の
光に察しお高吞収を瀺し、電子写真により珟像さ
れるレヌザプリンタヌやフアクシミリに応甚でき
るず考えられるので各方面におおいお泚目されお
いる。しかしながら、いたたでのε−型銅フタロ
シアニンは、電荷発生物質ずしおは感床が䞍足
し、露光されおから衚面電䜍が半分に枛衰するた
での需芁光゚ネルギヌが高過ぎ、感光䜓に応甚し
た堎合には朜像の電䜍差が䞍十分ずなり、鮮明な
耇写像を圢成しにくい。
Already known copper phthalocyanines have crystal forms of α-, β-, γ-, ÎŽ-, and π.
There are eight types: -, ρ-, χ-, and ε-. Among them, three types, α-, β-, and ε-, are mass-produced and widely used. In particular, ε-type copper phthalocyanine exhibits high absorption for long wavelength light (around 780 nm) such as that produced by semiconductor lasers, and is thought to be applicable to laser printers and facsimile machines that develop using electrophotography, so it is widely used in various fields. It is attracting a lot of attention. However, the conventional ε-type copper phthalocyanine lacks sensitivity as a charge-generating substance, and the required light energy from exposure until the surface potential attenuates by half is too high, and when applied to photoreceptors, The potential difference of the latent image becomes insufficient, making it difficult to form a clear copy image.

ε−型銅フタロシアニンの衚面に染料増感剀を
被芆しお感床をあげる方法がある特開昭55−
161249参照。しかし、この方法は、赀倖線波長
範囲780n前埌の近くにおいお感床がなく
なるように吞収波長を倉動させる欠点がある。
There is a method to increase the sensitivity by coating the surface of ε-type copper phthalocyanine with a dye sensitizer (Japanese Patent Application Laid-Open No. 1987-
161249). However, this method has the drawback of varying the absorption wavelength so that sensitivity is lost near the infrared wavelength range (around 780 nm).

〔発明が解決しようずする課題〕[Problem to be solved by the invention]

この発明は、補造方法の改善により、䞊蚘銅フ
タロシアニンを電荷発生物質ずしおなる感光䜓
を、赀倖線波長範囲においお、感床が高くお、電
子写真により珟像されるレヌザプリンタヌやフア
クシミリ、電子プリンタヌに適甚する感光䜓ずす
るこずを目的ずする。
The present invention improves the manufacturing method so that a photoreceptor made of copper phthalocyanine as a charge generating substance has high sensitivity in the infrared wavelength range, and is applicable to laser printers, facsimile machines, and electronic printers that are developed by electrophotography. The purpose is to become a body.

〔課題を解決するための手段〕[Means to solve the problem]

䞊蚘の目的を達成するために、この発明は、ペ
り玠ガスにより凊理された銅フタロシアニンを電
荷発生物質ずしお甚い、電荷䌝送物質ず共に、あ
るいは、それぞれに、導電性基䜓に被芆しお感光
局を圢成させる方法により、銅フタロシアニン感
光䜓を補造する。
To achieve the above object, the present invention uses copper phthalocyanine treated with iodine gas as a charge generating material and coats it on a conductive substrate together with or separately from a charge transporting material to form a photosensitive layer. A copper phthalocyanine photoreceptor is manufactured by the method.

即ち、この発明の補造方法には、䟋ずしお、導
電性基䜓に結着剀を被芆しおから也燥する結着局
圢成工皋ず、銅フタロシアニンを結着剀に分散し
お前蚘結着局圢成工皋で圢成された結着局の䞊に
被芆しおから也燥する電荷発生局圢成工皋ず、ペ
り玠ガスにより、前蚘電荷発生局圢成工皋で圢成
された電荷発生局を凊理するペり玠凊理工皋ず、
電子孔䌝送物質を結着剀に分散しお、前蚘ペり玠
凊理工皋で凊理された電荷発生局の䞊に被芆する
電荷䌝送局圢成工皋からなる方法があげられる。
That is, the manufacturing method of the present invention includes, for example, a binding layer forming step in which a conductive substrate is coated with a binder and then dried, and a binding layer forming step in which copper phthalocyanine is dispersed in the binder. a charge generation layer forming step in which the charge generation layer is coated on the binding layer formed in the step and then dried; an iodine treatment step in which the charge generation layer formed in the charge generation layer formation step is treated with iodine gas;
One example is a method comprising a charge transport layer forming step in which an electron hole transport material is dispersed in a binder and coated on the charge generation layer treated in the iodine treatment step.

銅フタロシアニンをペり玠ガスにより凊理する
こずにより、その衚面にペり玠が吞着され、もし
くは付着されるこずずなる。
By treating copper phthalocyanine with iodine gas, iodine is adsorbed or attached to its surface.

このような方法により、この発明は、電荷発生
物質ず電荷䌝送物質を感光局ずしお導電性基䜓に
被芆しおなる有機感光䜓、特に圓該電荷発生物質
ずしお、ペり玠ガスにより凊理した銅フタロシア
ニンを甚いおなる感光䜓を提䟛するこずができ
る。
By such a method, the present invention provides an organic photoreceptor in which a conductive substrate is coated with a charge-generating substance and a charge-transferring substance as a photosensitive layer, and in particular, an organic photoreceptor in which a copper phthalocyanine treated with iodine gas is used as the charge-generating substance. A photoreceptor can be provided.

䞊蚘電荷発生物質ずしおは銅フタロシアニンが
適するが、α−、β−ずε−の皮を䜿甚するの
が望たしく、特にε−型がも぀ずも望たしい。
Copper phthalocyanine is suitable as the above-mentioned charge generating substance, but it is desirable to use three types of α-, β-, and ε-type, and it is particularly preferable to use the ε-type.

䞊蚘電荷䌝送物質ずしおは、いわゆる電子孔䌝
送物質が望たしく、ヒドラゟン系化合物、ピラゟ
リン系化合物、オキサゟヌル系化合物、チアゟヌ
ル系化合物、トリアリルメタン系化合物などがあ
げられる。ヒドラゟン系化合物ずしおは、−ゞ
゚チルアミノベンズアルデヒド−−ゞプ
ニルヒドラゟン、−ゞ゚チルアミノベンズアル
デヒド−−α−ナフチル−−プニルヒドラ
ゟン、−−ピロリゞニル−ベンズアルデヒ
ド−−ゞプニルヒドラゟン、
−トリメチルむンドヌルニン−ω−アルデヒド−
−ゞプニルヒドラゟン、−ゞ゚チルア
ミノベンズアルデヒド−−メチルベンズチアゟ
リノン−−ヒドラゟンなどがある。ピラゟリン
系化合物ずしおは、−プニル−−−ゞ
゚チルアミノスチリル−−−ゞ゚チルアミ
ノプニルピラゟリン、−〔キノリル(2)〕−
−−ゞ゚チルアミノスチリル−−−ゞ
゚チルアミノプニルピラゟリン、−〔ピリ
ゞル(2)〕−−−ゞ゚チルアミノスチリル−
−−ゞ゚チルアミノプニルピラゟリン
などがある。たた、オキサゟヌル系化合物ずしお
は、−−ゞ゚チルアミノスチリル−−ゞ
゚チルアミノベンズオキサゟヌル、−−ゞ
゚チルアミノプニル−−−ゞメチルアミ
ノプニル−−−クロロプニルオキサ
ゟヌル、チアゟヌル系化合物ずしおは、−
−ゞ゚チルアミノスチリル−−ゞ゚チルアミ
ノベンゟチアゟヌル、トリアリルメタン系化合物
ずしおは、ビス−ゞ゚チルアミノ−−メチ
ルプニル−プニルメタンがあげられる。
As the charge transfer substance, so-called electron hole transfer substances are desirable, and examples thereof include hydrazone compounds, pyrazoline compounds, oxazole compounds, thiazole compounds, and triallylmethane compounds. Examples of hydrazone compounds include p-diethylaminobenzaldehyde-N,N-diphenylhydrazone, p-diethylaminobenzaldehyde-N-α-naphthyl-N-phenylhydrazone, and p-(1-pyrrolidinyl)-benzaldehyde-N,N- diphenylhydrazone, 1,3,3
-Trimethylindolinine-ω-aldehyde-
Examples include N,N-diphenylhydrazone and p-diethylaminobenzaldehyde-3-methylbenzthiazolinone-2-hydrazone. Examples of pyrazoline compounds include 1-phenyl-3-(p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-[quinolyl(2)]-3
-(p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-[pyridyl(2)]-3-(p-diethylaminostyryl)-
Examples include 5-(p-diethylaminophenyl)pyrazoline. Further, as oxazole compounds, 2-(p-diethylaminostyryl)-6-diethylaminobenzoxazole, 2-(p-diethylaminophenyl)-4-(p-dimethylaminophenyl)-5-(2-chlorophenyl) ) Oxazole and thiazole compounds include 2-(p
-diethylaminostyryl)-6-diethylaminobenzothiazole and triallylmethane compounds include bis(4-diethylamino-2-methylphenyl)-phenylmethane.

結着剀は、特に限定されず、通垞䜿甚されおい
る暹脂を適甚するこずができる。䟋ずしおは、ポ
リビニルブチラヌル、ポリビニルアセテヌ
ト、ポリ゚ステル、ポリカボネヌト、プノキ
シレゞン、アクリルレゞン、ポリアクリルアミ
ド、ポリアミド、ポリビニルピリゞン、セルロヌ
ス系レゞン、りレタンレゞン、゚ポキシレゞン、
カれむン、ポリビニルアルコヌルなどがあげ
られる。
The binder is not particularly limited, and commonly used resins can be used. Examples include poly(vinyl butyral), poly(vinyl acetate), polyester, polycarbonate, phenoxy resin, acrylic resin, polyacrylamide, polyamide, polyvinylpyridine, cellulose resin, urethane resin, epoxy resin,
Examples include casein and poly(vinyl alcohol).

ペり玠凊理の方法ずしおは、密閉容噚内で飜和
ペり玠ガスにより凊理する方法ず、真空蒞着装眮
にお凊理する方法ずがある。凊理条件は、凊理さ
れた電荷発生物質においお、ペり玠量察電荷発生
物質量の比が0.01〜1.0になるようなものであれ
ばよい。䟋えば、20℃〜90℃の枩床においお〜
120分間凊理すればよい。䞊蚘の比が0.01未満で
あるず、感床になんらの改善もないが、1.0以䞊
になるず、暗枛衰特性が倧き過ぎお、静電荷を十
分に吞収するこずができなくなる。
Iodine treatment methods include a method using saturated iodine gas in a closed container and a method using a vacuum evaporation apparatus. The treatment conditions may be such that the ratio of the amount of iodine to the amount of the charge generating material in the treated charge generating material is 0.01 to 1.0. For example, at a temperature of 20℃ to 90℃
It is enough to process for 120 minutes. When the above ratio is less than 0.01, there is no improvement in sensitivity, but when it is more than 1.0, the dark decay characteristic becomes too large and static charges cannot be absorbed sufficiently.

〔䜜甚〕[Effect]

叙䞊のように、この発明に埓い、ペり玠ガスに
より凊理された銅フタロシアニンを電荷発生物質
ずしお甚い、電荷䌝送物質ず共に、あるいは、そ
れぞれに、導電性基䜓に被芆しお感光局を圢成せ
しめる方法により、感光䜓の波長吞収範囲に圱響
させるこずなく、感床をあげるこずができる。
As described above, according to the present invention, copper phthalocyanine treated with iodine gas is used as a charge generating material and coated on a conductive substrate together with or separately from a charge transporting material to form a photosensitive layer. Sensitivity can be increased without affecting the wavelength absorption range of the photoreceptor.

〔実斜䟋〕〔Example〕

以䞋に、実斜䟋をあげお、本発明をさらに説明
する。
The present invention will be further explained below with reference to Examples.

䟋  0.2mm×260mm×80mmのアルミニりム板を基䜓ず
し、これをポリアミド暹脂のメタノヌル溶液固
圢分に浞挬し、次いで60℃のオヌブン䞭で
箄30分間也燥した。也燥された暹脂結着局の厚み
は1.0m2であ぀た。
Example 1 An aluminum plate of 0.2 mm x 260 mm x 80 mm was used as a substrate, and this was immersed in a methanol solution (solid content: 7%) of polyamide resin, and then dried in an oven at 60°C for about 30 minutes. The thickness of the dried resin binding layer was 1.0 g/m 2 .

䞀方、0.22のポリビニルブチラヌルを10の
シクロヘキサノン溶剀に完党に溶解し、そしお
0.22の銅フタロシアニンBASF補、商品名ハ
ロゲンブルヌL6700を添加した埌埮粉機マツ
クロン リサヌチ ア゜シ゚ヌテツド リミツテ
ツド補により時間研磚し、懞濁液を぀く぀
た。
Meanwhile, completely dissolve 0.22 g of polyvinyl butyral in 10 g of cyclohexanone solvent, and
After adding 0.22 g of copper phthalocyanine (manufactured by BASF, trade name Halogen Blue L6700), the mixture was ground for 1 hour using a pulverizer (manufactured by Matsukron Research Associates, Ltd.) to form a suspension.

䞊蚘基䜓を該懞濁液に浞挬し、そしお60℃のオ
ヌブン䞭で玄30分間也燥した。也燥された電荷発
生局の厚みは0.3m2であ぀た。
The substrate was immersed in the suspension and dried in an oven at 60°C for about 30 minutes. The thickness of the dried charge generation layer was 0.3 g/m 2 .

次に、絶えず所定量のペり玠ガスを導入しおい
た密閉容噚にお、35℃においお、基䜓を15分間ペ
り玠凊理した。凊理された基䜓のペり玠吞収量は
箄7.5×10-3m2であ぀た。
Next, the substrate was treated with iodine for 15 minutes at 35° C. in a closed container into which a predetermined amount of iodine gas was constantly introduced. The iodine uptake of the treated substrate was approximately 7.5 x 10 -3 g/m 2 .

次に、基䜓を宀枩たで冷华した。冷华された基
䜓を䞋蚘の電荷䌝送局組成物に浞挬した埌、90℃
のオヌブン䞭で玄60分間也燥した。也燥された電
荷䌝送局の厚みは16Όであ぀た。甚いた電荷䌝
送局組成物の成分を䞋蚘に瀺す。
The substrate was then cooled to room temperature. After dipping the cooled substrate into the charge transport layer composition described below,
Dry in the oven for about 60 minutes. The thickness of the dried charge transport layer was 16 ÎŒm. The components of the charge transport layer composition used are shown below.

−ゞ゚チルアミノベンズアルデヒド−−α
−ナフチル−−プニルヒドラゟン 40 スチレン−MMA共重合物日本、新日鉄化孊
補、商品名MS200 60 トル゚ン 330 光導電性詊隓機EPA−8100日本、川口電機
補によ぀お、䞊蚘で埗られた感光䜓の感床を枬
定した。枬定された需芁光゚ネルギヌは、光源を
ハロゲンランプずした堎合5.4lux・secであり、
780nのフむルタヌガラスでろ過された光源を
䜿甚した堎合0.1lux・secであ぀た。
p-diethylaminobenzaldehyde-N-α
-Naphthyl-N-phenylhydrazone 40g Styrene-MMA copolymer (manufactured by Nippon Steel Chemical Co., Ltd., Japan, trade name MS200) 60g Toluene 330g The above results were measured using a photoconductivity tester EPA-8100 (manufactured by Kawaguchi Denki, Japan). The sensitivity of the obtained photoreceptor was measured. The measured light energy demand is 5.4lux・sec when the light source is a halogen lamp.
When a light source filtered by a 780 nm filter glass was used, the light intensity was 0.1 lux·sec.

䟋  䟋ず同様に、0.2mm×260mm×80mmのアルミニ
りム板を基䜓ずし、ポリアミド暹脂のメタノヌル
溶液固圢分に浞挬し、そしお60℃のオヌ
ブン䞭で玄30分間也燥した。也された暹脂結着局
の厚みは1.0m2であ぀た。
Example 2 As in Example 1, a 0.2 mm x 260 mm x 80 mm aluminum plate was used as a substrate, immersed in a methanol solution of polyamide resin (solid content 7%), and dried in an oven at 60°C for about 30 minutes. The thickness of the dried resin binding layer was 1.0 g/m 2 .

䞀方、0.22のポリビニルブチラヌルを10の
シクロヘキサノン溶剀に完党に溶解し、そしお
0.22の銅フタロシアニンBASF補、商品名ハ
ロゲンブルヌL6700を添加した埌埮粉機マツ
クロン リサヌチ ア゜シ゚ヌテツド リミツテ
ツド補により時間研磚し、懞濁液を぀く぀
た。
Meanwhile, completely dissolve 0.22 g of polyvinyl butyral in 10 g of cyclohexanone solvent, and
After adding 0.22 g of copper phthalocyanine (manufactured by BASF, trade name Halogen Blue L6700), the mixture was ground for 1 hour using a pulverizer (manufactured by Matsukron Research Associates, Ltd.) to form a suspension.

䞊蚘基䜓を該懞濁液に浞挬し、そしお60℃のオ
ヌブン䞭で玄30分間也燥した。也燥された電荷発
生局の厚みは0.3m2であ぀た。
The substrate was immersed in the suspension and dried in an oven at 60°C for about 30 minutes. The thickness of the dried charge generation layer was 0.3 g/m 2 .

次に、ペり玠の飜和蒞気で満たされた密閉容噚
にお、27.5℃においお、基䜓を60分間ペり玠凊理
した。凊理された基䜓のペり玠吞収量は玄×
10-2m2であ぀た。
The substrate was then iodine-treated for 60 minutes at 27.5°C in a closed container filled with saturated iodine vapor. The iodine uptake of the treated substrate is approximately 1×
It was 10 -2 g/m 2 .

次に、基䜓を宀枩たで冷华した。冷华された基
䜓を䟋ず同様な電荷䌝送局組成物に浞挬した埌
90℃のオヌブン䞭で玄60分間也燥した。也燥され
た電荷䌝送局の厚みは16Όであ぀た。
The substrate was then cooled to room temperature. After dipping the cooled substrate into a charge transport layer composition similar to Example 1.
It was dried in an oven at 90°C for about 60 minutes. The thickness of the dried charge transport layer was 16 Όm.

光導電性詊隓機EPA−8100日本、川口電機
補によ぀お、䞊蚘で埗られた感光䜓の感床を枬
定した。枬定された需芁光゚ネルギヌは、光源を
党スペクトル光源ずした堎合4.5lux・secであり、
780nの光源ずした堎合0.1lux・secであ぀た。
The sensitivity of the photoreceptor obtained above was measured using a photoconductivity tester EPA-8100 (manufactured by Kawaguchi Denki, Japan). The measured light energy demand is 4.5lux・sec when the light source is a full spectrum light source,
When using a 780nm light source, it was 0.1lux・sec.

比范䟋  䟋およびず同様に感光䜓を䜜成した。ただ
し、ここではペり玠凊理を行わなか぀た。
Comparative Example 1 A photoreceptor was prepared in the same manner as in Examples 1 and 2. However, no iodine treatment was performed here.

䜜成された感光䜓に察し、EPA−8100により、
感光床を枬定した。枬定された需芁光゚ネルギヌ
は、光源を党スペクトル光源ずした堎合
12.0lux・secであり、780nの光源ずした堎合
0.3lux・secであり、いずれも䟋および䟋の
それよりも遥かに高いものであ぀た。
For the photoreceptor created, EPA-8100
The photosensitivity was measured. The measured light energy demand is when the light source is a full spectrum light source.
12.0lux・sec, when using a 780nm light source
0.3 lux·sec, both of which were much higher than those of Examples 1 and 2.

䟋  盎埄30mm、長さ260mmのアルミニりム円筒を基
䜓ずしお甚い、これをポリアミド暹脂のメタノヌ
ル溶液固圢分に浞挬し、そしお60℃のオ
ヌブン䞭で玄30分間也燥した。也燥された暹脂結
着局の厚みは1.0m2であ぀た。
Example 3 An aluminum cylinder with a diameter of 30 mm and a length of 260 mm was used as a substrate, which was immersed in a methanol solution of polyamide resin (solid content 7%) and dried in an oven at 60° C. for about 30 minutes. The thickness of the dried resin binding layer was 1.0 g/m 2 .

䞀方、のポリビニルブチラヌルを200の
シクロヘキサノン溶剀に完党に溶解し、そしお
の銅フタロシアニンBASF補、商品名ハロゲ
ンブルヌL6700ず200のブタノンを添加した
埌玉入り粉砕機により72時間分散し、懞濁液を぀
く぀た。
Meanwhile, completely dissolve 6 g of polyvinyl butyral in 200 g of cyclohexanone solvent, and
g of copper phthalocyanine (manufactured by BASF, trade name Halogen Blue L6700) and 200 g of butanone were added and then dispersed for 72 hours using a ball mill to form a suspension.

䞊蚘基䜓を該懞濁液に浞挬し、そしお60℃のオ
ヌブン䞭で玄30分間也燥した。也燥された電荷発
生局の厚みは0.3m2であ぀た。
The substrate was immersed in the suspension and dried in an oven at 60°C for about 30 minutes. The thickness of the dried charge generation layer was 0.3 g/m 2 .

次に、ペり玠の飜和蒞気で満たされた密閉容噚
にお、25℃においお、基䜓を30分間ペり玠凊理し
た。
The substrate was then iodine-treated for 30 minutes at 25° C. in a closed container filled with saturated iodine vapor.

次に、基䜓を宀枩たで冷华した。冷华された基
䜓を䟋ず同様な電荷䌝送局組成物に浞挬した埌
90℃のオヌブン䞭で玄60分間也燥した。也燥され
た電荷䌝送局の厚みは20Όであ぀た。
The substrate was then cooled to room temperature. After dipping the cooled substrate into a charge transport layer composition similar to Example 1.
It was dried in an oven at 90°C for about 60 minutes. The thickness of the dried charge transport layer was 20 Όm.

䞊蚘で䜜成された感光䜓を実際にレヌザヌプリ
ンタヌキダヌノンLBP−に䜿甚し、鮮
明な耇写像を埗た。
The photoreceptor prepared above was actually used in a laser printer (Canon LBP-8) and a clear copy image was obtained.

比范䟋  䟋ず同様に感光䜓を䜜成した。ただし、ここ
ではペり玠凊理を行わなか぀た。
Comparative Example 2 A photoreceptor was prepared in the same manner as in Example 3. However, no iodine treatment was performed here.

䜜成された感光䜓を、実際にレヌザヌプリンタ
ヌキダヌノンLBP−に䜿甚し、がんや
りずした耇写像を埗た。
The produced photoreceptor was actually used in a laser printer (Canon LBP-8), and a vague copy image was obtained.

〔発明の効果〕〔Effect of the invention〕

䞊蚘実斜䟋ず比范䟋によるず、この発明は、ペ
り玠ガスにより凊理した銅フタロシアニンによる
電荷発生物質ず電荷䌝送物質ずを導電性基䜓に被
芆しお感光局を圢成せしめる方法により、その波
長吞収範囲に圱響を䞎えるこずなく、感光䜓の感
床を倧きく向䞊せしめるこずができる。
According to the above Examples and Comparative Examples, the present invention has a method of forming a photosensitive layer by coating a conductive substrate with a charge-generating substance and a charge-transmitting substance made of copper phthalocyanine treated with iodine gas. The sensitivity of the photoreceptor can be greatly improved without any adverse effects.

Claims (1)

【特蚱請求の範囲】  感光局ずしお、ペり玠を吞着もしくは付着せ
しめた銅フタロシアニンによる電荷発生物質ず電
荷䌝送物質ずを導電性基䜓に被芆しおなる有機感
光䜓。  導電性基䜓に銅フタロシアニンを被芆しおか
ら、この銅フタロシアニン局に、ペり玠量察銅フ
タロシアニン量の倀が0.01から0.1たでになるよ
うにペり玠を吞着もしくは付着せしめた埌、銅フ
タロシアニン局の䞊に電子孔䌝送物質を被芆しお
なる銅フタロシアニン感光䜓。  アルミニりム材を基䜓ずしおポリアミド暹脂
溶液により被芆しおから也燥する結着局圢成工皋
ず、 ポリビニルブチラヌル暹脂溶液にε−銅フタロ
シアニンを分散させおなる懞濁液を䜿甚しお、前
蚘結着局圢成工皋により圢成された結着局の䞊に
被芆しおから也燥する電荷発生局圢成工皋ず、 20℃〜90℃の枩床範囲においお、ペり玠ガス雰
囲気に、前蚘電荷発生局圢成工皋により圢成され
た電荷発生局を〜120分間保持するペり玠凊理
工皋ず、 ヒドラゟン系化合物、ピラゟリン系化合物、オ
キサゟヌル系化合物、チアゟヌル系化合物、トリ
アリルメタン系化合物及びそれらの皮たたはそ
れ以䞊の混合物より遞ばれた電子孔䌝送物質を結
着剀に分散し、前蚘ペり玠凊理工皋で凊理された
電荷発生局の䞊に被芆する電荷䌝送局圢成工皋か
らなる銅フタロシアニン感光䜓の補造方法。
[Scope of Claims] 1. An organic photoreceptor in which a conductive substrate is coated with a charge-generating substance and a charge-transmitting substance made of copper phthalocyanine to which iodine is adsorbed or attached as a photosensitive layer. 2 After coating a conductive substrate with copper phthalocyanine, adsorbing or adhering iodine to this copper phthalocyanine layer so that the value of the amount of iodine to the amount of copper phthalocyanine is from 0.01 to 0.1, and then coating the copper phthalocyanine layer on top of the copper phthalocyanine layer. Copper phthalocyanine photoreceptor coated with electron hole transport material. 3. A binding layer forming step in which an aluminum material is coated with a polyamide resin solution as a substrate and then dried, and the binding layer is formed using a suspension obtained by dispersing ε-copper phthalocyanine in a polyvinyl butyral resin solution. A charge generation layer forming step in which the binding layer formed by the process is coated and then dried, and the charges formed in the charge generation layer forming step are placed in an iodine gas atmosphere at a temperature range of 20°C to 90°C. An iodine treatment step in which the generation layer is maintained for 1 to 120 minutes, and an electron selected from hydrazone compounds, pyrazoline compounds, oxazole compounds, thiazole compounds, triallylmethane compounds, and mixtures of two or more thereof. A method for producing a copper phthalocyanine photoreceptor, which comprises a step of forming a charge transport layer, in which a hole transport material is dispersed in a binder and coated on the charge generation layer treated in the iodine treatment step.
JP15959688A 1988-06-29 1988-06-29 Copper phthalocyanine photosensitive body and manufacture thereof Granted JPH0240661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15959688A JPH0240661A (en) 1988-06-29 1988-06-29 Copper phthalocyanine photosensitive body and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15959688A JPH0240661A (en) 1988-06-29 1988-06-29 Copper phthalocyanine photosensitive body and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH0240661A JPH0240661A (en) 1990-02-09
JPH0560865B2 true JPH0560865B2 (en) 1993-09-03

Family

ID=15697156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15959688A Granted JPH0240661A (en) 1988-06-29 1988-06-29 Copper phthalocyanine photosensitive body and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0240661A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2529130Y2 (en) * 1990-11-05 1997-03-19 株匏䌚瀟シマノ Swing rod

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059354A (en) * 1983-09-12 1985-04-05 Oki Electric Ind Co Ltd Electrophotographic sensitive body
JPS6127549A (en) * 1984-07-18 1986-02-07 Toshiba Corp Electrophotographic sensitive body
JPS61138956A (en) * 1984-12-12 1986-06-26 Toshiba Corp Electrophotographic sensitive body
JPS62184463A (en) * 1986-02-10 1987-08-12 Toshiba Corp Electrophotographic sensitive body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059354A (en) * 1983-09-12 1985-04-05 Oki Electric Ind Co Ltd Electrophotographic sensitive body
JPS6127549A (en) * 1984-07-18 1986-02-07 Toshiba Corp Electrophotographic sensitive body
JPS61138956A (en) * 1984-12-12 1986-06-26 Toshiba Corp Electrophotographic sensitive body
JPS62184463A (en) * 1986-02-10 1987-08-12 Toshiba Corp Electrophotographic sensitive body

Also Published As

Publication number Publication date
JPH0240661A (en) 1990-02-09

Similar Documents

Publication Publication Date Title
US5134049A (en) Photoconductor for electrophotography
JPH0560865B2 (en)
JPH06345742A (en) Pyrazine compound and electrophotographic photoreceptor containing the same
US4882250A (en) Copper phthalocyanine photoreceptor and method for producing the same
JPH01142659A (en) Electrophotographic sensitive body
JPS6161380B2 (en)
JP3496083B2 (en) Electrostatic latent image transfer type image forming method and image forming apparatus used therefor
JPH02180884A (en) Novel compound and pigment and electrophotographic sensitive substance using the same
JPH01230054A (en) Electrophotographic sensitive body
JP2643216B2 (en) Electrophotographic photoreceptor
JP2868838B2 (en) Electrophotographic photoreceptor
JPS63301956A (en) Electrophotographic sensitive body
JPS60233656A (en) Electrophotographic sensitive body
JPS62121460A (en) Electrophotographic sensitive body
JPS6029945B2 (en) Method for manufacturing photoconductor element
JPH0469952B2 (en)
JPH0394263A (en) Electrophotographic sensitive body
JPS6320342B2 (en)
JPH01319750A (en) Electrophotographic sensitive body
JPH09134021A (en) Electrophotographic photoreceptor
JPS60201351A (en) Preparation of photoconductive composition
JPH02144545A (en) Electrophotographic sensitive body
JPS6248215B2 (en)
JPH0373960A (en) Electrophotographic sensitive body
JPH01107263A (en) Electrophotographic sensitive body