JPH0240661A - Copper phthalocyanine photosensitive body and manufacture thereof - Google Patents

Copper phthalocyanine photosensitive body and manufacture thereof

Info

Publication number
JPH0240661A
JPH0240661A JP15959688A JP15959688A JPH0240661A JP H0240661 A JPH0240661 A JP H0240661A JP 15959688 A JP15959688 A JP 15959688A JP 15959688 A JP15959688 A JP 15959688A JP H0240661 A JPH0240661 A JP H0240661A
Authority
JP
Japan
Prior art keywords
layer
copper phthalocyanine
coated
charge
iodine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15959688A
Other languages
Japanese (ja)
Other versions
JPH0560865B2 (en
Inventor
Jyon Min Ryo
リョウ ヂョン ミン
Dai Jun Chin
チン ダイ ヂュン
Rii Chien Chai
チャイ リー チェン
Ri Un Bai
バイ リー ウン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TSUAITOWANFUAARENKONIEJISHIYUU IENJIOUYUEN
Original Assignee
TSUAITOWANFUAARENKONIEJISHIYUU IENJIOUYUEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TSUAITOWANFUAARENKONIEJISHIYUU IENJIOUYUEN filed Critical TSUAITOWANFUAARENKONIEJISHIYUU IENJIOUYUEN
Priority to JP15959688A priority Critical patent/JPH0240661A/en
Publication of JPH0240661A publication Critical patent/JPH0240661A/en
Publication of JPH0560865B2 publication Critical patent/JPH0560865B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a photoreceptor having high sensitivity by using copper phthalocyanine treated with gaseous iodine as an electric charge generating material and forming a photosensitive layer on an electrically conductive substrate by coating with the electric charge generating material together with an electric charge transferring material or with the materials in a separate state. CONSTITUTION: An electrically conductive substrate is coated with copper phthalocyanine, the resultant copper phthalocyanine layer is treated with gaseous iodine so that the ratio of iodine to copper phthalocyanine is regulated from 0.01 to 1.0 and the layer is coated with an electron hole transferring material to form a photosensitive layer. In other way, an Al material as a substrate is coated with a polyamide resin soln. and dried to form a bonding layer and a suspension prepcl. by dispersing copper phthalocyanine in a polyvinyl butyral resin soln. is adhered on the bonding layer and dried to form an electric charge generating layer. After holding in gaseous iodine at 20-90 deg.C for 1-120min, the electric charge generating layer is coated with an electric charge transferring layer formed by dispersing an electron hole transferring material such as a mixture of a hydrazone compd., a pyrazoline compd., etc., in a bonding layer to produce the objective photoreceptor.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は銅フタロシアニン感光体及びその製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a copper phthalocyanine photoreceptor and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

一般に、電子写真においては、感光体の感光層表面に帯
電、露光を行なって静電潜像を形成させ、これを現像剤
で現像して可視化させ、その可視像をそのまま直接感光
体上に定着させて複写像を得るか、あるいは感光体上の
可視像を紙などの転写紙上に転写し、その転写像を定着
させて複写像を得る方式が用いられている。これらの方
式は、主として、電子プリンターやレーザープリンター
ファクシミリに応用されている。
Generally, in electrophotography, the surface of the photosensitive layer of a photoreceptor is charged and exposed to form an electrostatic latent image, which is developed with a developer to make it visible, and the visible image is directly transferred onto the photoreceptor. A method is used in which a copy image is obtained by fixing the image, or a visible image on a photoreceptor is transferred onto a transfer paper such as paper, and the transferred image is fixed to obtain a copy image. These methods are mainly applied to electronic printers and laser printer facsimiles.

従来、この種の目的で使用される電子写真用感光体の感
光層を形成するのに、光導電性材料として無定形セレン
、硫化カドミウムあるいは酸化亜鉛が汎用されている。
Conventionally, amorphous selenium, cadmium sulfide, or zinc oxide has been widely used as a photoconductive material to form a photosensitive layer of an electrophotographic photoreceptor used for this type of purpose.

しかし、無定形セレンでは、導電性支持体への蒸着が必
要であるため製造が困難な上に、その蒸着膜に可撓性が
なく、しかも毒性が強いために取り扱いに注意を要し、
高価になる欠点がある。他方、硫化カドミウムや酸化亜
鉛では、それらを基体上に結着させる結着剤との混合比
によって感度が著しく左右されることから、実用可能な
感度を得るために結着剤の割合を小さくせざるを得す、
その結果、可撓性、平滑性、硬度、耐摩耗性などの機械
的強度が低く、更にコロナ帯電に伴って発生するオゾン
などによって特性が劣化するという欠点がある他、毒性
があるため環境汚染を発生する恐れがあるなどの衛生上
の問題もあった。これらの欠点や問題を解決するため、
近年、加工性が優れ、毒性や環境汚染などの衛生上の問
題もない有機感光体がどんどん開発されて普及化されて
いる。
However, amorphous selenium is difficult to manufacture because it requires vapor deposition on a conductive support, and the vapor-deposited film is not flexible and is highly toxic, so it must be handled with care.
It has the disadvantage of being expensive. On the other hand, the sensitivity of cadmium sulfide and zinc oxide is significantly affected by the mixing ratio with the binder that binds them onto the substrate, so it is necessary to reduce the ratio of the binder in order to obtain practical sensitivity. I have no choice but to
As a result, mechanical strength such as flexibility, smoothness, hardness, and abrasion resistance is low, and in addition, its properties deteriorate due to ozone generated due to corona charging, and it is toxic and pollutes the environment. There were also hygiene problems, such as the possibility of the occurrence of In order to solve these shortcomings and problems,
In recent years, organic photoreceptors with excellent processability and no hygienic problems such as toxicity or environmental pollution have been rapidly developed and become popular.

有機感光体には、構成の面からみると、一般に、単層型
と複層型とがある。単層型は、導電性基体の上に、電荷
発生物質と電荷伝送物質と結着剤とからなる感光層を被
覆してなる。複層型は、導電性基体の上に、蒸着や塗布
により電荷発生物質を被覆した後、形成された電荷発生
層の上に、更に、電荷伝送物質と結着剤とからなる懸濁
液を被覆乾燥してなる。このような感光体を一旦露光さ
せると、電荷発生物質から電荷対が発生し、電界の作用
により、電子が導電性基体を経由して離脱し、一方電子
孔が電荷伝送物質を経由し、感光体表面に伝達して、そ
の負電荷を中和し、静電潜像を形成することができる。
In terms of structure, organic photoreceptors are generally classified into single-layer types and multi-layer types. The single-layer type is formed by coating a conductive substrate with a photosensitive layer consisting of a charge-generating material, a charge-transmitting material, and a binder. In the multi-layer type, a charge-generating substance is coated on a conductive substrate by vapor deposition or coating, and then a suspension consisting of a charge-transmitting substance and a binder is further applied on the formed charge-generating layer. The coating is dried. Once such a photoreceptor is exposed to light, charge pairs are generated from the charge-generating material, and due to the action of the electric field, electrons are released via the conductive substrate, while electron holes pass through the charge-transfer material and are exposed to light. It can be transmitted to the body surface to neutralize its negative charge and form an electrostatic latent image.

有機感光体に使われる電荷発生物質は、通常、光導電性
を有する有機顔料である。例として、ビスアゾ系顔料、
アントラヒドロキノン系顔料、チオインジゴ系顔料とフ
タロシアニン系顔料などがあげられる。なかでも、特に
、フタロシアニン系顔料に属する銅フタロシアニンは、
着色力及び耐光性、耐熱性、耐薬品性において優れ、毒
性の問題もなく、コストも低いので、ブルー系有機顔料
としてもっとも汎用されているのが現状である。
The charge generating materials used in organophotoreceptors are typically photoconductive organic pigments. For example, bisazo pigments,
Examples include anthrahydroquinone pigments, thioindigo pigments, and phthalocyanine pigments. Among them, especially copper phthalocyanine, which belongs to phthalocyanine pigments,
It is currently the most widely used blue organic pigment because it has excellent coloring power, light resistance, heat resistance, and chemical resistance, has no toxicity problems, and is low in cost.

すでに知られている銅フタロシアニンは、結晶形態から
みると、α−1β−2T−1δ−1π−β−1χ−ε−
の8種類がある。なかでも、α、β−とε−の3種が大
量生産されて汎用されている。特に、ε−型銅フタロシ
アニンは半導体レーザのような長波長(約780nm前
後)の光に対して高吸収を示し、電子写真により現像さ
れるレーザプリンターやファクシミリに応用できると考
えられるので各方面において注目されている。しかしな
がら、いままでのε−型銅フタロシアニンは、電荷発生
物質としては感度が不足し、露光されてから表面電位が
半分に減衰するまでの需要光エネルギーが高過ぎ、感光
体に応用した場合には潜像の電位差が不十分となり、鮮
明な複写像を形成しにくい。
Already known copper phthalocyanine is α-1β-2T-1δ-1π-β-1χ-ε-
There are eight types. Among them, three types, α, β- and ε-, are mass-produced and widely used. In particular, ε-type copper phthalocyanine exhibits high absorption of light with a long wavelength (approximately 780 nm) such as that produced by semiconductor lasers, and is thought to be applicable to laser printers and facsimile machines that are developed using electrophotography. Attention has been paid. However, the conventional ε-type copper phthalocyanine lacks sensitivity as a charge-generating substance, and the required light energy from exposure until the surface potential attenuates by half is too high, and when applied to photoreceptors, The potential difference of the latent image becomes insufficient, making it difficult to form a clear copy image.

ε−型銅フタロシアニンの表面に染料増感剤を被覆して
感度をあげる方法がある(特開昭55161.249参
照)。しかし、この方法は、赤外線波長範囲(780n
m前後)の近くにおいて感度がなくなるように吸収波長
を変動させる欠点がある。
There is a method of increasing the sensitivity by coating the surface of ε-type copper phthalocyanine with a dye sensitizer (see Japanese Patent Laid-Open No. 55161.249). However, this method only works in the infrared wavelength range (780 nm).
It has the disadvantage that the absorption wavelength is varied so that the sensitivity disappears in the vicinity of (around m).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

この発明は、製造方法の改善により、上記銅フタロシア
ニンを電荷発生物質としてなる感光体を、赤外線波長範
囲において、感度が高くて、電子写真により現像される
レーザプリンターやファクシミリ、電子プリンターに適
用する感光体とすることを目的とする。
The present invention improves the manufacturing method so that a photoreceptor made of copper phthalocyanine as a charge generating substance has high sensitivity in the infrared wavelength range, and is applicable to laser printers, facsimile machines, and electronic printers that are developed by electrophotography. The purpose is to become a body.

〔課題を解決するための手段〕 上記の目的を達成するために、この発明は、ヨウ素ガス
により処理された銅フタロシアニンを電荷発生物質とし
て用い、電荷伝送物質と共に、あるいは、それぞれに、
導電性基体に被覆して感光層を形成させる方法により、
銅フタロシアニン感光体を製造する。
[Means for Solving the Problems] In order to achieve the above object, the present invention uses copper phthalocyanine treated with iodine gas as a charge generation material, and together with or separately from a charge transfer material,
By coating a conductive substrate to form a photosensitive layer,
Manufacture a copper phthalocyanine photoreceptor.

即ち、この発明の製造方法には、例として、導電性基体
に結着剤を被覆してから乾燥する結着層形成工程と、銅
フタロシアニンを結着剤に分散して前記結着層形成工程
で形成された結着層の上に被覆してから乾燥する電荷発
生層形成工程と、ヨウ素ガスにより、前記電荷発生層形
成工程で形成された電荷発生層を処理するヨウ素処理工
程と、電子孔伝送物質を結着剤に分散して、前記ヨウ素
処理工程で処理された電荷発生層の上に被覆する電荷伝
送層形成工程からなる方法があげられる。
That is, the manufacturing method of the present invention includes, for example, a binding layer forming step in which a conductive substrate is coated with a binder and then dried, and a binding layer forming step in which copper phthalocyanine is dispersed in the binder. a charge generation layer forming step in which the charge generation layer formed in the charge generation layer formation step is coated and dried after being coated on the binding layer formed in the step; an iodine treatment step in which the charge generation layer formed in the charge generation layer formation step is treated with iodine gas; One example is a method comprising a charge transmission layer forming step of dispersing a transmission substance in a binder and coating it on the charge generation layer treated in the iodine treatment step.

このような方法により、この発明は、電荷発生物質と電
荷伝送物質を感光層として導電性基体に被覆してなる有
機感光体、特に当該電荷発生物質として、ヨウ素ガスに
より処理した銅フタロシアニンを用いてなる感光体を提
供することができる。
By such a method, the present invention provides an organic photoreceptor in which a conductive substrate is coated with a charge-generating substance and a charge-transferring substance as a photosensitive layer, and in particular, an organic photoreceptor in which a copper phthalocyanine treated with iodine gas is used as the charge-generating substance. A photoreceptor can be provided.

上記電荷発生物質としては銅フタロシアニンが適するが
、α−1β−とε−の3種を使用するのが望ましく、特
にε−型がもっとも望ましい。
Copper phthalocyanine is suitable as the above-mentioned charge-generating substance, but it is desirable to use three types, α-1β- and ε-, with the ε-type being the most preferable.

上記電荷伝送物質としては、いわゆる電子孔伝送物質が
望ましく、ヒドラゾン系化合物、ビラプリン系化合物、
オキサゾール系化合物、チアゾール系化合物、トリアリ
ルメタン系化合物などがあげられる。ヒドラゾン系化合
物としては、p−ジエチルアミノベンズアルデヒド−N
、N−ジフェニルヒドラゾン、p−ジエチルアミノベン
ズアルデヒド−N−α−ナフチル−N−フェニルヒドラ
ゾン、p−(1−ピロリジニル)−ヘンズアルデヒドー
N、N−ジフェニルヒドラゾン、1.3゜3−トリメチ
ルインドールエン−ω−アルデヒド−N、N−ジフェニ
ルヒドラゾン、p−ジエチルアミノベンズアルデヒド−
3−メチルベンズチアゾリノン−2−ヒドラゾンなどが
ある。ピラゾリン系化合物としては、1−フェニル−3
−(pジエチルアミノスチリル)−5−(p−ジエチル
アミノフェニル)ピラゾリン、1−〔キノリル(2))
−3−(p−ジエチルアミノスチリル)−5−(p−ジ
エチルアミノフェニル)ピラゾリン、1−〔ピリジル(
2))−3−(p−ジエチルアミノスチリル)−5−(
p−ジエチルアミノフェニル)ピラゾリンなどがある。
The above-mentioned charge transfer substance is preferably a so-called electron hole transfer substance, such as a hydrazone compound, a birapurine compound,
Examples include oxazole compounds, thiazole compounds, and triallylmethane compounds. As a hydrazone compound, p-diethylaminobenzaldehyde-N
, N-diphenylhydrazone, p-diethylaminobenzaldehyde-N-α-naphthyl-N-phenylhydrazone, p-(1-pyrrolidinyl)-henzaldehyde N, N-diphenylhydrazone, 1.3゜3-trimethylindoleene- ω-aldehyde-N,N-diphenylhydrazone, p-diethylaminobenzaldehyde-
Examples include 3-methylbenzthiazolinone-2-hydrazone. As a pyrazoline compound, 1-phenyl-3
-(p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-[quinolyl (2))
-3-(p-diethylaminostyryl)-5-(p-diethylaminophenyl)pyrazoline, 1-[pyridyl(
2))-3-(p-diethylaminostyryl)-5-(
Examples include p-diethylaminophenyl) pyrazoline.

また、オキサゾール系化合物としては、2−(p−ジエ
チルアミノスチリル)−6−ジニチルアミノベンズオキ
サゾール、2−(p−ジエチルアミノフェニル)−4=
 (p−’;メチルアミノフェニル(2−クロロフェニ
ル)オキサゾール、チアゾール系化合物としては、2−
(p−ジエチルアミノスチリル)−6−ジニチルアミノ
ベンゾチアゾール、トリアリルメタン系化合物としては
、ビス(4−ジエチルアミノ−2−メチルフェニル)−
フェニルメタンがあげられる。
Further, as oxazole compounds, 2-(p-diethylaminostyryl)-6-dinithylaminobenzoxazole, 2-(p-diethylaminophenyl)-4=
(p-'; Methylaminophenyl (2-chlorophenyl) oxazole, thiazole compounds include 2-
(p-diethylaminostyryl)-6-dinithylaminobenzothiazole and triallylmethane compounds include bis(4-diethylamino-2-methylphenyl)-
Examples include phenylmethane.

結着剤は、特に限定されず、通常使用されている樹脂を
適用することができる。例としては、ポリ (ビニルブ
チラール)、ポリ (ビニルアセテート)、ポリエステ
ル、ポリカポネート、フェノキシレジン、アクリルレジ
ン、ポリアクリルアミド、ポリアミド、ポリビニルピリ
ジン、セルロース系レジン、ウレタンレジン、エポキシ
レジン、カゼイン、ポリ (ビニルアルコール)などが
あげられる。
The binder is not particularly limited, and commonly used resins can be used. Examples include poly(vinyl butyral), poly(vinyl acetate), polyester, polycarbonate, phenoxy resin, acrylic resin, polyacrylamide, polyamide, polyvinylpyridine, cellulose resin, urethane resin, epoxy resin, casein, poly(vinyl alcohol) ) etc.

ヨウ素処理の方法としては、密閉容器内で飽和ヨウ素ガ
スにより処理する方法と、真空蒸着装置にて処理する方
法とがある。処理条件は、処理された電荷発生物質にお
いて、ヨウ素置対電荷発生物質量の比が0.01〜1.
0になるようなものであればよい。例えば、20℃〜9
0℃の温度において1〜120分間処理すればよい。上
記の比が0.01未満であると、感度になんらの改善も
ないが、1.0以上になると、暗減衰特性が大き過ぎて
、静電荷を十分に吸収することができなくなる。
Methods for iodine treatment include a method of treatment with saturated iodine gas in a closed container and a method of treatment using a vacuum evaporation apparatus. The treatment conditions are such that the ratio of iodine placement to amount of charge generating material in the treated charge generating material is 0.01 to 1.
It suffices if it is 0. For example, 20℃~9
What is necessary is just to process at the temperature of 0 degreeC for 1 to 120 minutes. If the ratio is less than 0.01, there will be no improvement in sensitivity, but if it is more than 1.0, the dark decay characteristic will be too large and static charges cannot be absorbed sufficiently.

〔作 用〕[For production]

畝上のように、この発明に従い、ヨウ素ガスにより処理
された銅フタロシアニンを電荷発生物質として用い、電
荷伝送物質と共に、あるいは、それぞれに、導電性基体
に被覆して感光層を形成せしめる方法により、感光体の
波長吸収範囲に影響させることなく、感度をあげること
ができる。
According to the present invention, copper phthalocyanine treated with iodine gas is used as a charge-generating substance and coated on a conductive substrate together with or separately from a charge-transfer substance to form a photosensitive layer. Sensitivity can be increased without affecting the wavelength absorption range of the photoreceptor.

〔実施例〕〔Example〕

以下に、実施例をあげて、本発明をさらに説明する。 The present invention will be further explained below with reference to Examples.

貫上 0.2 m X 260m X 80mmのアルミニウ
ム板を基体とし、これをポリアミド樹脂のメタノール溶
液(固形分7%)に浸漬し、次いで60°Cのオーブン
中で約30分間乾燥した。乾燥された樹脂結着層の厚み
は1.0g/mであった。
An aluminum plate with a diameter of 0.2 m x 260 m x 80 mm was used as a substrate, and this was immersed in a methanol solution of polyamide resin (solid content: 7%), and then dried in an oven at 60°C for about 30 minutes. The thickness of the dried resin binding layer was 1.0 g/m.

一方、0.22gのポリビニルブチラールを10gのシ
クロヘキサノン溶剤に完全に溶解し、そして0.22g
の銅フタロシアニン(BASF製、商品名ハロゲンブル
ーL 6700)を添加した後微粉機(マックロンリサ
ーチアソシエーテッドリミッテッド製)により1時間研
磨し、懸濁液をつ(った。
Meanwhile, 0.22 g of polyvinyl butyral was completely dissolved in 10 g of cyclohexanone solvent, and 0.22 g
After adding copper phthalocyanine (manufactured by BASF, trade name: Halogen Blue L 6700), the mixture was polished for 1 hour using a pulverizer (manufactured by Macron Research Associated Limited) to obtain a suspension.

上記基体を該yL!、濁液に浸漬し、そして60℃のオ
ーブン中で約30分間乾燥した。乾燥された電荷発生層
の厚みは0.3g/mであった。
The above substrate is yL! , immersed in the suspension and dried in an oven at 60° C. for about 30 minutes. The thickness of the dried charge generation layer was 0.3 g/m.

次に、絶えず所定量のヨウ素ガスを導入していた密閉容
器にて、35℃において、基体を15分間ヨウ素処理し
た。処理された基体のヨウ素吸収量は約7.5X10−
3g/イであった。
Next, the substrate was treated with iodine for 15 minutes at 35° C. in a closed container into which a predetermined amount of iodine gas was constantly introduced. The iodine uptake of the treated substrate is approximately 7.5X10-
It was 3g/i.

次に、基体を室温まで冷却した。冷却された基体を下記
の電荷転送層組成物に浸漬した後、90℃のオーブン中
で約60分間乾燥した。乾燥された電荷伝送層の厚みは
16jnnであった。用いた電荷転送層組成物の成分を
下記に示す。
The substrate was then cooled to room temperature. The cooled substrate was immersed in the charge transfer layer composition described below and then dried in an oven at 90° C. for about 60 minutes. The thickness of the dried charge transport layer was 16jnn. The components of the charge transfer layer composition used are shown below.

トルエン              330g光導電
性試験機EPA−8100(日本、川口電機製)によっ
て、上記で得られた感光体の感度を測定した。測定され
た需要光エネルギーは、光源をハロゲンランプとした場
合5.4 lux・secであり、780鶏mのフィル
ターガラスでろ過された光源を使用した場合0.11u
x−secであった・ 炭1 例1と同様に、0.2 m X 260mm x 8(
bmのアルミニウム板を基体とし、ポリアミド樹脂のメ
タノール溶液(固形分7%)に浸漬し、そして60℃の
オーブン中で約30分間乾燥した。乾燥された樹脂結着
層の厚みは1.0g/mであった。
Toluene 330g The sensitivity of the photoreceptor obtained above was measured using a photoconductivity tester EPA-8100 (manufactured by Kawaguchi Denki, Japan). The measured light energy demand is 5.4 lux・sec when the light source is a halogen lamp, and 0.11 u when a light source filtered with a 780 mm filter glass is used.
x-sec・Charcoal 1 Same as Example 1, 0.2 m x 260 mm x 8 (
A Bm aluminum plate was used as a substrate, immersed in a methanol solution of polyamide resin (solid content 7%), and dried in an oven at 60° C. for about 30 minutes. The thickness of the dried resin binding layer was 1.0 g/m.

一方、0.22gのポリビニルブチラールをIOgのシ
クロヘキサノン溶剤に完全に溶解し、そして0゜22g
の銅フタロシアニン(BASF製、商品名ハロゲンブル
ーL 6700)を添加した後微粉機(マ・ノクロンリ
サーチアソシエーテソドリミソテッド製)により1時間
研磨し、懸濁液をつ(った。
Meanwhile, 0.22g of polyvinyl butyral was completely dissolved in IOg of cyclohexanone solvent, and 0.22g of
After adding copper phthalocyanine (manufactured by BASF, trade name: Halogen Blue L 6700), the mixture was ground for 1 hour using a pulverizer (manufactured by Ma Nokron Research Associates Sodorimisoted) to obtain a suspension.

上記基体を該懸濁液に浸漬し、そして60℃のオーブン
中で約30分間乾燥した。乾燥された電荷発生層の厚み
は0.3g/mであった。
The substrate was immersed in the suspension and dried in a 60°C oven for about 30 minutes. The thickness of the dried charge generation layer was 0.3 g/m.

次に、ヨウ素の飽和蒸気で満たされた密閉容器にて、2
7.5℃において、基体を60分間ヨウ素処理した。処
理された基体のヨウ素吸収量は約1×10−”g/mで
あった。
Next, in a closed container filled with saturated iodine vapor, 2
The substrate was iodine treated for 60 minutes at 7.5°C. The iodine uptake of the treated substrate was approximately 1 x 10-'' g/m.

次に、基体を室温まで冷却した。冷却された基体を例1
と同様な電荷転送層組成物に浸漬した後90℃のオーブ
ン中で約60分間乾燥した。乾燥された電荷伝送層の厚
みは161Mであった。
The substrate was then cooled to room temperature. Example 1 of the cooled substrate
After being immersed in the same charge transfer layer composition as above, it was dried in an oven at 90° C. for about 60 minutes. The thickness of the dried charge transport layer was 161M.

光導電性試験@ EPA−8100(日本、川口電機製
)によって、上記で得られた感光体の感度を測定した。
The sensitivity of the photoreceptor obtained above was measured by photoconductivity test@EPA-8100 (manufactured by Kawaguchi Electric, Japan).

測定された需要光エネルギーは、光源を全スペクトル光
源とした場合4.51ux−secであり、780n+
aの光源とした場合0.11ux−secであった。
The measured light energy demand is 4.51 ux-sec when the light source is a full spectrum light source, which is 780 n+
When the light source of a was used, it was 0.11 ux-sec.

比較■土 例Iおよび2と同様に感光体を作成した。ただし、ここ
ではヨウ素処理を行わなかった。
Comparison ■ Photoreceptors were prepared in the same manner as in Examples I and 2. However, no iodine treatment was performed here.

作成された感光体に対し、EPA −8100により、
感光度を測定した。測定された需要光エネルギーは、光
源を全スペクトル光源とした場合12.Olux・se
cであり、780鶏mの光源とした場合0.31ux−
secであり、いずれも例1および例2のそれよりも遥
かに高いものであった。
According to EPA-8100, the produced photoreceptor is
The photosensitivity was measured. The measured light energy demand is 12. when the light source is a full spectrum light source. Olux・se
c, and when the light source is 780 mm, it is 0.31 ux-
sec, which were both much higher than those of Examples 1 and 2.

拠主 直径30鶴、長さ260鶏のアルミニウム円筒を基体と
して用い、これをポリアミド樹脂のメタン−ル溶液(固
形分7%)に浸漬し、そして60°Cのオーブン中で約
30分間乾燥した。乾燥された樹脂結着層の厚みは1.
0g/gであった。
An aluminum cylinder with a diameter of 30 mm and a length of 260 mm was used as a base, which was immersed in a methanolic solution of polyamide resin (solid content 7%) and dried in an oven at 60 °C for about 30 minutes. . The thickness of the dried resin binding layer is 1.
It was 0g/g.

一方、6gのポリビニルブチラールを200gのシクロ
ヘキサノン溶剤に完全に溶解し、そして6gの銅フタロ
シアニン(BASF製、商品名ハロゲンブルーL 67
00)と200gのブタノンを添加した後玉入り粉砕機
により72時間分散し、懸濁液をつく った。
Meanwhile, 6 g of polyvinyl butyral was completely dissolved in 200 g of cyclohexanone solvent, and 6 g of copper phthalocyanine (manufactured by BASF, trade name Halogen Blue L 67) was completely dissolved in 200 g of cyclohexanone solvent.
After adding 00) and 200 g of butanone, the mixture was dispersed for 72 hours using a ball mill to form a suspension.

上記基体を該懸濁液に浸漬し、そして60℃のオーブン
中で約30分間乾燥した。乾燥された電荷発生層の厚み
は0.3g/n(であった。
The substrate was immersed in the suspension and dried in a 60°C oven for about 30 minutes. The thickness of the dried charge generation layer was 0.3 g/n.

次に、ヨウ素の飽和蒸気で満たされた密閉容器にて、2
5℃において、基体を30分間ヨウ素処理した。
Next, in a closed container filled with saturated iodine vapor, 2
The substrates were iodine treated for 30 minutes at 5°C.

次に、基体を室温まで冷却した。冷却された基体を例1
と同様な電荷転送層組成物に浸漬した後90°Cのオー
ブン中で約60分間乾燥した。乾燥された電荷伝送層の
厚みは201mであった。
The substrate was then cooled to room temperature. Example 1 of the cooled substrate
After being immersed in a charge transfer layer composition similar to the above, it was dried in an oven at 90°C for about 60 minutes. The thickness of the dried charge transport layer was 201 m.

上記で作成された感光体を実際にレーザープリンター(
キャーノンLBP−81T)に使用し、鮮明な複写像を
得た。
The photoconductor created above is actually printed on a laser printer (
Canon LBP-81T), and a clear copy image was obtained.

ル較斑斐 例3と同様に感光体を作成した。ただし、ここではヨウ
素処理を行わなかった。
A photoreceptor was prepared in the same manner as Example 3. However, no iodine treatment was performed here.

作成された感光体を、実際にレーザープリンター(キャ
ーノンLBP−8JI)に使用し、ぼんやりとした複写
像を得た。
The prepared photoreceptor was actually used in a laser printer (Canon LBP-8JI), and a vague copy image was obtained.

〔発明の効果〕〔Effect of the invention〕

上記実施例と比較例によると、この発明は、ヨウ素ガス
により処理した銅フタロシアニンによる電荷発生物質と
電荷伝送物質とを導電性基体に被覆して感光層を形成せ
しめる方法により、その波長吸収範囲に影啓を与えるこ
となく、感光体の感度を大きく向上せしめることができ
る。
According to the above Examples and Comparative Examples, the present invention has a method of forming a photosensitive layer by coating a conductive substrate with a charge-generating substance and a charge-transmitting substance made of copper phthalocyanine treated with iodine gas. The sensitivity of the photoreceptor can be greatly improved without affecting the image quality.

以″′F宗EFrom now on, F sect E.

Claims (1)

【特許請求の範囲】 1、感光層として、ヨウ素ガスにより処理した銅フタロ
シアニンによる電荷発生物質と電荷伝送物質とを導電性
基体に被覆してなる有機感光体。 2、導電性基体に銅フタロシアニンを被覆してから、こ
の銅フタロシアニン層を、ヨウ素量対銅フタロシアニン
量の値が0.01から1.0までになるように処理した
後、銅フタロシアニン層の上に電子孔伝送物質を被覆し
てなる銅フタロシアニン感光体。 3、アルミニウム材を基体としてポリアミド樹脂溶液に
より被覆してから乾燥する結着層形成工程と、 ポリビニルブチラール樹脂溶液にε−銅フタロシアニン
を分散させてなる懸濁液を使用して、前記結着層形成工
程により形成された結着層の上に被覆してから乾燥する
電荷発生層形成工程と、20℃〜90℃の温度範囲にお
いて、ヨウ素ガス雰囲気に、前記電荷発生層形成工程に
より形成された電荷発生層を1〜120分間保持するヨ
ウ素処理工程と、 ヒドラゾン系化合物、ピラゾリン系化合物、オキサゾー
ル系化合物、チアゾール系化合物、トリアリルメタン系
化合物及びそれらの2種またはそれ以上の混合物より選
ばれた電子孔伝送物質を結着剤に分散し、前記ヨウ素処
理工程に処理された電荷発生層の上に被覆する電荷伝送
層形成工程からなる銅フタロシアニン感光体の製造方法
[Scope of Claims] 1. An organic photoreceptor in which a conductive substrate is coated with a charge-generating material and a charge-transmitting material made of copper phthalocyanine treated with iodine gas as a photosensitive layer. 2. After coating a conductive substrate with copper phthalocyanine, this copper phthalocyanine layer is treated so that the value of the amount of iodine to the amount of copper phthalocyanine is from 0.01 to 1.0, and then the copper phthalocyanine layer is coated on the copper phthalocyanine layer. Copper phthalocyanine photoreceptor coated with electron hole transport material. 3. A binding layer forming step in which an aluminum material is coated with a polyamide resin solution as a substrate and then dried, and the binding layer is formed using a suspension obtained by dispersing ε-copper phthalocyanine in a polyvinyl butyral resin solution. A charge generation layer formation step in which the charge generation layer is coated on the binding layer formed in the formation step and then dried; and a charge generation layer formed in the charge generation layer formation step in an iodine gas atmosphere at a temperature range of 20° C. to 90°C. an iodine treatment step in which the charge generation layer is maintained for 1 to 120 minutes; and a hydrazone compound, a pyrazoline compound, an oxazole compound, a thiazole compound, a triallylmethane compound, and a mixture of two or more thereof. A method for producing a copper phthalocyanine photoreceptor, which comprises a step of forming a charge transport layer in which an electron hole transport material is dispersed in a binder and coated on the charge generation layer treated in the iodine treatment step.
JP15959688A 1988-06-29 1988-06-29 Copper phthalocyanine photosensitive body and manufacture thereof Granted JPH0240661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15959688A JPH0240661A (en) 1988-06-29 1988-06-29 Copper phthalocyanine photosensitive body and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15959688A JPH0240661A (en) 1988-06-29 1988-06-29 Copper phthalocyanine photosensitive body and manufacture thereof

Publications (2)

Publication Number Publication Date
JPH0240661A true JPH0240661A (en) 1990-02-09
JPH0560865B2 JPH0560865B2 (en) 1993-09-03

Family

ID=15697156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15959688A Granted JPH0240661A (en) 1988-06-29 1988-06-29 Copper phthalocyanine photosensitive body and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0240661A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471460U (en) * 1990-11-05 1992-06-24

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059354A (en) * 1983-09-12 1985-04-05 Oki Electric Ind Co Ltd Electrophotographic sensitive body
JPS6127549A (en) * 1984-07-18 1986-02-07 Toshiba Corp Electrophotographic sensitive body
JPS61138956A (en) * 1984-12-12 1986-06-26 Toshiba Corp Electrophotographic sensitive body
JPS62184463A (en) * 1986-02-10 1987-08-12 Toshiba Corp Electrophotographic sensitive body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6059354A (en) * 1983-09-12 1985-04-05 Oki Electric Ind Co Ltd Electrophotographic sensitive body
JPS6127549A (en) * 1984-07-18 1986-02-07 Toshiba Corp Electrophotographic sensitive body
JPS61138956A (en) * 1984-12-12 1986-06-26 Toshiba Corp Electrophotographic sensitive body
JPS62184463A (en) * 1986-02-10 1987-08-12 Toshiba Corp Electrophotographic sensitive body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0471460U (en) * 1990-11-05 1992-06-24
JP2529130Y2 (en) * 1990-11-05 1997-03-19 株式会社シマノ Swing rod

Also Published As

Publication number Publication date
JPH0560865B2 (en) 1993-09-03

Similar Documents

Publication Publication Date Title
JPS6110540A (en) Light responsive device containing novel squaline compound
JPS6313179B2 (en)
JPH0240661A (en) Copper phthalocyanine photosensitive body and manufacture thereof
JPH01142659A (en) Electrophotographic sensitive body
US5055615A (en) Novel Squarium compounds, a process for preparing them and electrophotographic photoreceptors containing them
JPH05204175A (en) Electrophotographic sensitive body
JPH05134435A (en) Electrophotographic sensitive body
KR940002117B1 (en) Electrophotographic conductor
JP2643216B2 (en) Electrophotographic photoreceptor
JP2722671B2 (en) Photoconductor
JP2861297B2 (en) Photoconductor
KR940002844B1 (en) Electrophographic photoconductor
JPH02180884A (en) Novel compound and pigment and electrophotographic sensitive substance using the same
JP2797533B2 (en) Photoconductor
KR940002842B1 (en) Electrophotographic photoconductor
JPH0255362A (en) Electrophotographic sensitive body
EP0161005B1 (en) Novel squarium compounds, process for preparing the same and electrophotographic photoreceptors containing the same
JPS63301956A (en) Electrophotographic sensitive body
US5210301A (en) Squarium compounds, process for preparing the same and electrophotographic photoreceptors containing the same
JPS60258555A (en) Electrophotographic sensitive body
JP3985209B2 (en) Electrophotographic photoreceptor and method for producing the same
JPH03102359A (en) Electrophotographic sensitive body
KR940001484B1 (en) Electrophoto-sensitive material and the method for making it
JPH09134021A (en) Electrophotographic photoreceptor
JPH0394263A (en) Electrophotographic sensitive body