JPH01142659A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH01142659A
JPH01142659A JP30170487A JP30170487A JPH01142659A JP H01142659 A JPH01142659 A JP H01142659A JP 30170487 A JP30170487 A JP 30170487A JP 30170487 A JP30170487 A JP 30170487A JP H01142659 A JPH01142659 A JP H01142659A
Authority
JP
Japan
Prior art keywords
titanyl phthalocyanine
type titanyl
weight
type
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30170487A
Other languages
Japanese (ja)
Other versions
JPH0560867B2 (en
Inventor
Eiichi Miyamoto
栄一 宮本
Tatsuo Maeda
達夫 前田
Nariaki Muto
武藤 成昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Mita Industrial Co Ltd
Original Assignee
Mita Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mita Industrial Co Ltd filed Critical Mita Industrial Co Ltd
Priority to JP30170487A priority Critical patent/JPH01142659A/en
Publication of JPH01142659A publication Critical patent/JPH01142659A/en
Publication of JPH0560867B2 publication Critical patent/JPH0560867B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0696Phthalocyanines

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain an electrophotographic sensitive body having chargeability for both positive and negative charge, and improved chargeability and repeatability by incorporating a specified amt. of alpha-type titanyl phthalocyanine compsn. to a binder resin. CONSTITUTION:60-90wt.% alpha-type titanyl phthalocyanine, and 10-40wt.% metal-free phthalocyanine are contained in an alpha-type titanyl phthalocyanine compsn. to be used as a charge generating material. A photosensitive layer is constituted by dispersing the alpha-type titanyl phthalocyanine compsn. and a charge transfer material in a binder resin. In this photosensitive layer, 0.05-5pts. wt. alpha-type titanyl phthalocyanine compsn. is contained in 100pts.wt. binder resin. Thus, an electrophotographic sensitive body having composite dispersion type chargeability for both positive and negative charge, having also high electrifiability of the photosensitive body and high repeatability is obtd.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は感光層が複合分散型正負両帯電性の電子写真感
光体に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an electrophotographic photoreceptor in which the photoreceptor layer is a composite dispersion type and can be charged both positively and negatively.

(従来の技術〉 これまでセレン、硫化カドミウム、酸化亜鉛などの無機
光導電体を感光成分として利用した電子写真感光体がよ
く知られている。しかし、これらは感度、熱安定性、耐
湿性、耐久性等の感光体としての特性やその製造上ある
いは毒性において必ずしも満足し得るものではない。例
えば、電子写真感光体として最も良く利用されているセ
レンは約40℃で簡単に結晶化し、結晶化すると感光体
としての特性が劣化してしまうため、製造上の温度管理
も難しく、また感光体を取り扱う際の熱や指紋等が原因
となり結晶化し、感光体としての性能が劣化してしまう
。また硫化カドミウムでは耐湿性や耐久性に、そして、
酸化亜鉛でも耐久性等に問題がある。
(Prior art) Electrophotographic photoreceptors that use inorganic photoconductors such as selenium, cadmium sulfide, and zinc oxide as photosensitive components are well known.However, these have poor sensitivity, thermal stability, moisture resistance, It is not always satisfactory in terms of photoreceptor properties such as durability, manufacturing, or toxicity.For example, selenium, which is most commonly used as an electrophotographic photoreceptor, easily crystallizes at about 40°C; This deteriorates the properties of the photoreceptor, making it difficult to control the temperature during manufacturing, and also causes crystallization due to heat and fingerprints when handling the photoreceptor, deteriorating its performance as a photoreceptor. Cadmium sulfide has excellent moisture resistance and durability, and
Even zinc oxide has problems with durability, etc.

近年、電子写真用感光体として、加工性がよく製造コス
トの面で有利であると共に、機能設計の面で自由度の大
きな有機感光体が使用されている。
In recent years, organic photoreceptors have been used as photoreceptors for electrophotography because they have good processability and are advantageous in terms of manufacturing cost, and also have a large degree of freedom in terms of functional design.

また、上記有機感光体を用いた電子写真用感光体の機能
設計において、光照射により電荷を発生させる電荷発生
材料と、発生した電荷を移動させる電荷輸送材料とに各
機能を分離することによりそれぞれの材料を広い範囲か
ら選択することができ、また、それぞれの機能材料を積
層構造にすることにより表面電位を高くしたり、電荷保
持性を大きくしたり、光感度化する等の試みがなされて
いる。
In addition, in the functional design of electrophotographic photoreceptors using the above-mentioned organic photoreceptors, by separating each function into a charge-generating material that generates charges upon light irradiation and a charge-transporting material that transfers the generated charges, Materials can be selected from a wide range, and attempts have been made to increase the surface potential, increase charge retention, and increase photosensitivity by creating a laminated structure of each functional material. There is.

この機能分離型積層感光体は、表面の耐久性及び電荷輸
送材料には正電荷輸送型が多いため、導電性基板の上に
電荷発生層を設け、更にその上に電荷輸送層を設けた構
造をとり、負帯電でりようすることが一般的である。
This functionally separated laminated photoreceptor has a structure in which a charge generation layer is provided on a conductive substrate, and a charge transport layer is further provided on top of the charge generation layer, due to the durability of the surface and the fact that many of the charge transport materials are positive charge transport types. It is common to take a negative charge and remove it.

〈発明が解決しようとする問題点〉 しかしながら、このような負帯電用窓光体ではコロナ放
電器による帯電時に雰囲気中にオゾンが発生し感光体の
劣化及び複写環境の汚染を引き起こしたり、また現像時
には製造が困難である正極性のトナーを必要とする等の
問題があるため正帯電型の有機感光体が注目されている
。更にカラープリンタなどに応用するため、反転現像に
も対応できるように負帯電でも正帯電でも同等な電子写
真特性を有した感光体が期待されている。
<Problems to be Solved by the Invention> However, in such a negatively charging window light body, ozone is generated in the atmosphere during charging by a corona discharger, causing deterioration of the photoreceptor and contamination of the copying environment, and also causing problems in the development process. Positively charged organic photoreceptors are attracting attention because of problems such as the need for positive polarity toner, which is sometimes difficult to manufacture. Furthermore, for application to color printers and the like, there is a need for a photoreceptor that has electrophotographic properties equivalent to both negatively charged and positively charged so as to be compatible with reversal development.

〈発明の目的〉 本発明は上記問題点に鑑みてなされたものであり複合分
散型正負両帯電性の電子写真感光体を提供するものであ
る。
<Object of the Invention> The present invention has been made in view of the above-mentioned problems, and provides a composite dispersion type electrophotographic photoreceptor that can be charged both positively and negatively.

〈問題点を解決するための手段〉 本発明はα型チタニルフクロシアニン組成物並びに電荷
輸送材料を結着樹脂中に分散させて成る感光層を有する
複合分散型正負両帯電性の電子写真感光体であり、その
ことにより前記目的を達成した。
<Means for Solving the Problems> The present invention provides a composite dispersion type electrophotographic photoreceptor with positive and negative chargeability, which has a photosensitive layer formed by dispersing an α-type titanyl fucrocyanine composition and a charge transport material in a binder resin. As a result, the above objective was achieved.

本発明で用いられる電荷発生材料であるα型チタニルフ
タロシアニン組成物は、α型チタニルフタロシアニン6
0〜90重量%とメタルフリーフタロシアニン10〜4
0重量%とを含有することを特徴としており、α型チタ
ニルフタロシアニンとともにメタルフリーフタロシアニ
ンを含有しているので電子写真用感光体の光導電物質と
して使用した場合、安定であるだけでなく帯電特性及び
感光特性、特に感度が著しく優れたものとなる。
The α-type titanyl phthalocyanine composition that is the charge-generating material used in the present invention is α-type titanyl phthalocyanine 6.
0-90% by weight and metal-free phthalocyanine 10-4
Since it contains metal-free phthalocyanine as well as α-type titanyl phthalocyanine, when used as a photoconductive material for electrophotographic photoreceptors, it is not only stable but also has excellent charging properties and The photosensitive characteristics, especially the sensitivity, are significantly improved.

α型チタニルフタロシアニン組成物含有量が結着樹脂1
00重量部に対して0.05重量部以下になると感光体
の感度が十分でなく、また5重量部以上になると感光体
の帯電能、繰り返し特性さらに耐摩耗性が低下する。
The α-type titanyl phthalocyanine composition content is 1 in the binder resin.
If the amount is less than 0.05 parts by weight, the sensitivity of the photoreceptor will be insufficient, and if it is more than 5 parts by weight, the charging ability, repeatability, and abrasion resistance of the photoreceptor will deteriorate.

上記α型チタニルフタロシアニン組成物は例えばチタニ
ルフタロシアニンを製造し、必要に応じてメタルフリー
フタロシアニンを所望量添加したチタニルフタロシアニ
ンを含有する硫酸溶液を水中に注入するアシッドペース
ト法により顔料化し、有機溶媒による有機溶媒処理、好
ましくは塩素系溶媒の存在下、湿式ミリングすることに
より製造される。また、個別に製造したα型チタニルフ
タロシアニンとメタルフリーフタロシアニンとを所定の
割合で混合して調整してもよい。
The above α-type titanyl phthalocyanine composition is produced by, for example, producing titanyl phthalocyanine, turning it into a pigment by an acid paste method in which a sulfuric acid solution containing titanyl phthalocyanine, to which a desired amount of metal-free phthalocyanine has been added as needed, is injected into water. It is produced by wet milling in the presence of a solvent treatment, preferably a chlorinated solvent. Alternatively, the mixture may be prepared by mixing separately produced α-type titanyl phthalocyanine and metal-free phthalocyanine at a predetermined ratio.

前記α型チタニルフタロシアニン組成物は、X線回折ス
ペクトルにおけるブラック角6.9°、9.6°、15
.6°、17.6°、21.9°、23.6°、24.
7°および28.0°に強い回折ピークを示し、上記ブ
ランク角のうち、6゜9°が最も大きい回折ピークを示
すものである。
The α-type titanyl phthalocyanine composition has Black angles of 6.9°, 9.6°, and 15° in the X-ray diffraction spectrum.
.. 6°, 17.6°, 21.9°, 23.6°, 24.
It shows strong diffraction peaks at 7° and 28.0°, and among the above blank angles, the largest diffraction peak is shown at 6° and 9°.

本発明の電子写真用感光体は、導電性基材と、該導電性
基材上に形成された感光層とで構成されており、上記感
光層は、電荷発生物質としての前記α型チタニルフタロ
シアニン組成物と、電荷輸送物質と、結着樹脂と必要に
応じて他の材料からなる複合分散型電子写真感光体であ
る。
The electrophotographic photoreceptor of the present invention includes a conductive base material and a photosensitive layer formed on the conductive base material, and the photosensitive layer includes the α-type titanyl phthalocyanine as a charge generating substance. This is a composite dispersion type electrophotographic photoreceptor comprising a composition, a charge transport substance, a binder resin, and other materials as necessary.

上記導電性基材としては、導電性を有するシート状やド
ラム状のいずれであってもよ<、導電性を有する種々の
材料、例えば、アルミニウム、アルミニウム合金、銅、
錫、白金、金、銀、バナジウム、モリブデン、クロム、
カドミウム、チタン、ニッケル、パラジウム、インジウ
ム、ステンレス銅、真鍮などの金属単体や、蒸着等の手
段により上記金属、酸化インジウム、酸化錫等の層が形
成されたプラスチック材料およびガラス等が例示される
The above-mentioned conductive base material may be in the form of a conductive sheet or drum, and may be made of various conductive materials such as aluminum, aluminum alloy, copper,
tin, platinum, gold, silver, vanadium, molybdenum, chromium,
Examples include simple metals such as cadmium, titanium, nickel, palladium, indium, stainless steel copper, and brass, and plastic materials and glass on which layers of the above metals, indium oxide, tin oxide, etc. are formed by means such as vapor deposition.

また、電荷輸送物質としては、ニトロ基、ニトロソ基、
シアノ基等の電子受容性を有する電子受容性物質、例え
ば、テトラシアノエチレン、2,4゜7−ドリニトロー
9−フルオレノン等のフルオレノン系化合物、ジニトロ
アントラセン、2,4゜8−トリニドロチオキサントン
等のニトロ化化合物;電子供与性化合物、例えば、N、
N−ジエチルアミノベンズアルデヒドN、N−ジフェニ
ルヒドラゾン、N−メチル−3−カルバゾリルアルデヒ
ドN、N−ジフェニルヒドラゾン等のヒドラゾン系化合
物、オキサジアゾール系化合物、スチリル系化合物、ピ
ラゾリン系化合物、オキサゾール系化合物、イソオキサ
ゾール系化合物、チアゾール系化合物、チアジアゾール
系化合物、イミダゾール系化合物、ピラゾール系化合物
、インドール系化合物、トリアゾール系化合物等の含窒
素環式化合物、アントラセン、ピレン、フェナントレン
等の縮合多環式化合物、ポリ−N−ビニルカルバゾール
、ポリビニルピレン、ポリビニルアントラセン、エチル
カルバゾール−ホルムアルデヒド樹脂等が例示される。
In addition, charge transport substances include nitro group, nitroso group,
Electron-accepting substances having electron-accepting properties such as cyano groups, such as tetracyanoethylene, fluorenone compounds such as 2,4゜7-dolinitro-9-fluorenone, dinitroanthracene, 2,4゜8-trinidrothioxanthone, etc. Nitrated compound; electron-donating compound, such as N,
Hydrazone compounds such as N-diethylaminobenzaldehyde N, N-diphenylhydrazone, N-methyl-3-carbazolylaldehyde N, and N-diphenylhydrazone, oxadiazole compounds, styryl compounds, pyrazoline compounds, oxazole compounds , nitrogen-containing cyclic compounds such as isoxazole compounds, thiazole compounds, thiadiazole compounds, imidazole compounds, pyrazole compounds, indole compounds, triazole compounds, fused polycyclic compounds such as anthracene, pyrene, phenanthrene, Examples include poly-N-vinylcarbazole, polyvinylpyrene, polyvinylanthracene, and ethylcarbazole-formaldehyde resin.

上記電荷輸送物質は、一種または二種以上使用される。One or more kinds of the above charge transport materials may be used.

また、結着樹脂としては、種々のもの、例えば、スチレ
ン系重合体、スチレン−ブタジェン共重合体、スチレン
−アクリロニトリル共重合体、スチレン−マレイン酸共
重合体、アクリル系重合体、スチレン−アクリル系共重
合体、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル
、塩化ビニル−酢酸ビニル共重合体、ポリエステル、ア
ルキッド樹脂、ポリアミド、ポリウレタン、アクリル変
性ウレタン樹脂、エポキシ樹脂、ポリカーボネート、ボ
リアリレート、ポリスルホン、ジアリルフタレート樹脂
、シリコーン樹脂、ケトン樹脂、ポリビニルブチラール
樹脂、ポリエーテル樹脂、フェノール樹脂等、各種の重
合体が例示されている。また、エポキシアクリレート等
の光硬化型樹脂等も使用できる。さらには、前記電荷輸
送物質としての光導電性ポリマー、例えば、ポリ−N−
ビニルカルバゾール等を結着樹脂としても使用してもよ
い。
Various binder resins can be used, such as styrene polymers, styrene-butadiene copolymers, styrene-acrylonitrile copolymers, styrene-maleic acid copolymers, acrylic polymers, and styrene-acrylic copolymers. Copolymer, ethylene-vinyl acetate copolymer, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polyester, alkyd resin, polyamide, polyurethane, acrylic modified urethane resin, epoxy resin, polycarbonate, polyarylate, polysulfone, diallyl Various polymers are exemplified, such as phthalate resin, silicone resin, ketone resin, polyvinyl butyral resin, polyether resin, and phenol resin. Furthermore, photocurable resins such as epoxy acrylate can also be used. Furthermore, photoconductive polymers as the charge transport material, such as poly-N-
Vinyl carbazole or the like may also be used as a binder resin.

また、他の材料としては、ターフェニル、ハロナフトキ
ノン類、アセナフチレン等、従来公知の増悪剤、9−(
N、N−ジフェニルヒドラジノ)フルオレンなどのフル
オレン系化合物、可塑剤、酸化防止剤、紫外線吸収剤な
どの劣化防止剤等、種々の添加剤が例示される。
In addition, other materials include conventionally known aggravating agents such as terphenyl, halonaphthoquinones, acenaphthylene, 9-(
Examples of various additives include fluorene compounds such as N,N-diphenylhydrazino)fluorene, deterioration inhibitors such as plasticizers, antioxidants, and ultraviolet absorbers.

上記感光層におけるα型チタニルフタロシアニン組成物
と電荷輸送物質と上記結着樹脂との使用割合は、所望す
る感光体の特性等に応じて適宜選択することができるが
、結着樹脂100重量部に対して、α型チタニルフタロ
シアニン組成物0゜05〜5重量部、電荷輸送物質25
〜200重量部、好ましくは50〜150重量部使用さ
れる。
The ratio of the α-type titanyl phthalocyanine composition, the charge transport substance, and the binder resin in the photosensitive layer can be appropriately selected depending on the desired characteristics of the photoreceptor. On the other hand, 0.05 to 5 parts by weight of the α-type titanyl phthalocyanine composition and 25 parts by weight of the charge transport material.
~200 parts by weight are used, preferably 50-150 parts by weight.

α型チタニルフタロシアニン組成物および電荷輸送物質
が上記使用量よりも少ないと、感光体の感度が十分でな
いばかりか、残留電位が大きくなる。
If the amounts of the α-type titanyl phthalocyanine composition and the charge transport material are less than the above-mentioned amounts, not only the sensitivity of the photoreceptor will not be sufficient, but also the residual potential will increase.

また上記範囲を越えると感光体の表面電位が低下する。Moreover, when the above range is exceeded, the surface potential of the photoreceptor decreases.

また、感光層は、適宜の厚みを有していてもよいが、3
〜50μm1と(に5〜20μmの厚みを有するものが
好ましい。
Further, the photosensitive layer may have an appropriate thickness, but
Preferably, the thickness is between 50 μm and 5 to 20 μm.

上記感光層は、α型チタニルフタロシアニン組成物と電
荷輸送物質と結着樹脂などを含有する感光層用分散液を
調整し、該分散液を前記導電性基材に塗布し、乾燥させ
ることにより形成することができる。
The photosensitive layer is formed by preparing a photosensitive layer dispersion containing an α-type titanyl phthalocyanine composition, a charge transport substance, a binder resin, etc., applying the dispersion to the conductive base material, and drying the dispersion. can do.

上記分散液などの調整に際しては、結着樹脂等の種類に
応じて適宜の有機溶媒が使用され、該有機溶媒としては
、例えば、メタノール、エタノール、プロパツール、イ
ソプロパツール、ブタノールなどのアルコール類、n−
ヘキサン、オクタン、シクロヘキサン等の脂肪族系炭化
水素、ベンゼン、トルエン、キシレン等の芳香族炭化水
素、ジクロロメタン、ジクロロエタン、四塩化炭素、ク
ロロベンゼン等のハロゲン化炭化水素、ジメチルエーテ
ル、ジエチルエーテル、テトラヒドロフラン、エチレン
グリコールジメチルエーテル、エチレングリコールジエ
チルエーテル等のエーテル類、アセトン、メチルエチル
ケトン、シクロヘキサノン等のケトン類、酢酸エチル、
酢酸メチル等のエステル類等種々の溶剤が例示され、一
種または二種以上混合して用いられる。なお、上記分散
液などは、α型チタニルフタロシアニン組成物などの分
散性、塗工性等をよくするため、界面活性剤、シリコー
ンオンルなどのレベリング剤等を含有していてもよい。
When preparing the above-mentioned dispersion, etc., an appropriate organic solvent is used depending on the type of binder resin, etc. Examples of the organic solvent include alcohols such as methanol, ethanol, propatool, isopropanol, and butanol. , n-
Aliphatic hydrocarbons such as hexane, octane, and cyclohexane, aromatic hydrocarbons such as benzene, toluene, and xylene, halogenated hydrocarbons such as dichloromethane, dichloroethane, carbon tetrachloride, and chlorobenzene, dimethyl ether, diethyl ether, tetrahydrofuran, and ethylene glycol. Ethers such as dimethyl ether and ethylene glycol diethyl ether, ketones such as acetone, methyl ethyl ketone, and cyclohexanone, ethyl acetate,
Various solvents such as esters such as methyl acetate are exemplified, and one type or a mixture of two or more types can be used. The above-mentioned dispersion liquid may contain a surfactant, a leveling agent such as a silicone solution, etc. in order to improve the dispersibility, coating properties, etc. of the α-type titanyl phthalocyanine composition.

上記分散液などは、従来慣用の混合分散方法、例えば、
ペイントシェーカー、ミキサー、ボールミル、サンドミ
ル、アトライター、超音波分散器等を用いて調整するこ
とができ、得られた分散液などの塗布に際しては、従来
慣用のコーティング方法、例えば、デイツプコーティン
グ、スプレーコーティング、スピンコーティング、ロー
ラーコーティング、ブレードコーティング、カーテンコ
ーティング、バーコーティング法等が採用される。
The above-mentioned dispersion liquid can be prepared by conventional mixing and dispersion methods, for example,
It can be prepared using a paint shaker, mixer, ball mill, sand mill, attritor, ultrasonic disperser, etc. When applying the obtained dispersion, conventional coating methods such as dip coating, spraying, etc. can be used. Coating, spin coating, roller coating, blade coating, curtain coating, bar coating, etc. are used.

〈実施例〉 以下に、実施例に基づき、本発明をより詳細に説明する
<Examples> The present invention will be described in more detail below based on Examples.

合成例 1.3−ジイミノイソインドレニン4モルと、テトラブ
トキシチタン1モルと、所定量のキノリンとを反応容器
に仕込み、170〜180℃の温度で5時間反応させる
ことにより、チタニルフタロシアニンを合成した。
Synthesis Example 1. Titanyl phthalocyanine was produced by charging 4 moles of 3-diiminoisoindolenine, 1 mole of tetrabutoxytitanium, and a predetermined amount of quinoline into a reaction vessel and reacting at a temperature of 170 to 180°C for 5 hours. Synthesized.

実施例1 上記合成例のチタニルフタロシアニン100重量部に対
して、濃度98%の4硫酸を1500重量部添加して溶
解し、温度25℃で3時間放置した後、得られた溶液を
0℃の多量の水に注入することによりα型チタニルフタ
ロシアニン組成物を濾別し、ジクロロメタン中に分散さ
せて洗浄するとともに濾別、洗浄を繰り返し、80℃の
温度で乾燥させることによりα型チタニルフタロシアニ
ン組成物を得た。さらに、得られたα型チタニルフタロ
シアニン組成物と所定量のジクロロメタンをボールミル
に仕込み、20時間混合し、α型チタニルフタロシアニ
ン組成物を製造した。
Example 1 To 100 parts by weight of the titanyl phthalocyanine of the above synthesis example, 1500 parts by weight of 4-sulfuric acid with a concentration of 98% was added and dissolved. After standing at a temperature of 25°C for 3 hours, the obtained solution was heated at 0°C. The α-type titanyl phthalocyanine composition is filtered by injecting it into a large amount of water, dispersed in dichloromethane and washed, and the filtration and washing are repeated. The α-type titanyl phthalocyanine composition is dried at a temperature of 80°C. I got it. Further, the obtained α-type titanyl phthalocyanine composition and a predetermined amount of dichloromethane were charged into a ball mill and mixed for 20 hours to produce an α-type titanyl phthalocyanine composition.

得られたα型チタニルフタロシアニン組成物は、α型チ
タニルフタロシアニンを約82.3重量%含有するもの
であった。
The obtained α-type titanyl phthalocyanine composition contained approximately 82.3% by weight of α-type titanyl phthalocyanine.

上記方法で得られたα型チタニルフタロシアニン組成物
0.05重量部、ビスフェノール2型ポリカーボネート
100重量部、エチルカルバゾールアルデヒドジフェニ
ルヒドラゾン100重量部およびテトラヒドロフラン1
000重量部とを用い、超音波分散器にて分散液を調整
すると共にアルミシート上に塗布し、厚み約20μmの
感光層を有する有機感光体を作成した。
0.05 parts by weight of the α-type titanyl phthalocyanine composition obtained by the above method, 100 parts by weight of bisphenol 2 type polycarbonate, 100 parts by weight of ethylcarbazolealdehyde diphenylhydrazone, and 1 part by weight of tetrahydrofuran.
A dispersion liquid was adjusted using an ultrasonic disperser using 000 parts by weight and coated on an aluminum sheet to prepare an organic photoreceptor having a photosensitive layer with a thickness of about 20 μm.

実施例2 実施例1のα型チタニルフタロシアニン組成物4重量部
を用い、上記実施例1と同様にして有機感光体を作成し
た。
Example 2 An organic photoreceptor was prepared in the same manner as in Example 1 using 4 parts by weight of the α-type titanyl phthalocyanine composition of Example 1.

実施例3 実施例1のα型チタニルフタロシアニン組成物5重量部
を用い、上記実施例1と同様にして有機感光体を作成し
た。
Example 3 Using 5 parts by weight of the α-type titanyl phthalocyanine composition of Example 1, an organic photoreceptor was prepared in the same manner as in Example 1 above.

比較例1 実施例1のα型チタニルフタロシアニン組成物0.01
重量部を用い、上記実施例1と同様にして有機感光体を
作成した。
Comparative Example 1 α-type titanyl phthalocyanine composition of Example 1 0.01
An organic photoreceptor was prepared in the same manner as in Example 1 above using parts by weight.

比較例2 実施例1のα型チタニルフタロシアニン組成物10重量
部を用い、上記実施例1と同様にして有機感光体を作成
した。
Comparative Example 2 An organic photoreceptor was prepared in the same manner as in Example 1 using 10 parts by weight of the α-type titanyl phthalocyanine composition of Example 1.

比較例3 実施例1のα型チタニルフタロシアニン組成物に変えて
、N、N−ジメチルペリレン−3,4゜9.10−−テ
トラカルボキシジイミド8重量部を用い、上記実施例1
と同様にして有機感光体を作成した。
Comparative Example 3 In place of the α-type titanyl phthalocyanine composition of Example 1, 8 parts by weight of N,N-dimethylperylene-3,4°9.10-tetracarboxydiimide was used to prepare the composition of Example 1.
An organic photoreceptor was prepared in the same manner as above.

そして、上記各感光体の帯電特性および感光特性を静電
複写試験装置(シュンチック社製、ジュンテフク シン
シア 30M)を用いて、前記各実施例および比較例の
感光体を正負に帯電させ、各感光体の表面電位Vsp(
V)を測定すると共に、流れ込み電流1p(μA)を測
定した。また、ハロゲン光を用いて、感光体を露光し、
上記表面電位が1/2となるまでの時間を求め、半減露
光量El/2 (μJ/Cm” )を算出するとともに
、露光後、0.15秒経過後の表面電位を残留電位Vr
p(V)とした。また各感光体において電子写真工程を
300回繰り返し、初期表面電位と300サイクル後の
表面電位の差をΔVsp (V)とした。
Then, the charging characteristics and photosensitive characteristics of each of the above photoreceptors were determined using an electrostatic copying tester (manufactured by Shunchik Co., Ltd., Juntefuku Cynthia 30M), and the photoreceptors of each of the above Examples and Comparative Examples were positively and negatively charged. Body surface potential Vsp (
At the same time, the inflow current 1p (μA) was measured. In addition, the photoreceptor is exposed using halogen light,
The time required for the surface potential to decrease to 1/2 is calculated, and the half-reduction exposure amount El/2 (μJ/Cm") is calculated. The surface potential after 0.15 seconds has passed after exposure is determined as the residual potential Vr.
p(V). Further, the electrophotographic process was repeated 300 times for each photoreceptor, and the difference between the initial surface potential and the surface potential after 300 cycles was defined as ΔVsp (V).

上記実施例および比較例で得られた各感光体の帯電特性
および感光特性の結果を表1に示す。
Table 1 shows the charging characteristics and photosensitivity characteristics of each photoreceptor obtained in the above Examples and Comparative Examples.

(以下、余白) 表1の比較例1,2の電子写真感光体から、α型ヂタニ
ルフタロシアニン組成物含有量が結着樹脂100重世部
に対して0.05重量部以下になると感光体の感度が十
分でなく、また5重量部以上になると感光体の帯電能、
繰り返し特性が低下することが分かる。また比較例3の
電子写真感光体は、負帯電では感度が不十分で残留電位
が非常に大きい。それに対し、本発明に係る各感光体は
正負両帯電共に良好な電子写真特性を有する。
(Hereinafter, blank space) From the electrophotographic photoreceptors of Comparative Examples 1 and 2 in Table 1, it was found that when the content of the α-type ditanyl phthalocyanine composition was 0.05 parts by weight or less based on 100 parts by weight of the binder resin, the photoreceptors If the sensitivity of the photoreceptor is not sufficient, and if the amount exceeds 5 parts by weight, the charging ability of the photoreceptor may deteriorate.
It can be seen that the repeatability is degraded. Further, the electrophotographic photoreceptor of Comparative Example 3 has insufficient sensitivity when negatively charged and has a very large residual potential. In contrast, each photoreceptor according to the present invention has good electrophotographic properties in both positive and negative charging.

〈発明の効果〉 以上のように本発明による電子写真感光体は、α型ヂタ
ニルフタロシアニン組成物を結着樹脂100重量部に対
して0.05〜5重量部含存す自存とで正負両帯電共に
、帯電性、繰り返し特性に優れるだけでなく、高感度で
あり、残留電位が小さいという良好な電子写真特性を有
する。
<Effects of the Invention> As described above, the electrophotographic photoreceptor according to the present invention has positive and negative effects when it contains an α-type ditanyl phthalocyanine composition of 0.05 to 5 parts by weight based on 100 parts by weight of the binder resin. Both types of chargers not only have excellent chargeability and repeatability, but also have good electrophotographic properties such as high sensitivity and low residual potential.

特許出願人   三田工業株式会社Patent applicant: Mita Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】 1、α型チタニルフタロシアニン組成物並びに電荷輸送
材料を結着樹脂中に分散させて成る感光層において、α
型チタニルフタロシアニン組成物を結着樹脂100重量
部中0.05〜5重量部含有することを特徴とする複合
分散型正負両帯電性の電子写真感光体。 2、前記α型チタニルフタロシアニン組成物が、α型チ
タニルフタロシアニン60〜90重量%と、メタルフリ
ーフタロシアニン10〜40重量%とを含有する上記特
許請求の範囲第1項記載の電子写真感光体。 3、前記α型チタニルフタロシアニン組成物が、X線回
折スペクトルにおけるブラック角6.9°、9.6°、
15.6°、17.6°、21.9°、23.6°、2
4.7°および28.0°に強い回折ピークを示し、上
記ブラック角のうち、6.9°の回折ピークが最も大き
い上記特許請求の範囲第1項または第2項記載の電子写
真感光体。
[Claims] 1. In a photosensitive layer formed by dispersing an α-type titanyl phthalocyanine composition and a charge transport material in a binder resin,
1. A composite dispersion type electrophotographic photoreceptor having both positive and negative chargeability, characterized in that it contains 0.05 to 5 parts by weight of a titanyl phthalocyanine composition per 100 parts by weight of a binder resin. 2. The electrophotographic photoreceptor according to claim 1, wherein the α-type titanyl phthalocyanine composition contains 60 to 90% by weight of α-type titanyl phthalocyanine and 10 to 40% by weight of metal-free phthalocyanine. 3. The α-type titanyl phthalocyanine composition has black angles of 6.9° and 9.6° in the X-ray diffraction spectrum,
15.6°, 17.6°, 21.9°, 23.6°, 2
The electrophotographic photoreceptor according to claim 1 or 2, which exhibits strong diffraction peaks at 4.7° and 28.0°, and has the largest diffraction peak at 6.9° among the Black angles. .
JP30170487A 1987-11-30 1987-11-30 Electrophotographic sensitive body Granted JPH01142659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30170487A JPH01142659A (en) 1987-11-30 1987-11-30 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30170487A JPH01142659A (en) 1987-11-30 1987-11-30 Electrophotographic sensitive body

Publications (2)

Publication Number Publication Date
JPH01142659A true JPH01142659A (en) 1989-06-05
JPH0560867B2 JPH0560867B2 (en) 1993-09-03

Family

ID=17900152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30170487A Granted JPH01142659A (en) 1987-11-30 1987-11-30 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH01142659A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170166A (en) * 1988-12-23 1990-06-29 Mitsubishi Petrochem Co Ltd Electrophotographic sensitive body
JPH0310256A (en) * 1989-06-07 1991-01-17 Konica Corp Electrophotographic sensitive body
EP0433172A2 (en) * 1989-12-13 1991-06-19 Canon Kabushiki Kaisha Electrophotographic photosensitive member
US5968696A (en) * 1997-04-11 1999-10-19 Fit Corporation Electrophotographic photoreceptor
US6503673B2 (en) 2000-10-24 2003-01-07 Mitsubishi Paper Mills Limited Phthalocyanine composition, process for production thereof, and electrophotographic photoreceptor
US7534539B2 (en) 2003-06-03 2009-05-19 Sharp Kabushiki Kaisha Electrophotographic photoreceptor and image forming apparatus having the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239248A (en) * 1985-04-16 1986-10-24 Dainippon Ink & Chem Inc Composite type electrophotographic sensitive body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61239248A (en) * 1985-04-16 1986-10-24 Dainippon Ink & Chem Inc Composite type electrophotographic sensitive body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170166A (en) * 1988-12-23 1990-06-29 Mitsubishi Petrochem Co Ltd Electrophotographic sensitive body
JPH0310256A (en) * 1989-06-07 1991-01-17 Konica Corp Electrophotographic sensitive body
EP0433172A2 (en) * 1989-12-13 1991-06-19 Canon Kabushiki Kaisha Electrophotographic photosensitive member
US5968696A (en) * 1997-04-11 1999-10-19 Fit Corporation Electrophotographic photoreceptor
US6503673B2 (en) 2000-10-24 2003-01-07 Mitsubishi Paper Mills Limited Phthalocyanine composition, process for production thereof, and electrophotographic photoreceptor
US7534539B2 (en) 2003-06-03 2009-05-19 Sharp Kabushiki Kaisha Electrophotographic photoreceptor and image forming apparatus having the same

Also Published As

Publication number Publication date
JPH0560867B2 (en) 1993-09-03

Similar Documents

Publication Publication Date Title
JPS6230254A (en) Electrophotographic sensitive body
JPH01142659A (en) Electrophotographic sensitive body
JP3973128B2 (en) Electrophotographic photosensitive member and image forming apparatus
JPH0511467A (en) Electrophotographic sensitive body
JP2560756B2 (en) Manufacturing method of electrophotographic photoreceptor
JP2518834B2 (en) Charge generation material for electrophotographic photoreceptor
JPH05273772A (en) Hydrazone compound and photosensitive body using it
JPH04285670A (en) Diphenoquinone-based compound and electrophotographic photosensitive sheet using the same compound
JP3462931B2 (en) Phthalocyanine composition and electrophotographic photoreceptor using the same
JPH01142647A (en) Electrophotographic sensitive body
JPH01252968A (en) Electrophotographic sensitive body
JPH02201450A (en) Electrophotograhic sensitive body
JP3333977B2 (en) Electrophotographic photoreceptor
JP2947886B2 (en) Electrophotographic photoreceptor
JPH0424643A (en) Laminated electrophotographic sensitive body
JPH10293407A (en) Electrophotographic photoreceptor and its manufacture
JPH01291256A (en) Electrophotographic sensitive body
JPH04285672A (en) Diphenoquinone-based compound and electrophotographic photosensitive body using the same compound
JPH01207754A (en) Organic photosensitive body
JPH03171053A (en) Electrophotographic sensitive body
JPH0466953A (en) Electrophotographic sensitive body
JPS63188143A (en) Production of composite type electrophotographic sensitive body
JPH0829999A (en) Photoreceptor for electrophotography
JPH04324449A (en) Electrophotographic sensitive body
JPH04285671A (en) Diphenoquinone-based compound and electrophotographic photosensitive body using the same compound

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees