JPH0394263A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0394263A
JPH0394263A JP23231689A JP23231689A JPH0394263A JP H0394263 A JPH0394263 A JP H0394263A JP 23231689 A JP23231689 A JP 23231689A JP 23231689 A JP23231689 A JP 23231689A JP H0394263 A JPH0394263 A JP H0394263A
Authority
JP
Japan
Prior art keywords
photoreceptor
charge
layer
group
hydrazone compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23231689A
Other languages
Japanese (ja)
Inventor
Masami Kuroda
昌美 黒田
Noboru Kosho
古庄 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP23231689A priority Critical patent/JPH0394263A/en
Publication of JPH0394263A publication Critical patent/JPH0394263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To form the photosensitive body having a high sensitivity and excellent repetitive characteristics for copying machines and printers by providing a photosensitive layer contg. one kind of specific hydrazone compds. CONSTITUTION:The photosensitive layer contg. at least one kind of the hydrazone compds. expressed by formula I is provided. In the formula I, A denotes either of a substd. or unsubstd. condensation polycyclic arom. residual group or residual heterocyclic group; R1 to R3 respectively denote a hydrogen atom, and any of a respectively substd. or unsubstd. alkyl group, aryl group, alkenyl group, and anil group. The photosensitive body having the high sensitivity and the excellent repetitive characteristics is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電子写真用感光体に関し、詳しくは導電性基
体上に形或した感光層の中に新規なヒドラゾン化合物を
含有することを特徴とする電子写真用感光体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrophotographic photoreceptor, and more specifically, it is characterized in that a novel hydrazone compound is contained in a photosensitive layer formed on a conductive substrate. The present invention relates to a photoreceptor for electrophotography.

〔従来の技術〕[Conventional technology]

従来より電子写真用感光体(以下感光体とも称する)の
感光材料としては、セレンまたはセレン合金などの無機
光導電性物質、酸化亜鉛あるいは硫化カドミウムなどの
無機光導電性物質を樹脂結着剤中に分散させたもの、ポ
IJN−ビニルカルバゾールまたはポリビニルアントラ
センなどの有機光導電性物質、フタロシアニン化合物あ
るいはビスアゾ化合物などの有機光導電性物質を樹脂結
着剤中に分赦させたものや真空蒸着させたものなどが利
用されている。
Conventionally, photosensitive materials for electrophotographic photoreceptors (hereinafter also referred to as photoreceptors) have been made of inorganic photoconductive substances such as selenium or selenium alloys, or inorganic photoconductive substances such as zinc oxide or cadmium sulfide in a resin binder. organic photoconductive substances such as polyvinyl carbazole or polyvinylanthracene, organic photoconductive substances such as phthalocyanine compounds or bisazo compounds dispersed in a resin binder, or vacuum evaporated. and other items are being used.

また、感光体には暗所で表面電荷を保持する機能、光を
受容して電荷を発生する機能、同じく光を受容して電荷
を輸送する機能とが必要であるが、一つの層でこれらの
機能をあわせもったいわゆる単層型感光体と、主として
電荷発生に寄与する層と暗所での表面電荷の保持と光受
容時の電荷輸送に寄与する層とに機能分離した層を積層
したいわゆる積層型感光体がある。これらの感光体を用
いた電子写真法による画像形戒には、例えばカールソン
方式が適用される。この方式での画像形或は暗所での感
光体へのコロナ放電による帯電、帯電された感光体表面
上への露光による原稿の文字や絵などの静電潜像の形戊
、形或された静電潜像のトナーによる現像、現像された
トナー像の紙などの支持体への転写.定着により行われ
、トナー像転写後の感光体は除電,残留トナーの除去,
光除電などを行った後、再使用に供される。
In addition, a photoreceptor must have the function of retaining surface charge in the dark, the function of receiving light and generating charge, and the function of receiving light and transporting charge, all of which can be achieved in one layer. A so-called single-layer photoreceptor with the following functions is laminated with functionally separated layers: a layer that mainly contributes to charge generation, and a layer that contributes to surface charge retention in the dark and charge transport during light reception. There is a so-called laminated photoreceptor. For example, the Carlson method is applied to image formation by electrophotography using these photoreceptors. In this method, the image form or electrostatic latent image such as text or pictures on a document is formed by charging the photoreceptor in a dark place by corona discharge, or by exposing the charged photoreceptor surface to light. Development of an electrostatic latent image with toner, and transfer of the developed toner image to a support such as paper. This is done by fixing, and after the toner image is transferred, the photoconductor undergoes static electricity removal, residual toner removal,
After photostatic charge removal, etc., it is reused.

近年、可とう性,熱安定性,膜形或性などの利点により
、有機材料を用いた電子写真用感光体が実用化されてき
ている。例えば、ポIJN−ビニルカルバゾールと2.
4.7−トIJニトロフルオレンー9−オンとからなる
感光体(米国特許第3484237号明細書に記戟)、
有機顔料を主或分とする感光体(特開昭47−3754
3号公報に記載)、染料と樹脂とからなる共晶錯体を主
或分とする感光体く特開昭47−10785号公報に記
載)などである。さらに、新規ヒドラゾン化合物も数多
く実用化されている。
In recent years, electrophotographic photoreceptors using organic materials have been put into practical use due to their advantages such as flexibility, thermal stability, and film formability. For example, polyJN-vinylcarbazole and 2.
4.7-IJ nitrofluorene-9-one (described in U.S. Pat. No. 3,484,237),
Photoreceptor mainly containing organic pigment (Japanese Patent Application Laid-Open No. 47-3754
(described in Japanese Patent Application Laid-open No. 10785/1983), and a photoreceptor mainly composed of a eutectic complex consisting of a dye and a resin (described in Japanese Patent Application Laid-open No. 10785/1983). Furthermore, many new hydrazone compounds have also been put into practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように有機材料は無機材料にない多くの長所を持
つが、また同時に電子写真用感光体に要求されるすべて
の特性を充分に満足するものが得られていないのが現状
であり、特に光感度および繰り返し連続使用時の特性に
問題があった。
As mentioned above, organic materials have many advantages that inorganic materials do not have, but at the same time, there is currently no material that fully satisfies all the characteristics required of electrophotographic photoreceptors. There were problems with photosensitivity and characteristics during repeated and continuous use.

この発明は、上述の点に鑑みてなされたものであって、
感光層に電荷輸送物質として今まで用いられたことのな
い新しい有機材料を用いることにより、高感度で繰り返
し特性の優れた複写機用およびプリンタ用の電子写真用
感光体を提供することを課題とする。
This invention was made in view of the above points, and
Our objective is to provide an electrophotographic photoreceptor for copying machines and printers that has high sensitivity and excellent repeatability by using a new organic material that has never been used as a charge transport material in the photosensitive layer. do.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、この発明によれば、下記一般式(1)で示
されるヒドラゾン化合物のうちの、少なくとも一種を含
む感光層を有する電子写真用感光体とすることによって
解決される。
According to the present invention, the above problem is solved by providing an electrophotographic photoreceptor having a photosensitive layer containing at least one type of hydrazone compound represented by the following general formula (1).

〔式(I)中、Aは置換もしくは無置換の綜合多環芳香
族残基,複素環残基のうちのいずれかを表し、R1ない
しR3はそれぞれ水素原子,以下のそれぞれ置換もしく
は無置換のアルキル基.アリール基,アルケニル基.ア
ニル基のうちのいずれかを表す。〕 〔作用〕 前記一般式(1〉で示されるヒドラゾン化合物を感光層
に用いた例は知られていない。本発明者らは、前記課題
を解決するために各種有機材料について鋭意検討するな
かで、これらヒドラゾン化合物について数多くの実験を
行った結果、その技術的解明はまだ充分なされてはいな
いが、このような前記一般式(1)で示される特定のヒ
ドラゾン化合物を電荷輸送物質として使用することが、
電子写真特性の向上に極めて有効であることを見出し、
高感度で繰り返し特性の優れた感光体を得るに至ったの
である。
[In formula (I), A represents either a substituted or unsubstituted integrated polycyclic aromatic residue or a heterocyclic residue, R1 to R3 are each a hydrogen atom, and each of the following substituted or unsubstituted Alkyl group. Aryl group, alkenyl group. Represents any anyl group. ] [Operation] There are no known examples of using the hydrazone compound represented by the above general formula (1) in a photosensitive layer.The present inventors, while intensively studying various organic materials in order to solve the above problems, As a result of numerous experiments conducted on these hydrazone compounds, although the technical elucidation has not yet been fully elucidated, it is possible to use such a specific hydrazone compound represented by the above general formula (1) as a charge transport material. but,
discovered that it is extremely effective in improving electrophotographic properties,
This led to the creation of a photoreceptor with high sensitivity and excellent repeatability.

〔実施例〕〔Example〕

この発明に用いられる前記一級式(1)のヒドラゾン化
合物は、通常の方法により合成することができる。すな
わち、下記一般式(II>で示されるアルデヒド類と下
記一般式(III)で示されるヒドラジン類を、酸など
の触媒存在下適当な有機溶媒(例えばエタノールなど〉
中で脱水縮合させることにより、容易に合戒することが
できる。
The hydrazone compound of the primary formula (1) used in this invention can be synthesized by a conventional method. That is, aldehydes represented by the following general formula (II>) and hydrazines represented by the following general formula (III) are mixed in a suitable organic solvent (e.g. ethanol etc.) in the presence of a catalyst such as an acid.
By dehydrating and condensing the mixture in a liquid, it is possible to easily combine the precepts.

こうして得られる前記一般式(1)で示されるヒドラゾ
ン化合物の具体例を例示すると次の通りでこの発明の感
光体は前述のようなヒドラゾン化合物を感光層中に含有
させたものであるが、これらヒドラゾン化合物の応用の
仕方によって、第1図,第2図あるいは第3図に示した
ごとくに用いることができる。
Specific examples of the hydrazone compound represented by the general formula (1) thus obtained are as follows.The photoreceptor of the present invention contains the above-mentioned hydrazone compound in the photosensitive layer. Depending on the application of the hydrazone compound, it can be used as shown in FIG. 1, FIG. 2, or FIG. 3.

第1図〜第3図はこの発明の感光体の概念的断面図で、
lは導電性基体、20, 21. 22は感光層、3は
電荷発生物質、4は電荷発生層、5は電荷輪送物質、6
は電荷輸送層、7は被覆層である。
1 to 3 are conceptual cross-sectional views of the photoreceptor of the present invention,
l is a conductive substrate, 20, 21. 22 is a photosensitive layer, 3 is a charge generating material, 4 is a charge generating layer, 5 is a charge transporting material, 6
is a charge transport layer, and 7 is a coating layer.

第1図は、導電性基体1上に電荷発生物質3と電荷輸送
物質5であるヒドラゾン化合物を樹脂バインダー(結着
剤)中に分散した感光層20〈通常単層型感光体と称せ
られる構或)が設けられたものである。
FIG. 1 shows a photosensitive layer 20 (usually referred to as a single-layer photoreceptor) in which a charge generating substance 3 and a hydrazone compound as a charge transporting substance 5 are dispersed in a resin binder on a conductive substrate 1. ) is provided.

第2図は、導電性基体】上に電荷発生物質3を主体とす
る電荷発生層4と、電荷輸送物質5であるヒドラゾン化
合物を含有する電荷輸送層6との積層からなる感光層2
1 (通常積層型感光体と称せられる構或)が設けられ
たものである。
FIG. 2 shows a photosensitive layer 2 consisting of a conductive substrate laminated with a charge generation layer 4 mainly containing a charge generation substance 3 and a charge transport layer 6 containing a hydrazone compound as a charge transport substance 5.
1 (a structure commonly referred to as a laminated photoreceptor).

第3図は、第2図の逆の層構或の感光層22が設けられ
たものである。この場合には、電荷発生層4を保護する
ためさらに被覆層7を設けるのが一般的である。
In FIG. 3, a photosensitive layer 22 having a layer structure opposite to that in FIG. 2 is provided. In this case, it is common to further provide a coating layer 7 to protect the charge generation layer 4.

第2図および第3図に示す2種類の層構戊とする理由は
、負帯電方式として通常用いられる第2図の層構戊で正
帯電方式で用いようとしても、これに適合する電荷輸送
物質がまだ見つかっておらず、したがって、正帯電方式
の感光体として現段階では第3図に示した層構或とする
ことが必要なためである。
The reason for using the two types of layer structures shown in Figures 2 and 3 is that even if the layer structure shown in Figure 2, which is normally used for a negative charging system, is intended to be used for a positive charging system, the charge transport that is compatible with this is This is because the substance has not yet been discovered, and therefore, at this stage, it is necessary to have the layer structure shown in FIG. 3 as a positively charging type photoreceptor.

第l図の感光体は、電荷発生物質を電荷輸送物質および
樹脂バインダーを溶解した溶液中に分散させ、この分散
液を導電性基体上に塗布することによって作製できる。
The photoreceptor shown in FIG. 1 can be prepared by dispersing a charge generating material in a solution containing a charge transporting material and a resin binder, and coating this dispersion on a conductive substrate.

第2図の感光体は、導電性基体上に電荷発生物質を真空
蒸着するか、あるいは電荷発生物質の粒子を溶剤または
樹脂バインダー中に分散して得た分散液を塗布、乾燥し
、その上に電荷輸送物質および樹脂バインダーを溶解し
た溶液を塗布、乾燥することにより作製できる。
The photoreceptor shown in Figure 2 is produced by vacuum-depositing a charge-generating substance on a conductive substrate, or by coating and drying a dispersion obtained by dispersing particles of a charge-generating substance in a solvent or resin binder, and then It can be produced by applying a solution containing a charge transporting substance and a resin binder to the surface of the substrate and drying the solution.

第3図の感光体は、電荷輸送物質および樹脂バインダー
を溶解した溶液を導電性基体上に塗布、乾燥し、その上
に電荷発生物質を真空蒸着するか、あるいは電荷発生物
質の粒子を溶剤または樹脂バインダー中に分散して得た
分散液を塗布、乾燥し、さらに被覆層を形或することに
より作製できる。
The photoreceptor shown in Figure 3 is produced by coating a conductive substrate with a solution containing a charge transporting substance and a resin binder and drying it, and then vacuum-depositing a charge generating substance thereon, or by depositing charge generating substance particles in a solvent or a solvent. It can be produced by applying a dispersion obtained by dispersing it in a resin binder, drying it, and further forming a coating layer.

導電性基体1は感光体の電極としての役目と同時に他の
各層の支持体となっており、円筒状,板状,フィルム状
のいずれでも良く、材質的にはアルミニウム,ステンレ
ス鋼,ニッケルなどの金属、あるいはガラス,樹脂など
の上に導電処理をほどこしたものでも良い。
The conductive substrate 1 serves as an electrode for the photoreceptor and at the same time serves as a support for the other layers, and may be cylindrical, plate-shaped, or film-shaped, and may be made of aluminum, stainless steel, nickel, etc. It may also be made of metal, glass, resin, or the like, which has been subjected to conductive treatment.

電荷発生層4は、前記したように電荷発生物質3の粒子
を樹脂バインダー中に分散させた材料を塗布するか、あ
るいは、真空蒸着などの方法により形戊され、光を受容
して電荷を発生する。また、その電荷発生効率が高いこ
とと同時に発生した電荷の電荷輸送層6および被覆層7
への注入性が重要で、電場依存性が少なく低電場でも注
入の良いことが望ましい。電荷発生物質としては、無金
属フタロンアニン,チタニルフタロシアニンなどのフタ
ロシアニン化合物、各種アゾ、キノン、インジゴ顔料あ
るいは、シアニン,スクアIJ リウム,アズレニウム
,ピリリウム化合物などの染料や、セレンまたはセレン
化合物などが用いられ、画像形戊に使用される露光光源
の光波長領域に応じて好適な物質を選ぶことができる。
The charge generation layer 4 is formed by coating a material in which particles of the charge generation substance 3 are dispersed in a resin binder as described above, or by a method such as vacuum deposition, and generates charges by receiving light. do. In addition, the charge transport layer 6 and the coating layer 7 for the generated charges at the same time have a high charge generation efficiency.
It is important to have good injection properties even in low electric fields with little dependence on electric fields. As the charge generating substance, phthalocyanine compounds such as metal-free phthalonanine and titanyl phthalocyanine, various azo, quinone, and indigo pigments, dyes such as cyanine, squarium, azulenium, and pyrylium compounds, and selenium or selenium compounds are used. A suitable material can be selected depending on the light wavelength range of the exposure light source used for image formation.

電荷発生層は電荷発生機能を有すればよいので、その膜
厚は電荷発生物質の光吸収係数より決まり一般的には5
μm以下であり、好適には1μm以下である。電荷発生
層は電荷発生物質を主体としてこれに電荷輸送物質など
を添加して使用することも可能である。
Since the charge generation layer only needs to have a charge generation function, its thickness is determined by the light absorption coefficient of the charge generation substance and is generally 5.
It is 1 μm or less, preferably 1 μm or less. The charge generation layer is mainly composed of a charge generation substance, and a charge transport substance or the like may be added thereto.

樹脂バインダーとしては、ポリカーボネート,ポリエス
テル,ボリアミド,ポリウレタン,塩化ビニル,エポキ
シ,ジアリルフタレート樹脂,シリコン樹脂,メタクリ
ル酸エステルの重合体および共重合体などを適宜組み合
わせて使用することが可能である。
As the resin binder, polycarbonate, polyester, polyamide, polyurethane, vinyl chloride, epoxy, diallyl phthalate resin, silicone resin, polymers and copolymers of methacrylic acid ester, etc. can be used in appropriate combinations.

電荷輸送層6は樹脂バインダー中に有機電荷輸送物質と
して前記一般式(+.)で示されるヒドラゾン化合物を
分散させた塗膜であり、暗所では絶縁体層として感光体
の電荷を保持し、光受容時には電荷発生層から注入され
る電荷を輸送する機能を発揮する。樹脂パインダーとし
ては、ポリカーボネート,ポリエステル,ポリアミド,
ボリウレクン,エポキシ,シリコン樹脂,メタクリル酸
エステルの重合体および共重合体などを用いることがで
きる。
The charge transport layer 6 is a coating film in which a hydrazone compound represented by the general formula (+.) is dispersed as an organic charge transport substance in a resin binder, and serves as an insulating layer in the dark to retain the charge on the photoreceptor. During light reception, it functions to transport charges injected from the charge generation layer. As a resin binder, polycarbonate, polyester, polyamide,
Polymers and copolymers of polyurecne, epoxy, silicone resin, methacrylic acid ester, etc. can be used.

被覆層7は暗所ではコロナ放電の電荷を受容して保持す
る機能を有しており、かつ電荷発生層が感応する光を透
過する性能を有し、露光時に光を透過し、電荷発生層に
到達させ、発生した電荷の注入を受けて表面電荷を中和
消滅させることが必要である。被覆材料としては、ポリ
エステル,ポリアミドなどの有機絶縁性皮膜形戊材料が
適用できる。また、これら有機材料とガラス樹脂, S
i02などの無機材料さらには金属.金属酸化物などの
電気抵抗を低減せしめる材料とを混合して用いることも
できる。被覆材料としては有機絶縁性皮膜形或材料に限
定されることはな< SI02などの無機材料さらには
金属,金属酸化物などを蒸着.スパッタリングなどの方
法により形戊することも可能である。被覆材料は前述の
通り電荷発生物質の光の吸収極大の波長領域においてで
きるだけ透明であることが望ましい。
The coating layer 7 has the function of receiving and retaining the charge of corona discharge in a dark place, and has the ability to transmit the light to which the charge generation layer is sensitive, and transmits the light upon exposure, and the charge generation layer It is necessary to neutralize and eliminate the surface charges by injecting the generated charges. As the covering material, an organic insulating film material such as polyester or polyamide can be used. In addition, these organic materials and glass resin, S
Inorganic materials such as i02 and even metals. It can also be used in combination with a material that reduces electrical resistance, such as a metal oxide. The coating material is not limited to organic insulating films or materials; inorganic materials such as SI02, as well as metals, metal oxides, etc., may be deposited. It is also possible to shape by a method such as sputtering. As mentioned above, it is desirable that the coating material be as transparent as possible in the wavelength region where the charge generating substance absorbs maximum light.

被覆層自体の膜厚は被覆層の配合組或にも依存するが、
繰り返し連続使用したとき残留電位が増大するなどの悪
影響が出ない範囲で任意に設定できる。
The thickness of the coating layer itself depends on the composition of the coating layer, but
It can be set arbitrarily within a range that does not cause adverse effects such as an increase in residual potential when used repeatedly and continuously.

以下、この発明の実施例について説明する。Examples of the present invention will be described below.

実施例1 ボールミルで150時間粉砕した無金属フタ口シアニン
(東京化或魁)50重量部と前記化合物Nch 1で示
されるヒドラゾン化合物100重量部をポリエステル樹
脂(商品名バイロン200:東洋紡製)100重量部と
テトラヒドロフラン(THF)溶剤とともに3時間混合
機により混練して塗布液を調製し、導電性基体であるア
ルミ蒸着ポリエステルフィルム(A l − P E 
T )上に、ワイヤーバー法にて塗布して、乾燥後の膜
厚が15μmになるように感光層を形或し、第1図に示
した構戊の感光体を作製した。
Example 1 100 parts by weight of a polyester resin (trade name Byron 200, manufactured by Toyobo Co., Ltd.) was mixed with 50 parts by weight of metal-free lid cyanine (Tokyo Chemical Co., Ltd.) ground for 150 hours in a ball mill and 100 parts by weight of the hydrazone compound represented by the compound Nch 1. and tetrahydrofuran (THF) solvent for 3 hours in a mixer to prepare a coating solution.
A photosensitive layer was formed by applying the photosensitive layer onto T) using a wire bar method so that the film thickness after drying was 15 μm, thereby producing a photosensitive member having the structure shown in FIG.

実施例2 まず、α型無金属フタロシアニンを出発原料とし、2つ
のリニアモーターを対向して配置した間にα型無金属フ
タロシアニンと作用小片として被覆磁性体テフロンピー
スを内蔵した非磁性罐体を用いて粉砕する電磁粉砕装置
(商品名LIMMAC:富士電機製)を用いて粉砕処理
を20分間行い微粉末化した。この微粉末化された試料
l重量部.!=DMF (N,N−ジメチルホルムアミ
ド〉溶剤50重量部とを超音波分散処理を行った。その
後、試料とDMFとを分離濾過し、乾燥して無金属フタ
ロシアニンの処理を行った。
Example 2 First, α-type metal-free phthalocyanine was used as a starting material, and a non-magnetic case containing α-type metal-free phthalocyanine and a coated magnetic Teflon piece as a working piece was used between two linear motors arranged facing each other. The powder was pulverized for 20 minutes using an electromagnetic pulverizer (trade name: LIMMAC, manufactured by Fuji Electric). 1 part by weight of this finely powdered sample. ! = DMF (N,N-dimethylformamide) 50 parts by weight of solvent was subjected to ultrasonic dispersion treatment. Thereafter, the sample and DMF were separated and filtered, and dried to perform metal-free phthalocyanine treatment.

次に、前記化合物Nα2で示されるヒドラゾン化合物8
0重1部とポリカーボネート樹脂(商品名バンライ} 
L−1225 :帝人製)100重量部を塩化メチレン
に溶解してできた塗液をアルミ蒸着ポリエステルフィル
ム基体上にワイヤーバー法にて塗布し、乾燥後の膜厚が
15μmになるように電荷輸送層を形或した。このよう
にして得られた電荷輸送層上に上記の処理をされた無金
属フタロシアニン50重量部、ポリエステル樹脂(商品
名バイロン200:東洋紡製)50重msを、THF溶
剤とともに3時間混合機により混練して塗布液を調製し
、ワイヤーバー法にて塗布し、乾燥後の膜厚がlμmに
なるように電荷発生層を形或し、′fJ3図に示した構
或に対応する感光体を作製した。ただし、この発明に直
接関与しない被覆層は設けなかった。
Next, a hydrazone compound 8 represented by the compound Nα2
0 weight 1 part and polycarbonate resin (product name Banrai)
A coating solution prepared by dissolving 100 parts by weight of L-1225 (manufactured by Teijin) in methylene chloride was applied onto an aluminum-deposited polyester film substrate using the wire bar method, and charge transport was applied so that the film thickness after drying was 15 μm. The layers were formed. On the charge transport layer thus obtained, 50 parts by weight of the above-treated metal-free phthalocyanine and 50 parts by weight of a polyester resin (trade name: Vylon 200, manufactured by Toyobo) were kneaded with a THF solvent in a mixer for 3 hours. A coating solution was prepared and applied using a wire bar method, and a charge generation layer was formed so that the film thickness after drying was 1 μm, and a photoreceptor corresponding to the structure shown in Fig.'fJ3 was prepared. did. However, a coating layer not directly related to this invention was not provided.

実施例3 実施例2における無金属フタロシアニンを下記構造式(
IV)で示されるスクアリリウム化合物に替え、電荷輸
送物質を前記化合物Nα3で示されるヒドラゾン化合物
に替え、その他は実施例2と同様にして感光体を作製し
た。
Example 3 The metal-free phthalocyanine in Example 2 was expressed by the following structural formula (
A photoreceptor was produced in the same manner as in Example 2 except that the squarylium compound represented by IV) was replaced with a hydrazone compound represented by the compound Nα3 as the charge transport material.

実施例4 実施例2における無金属フタロシアニンを、例えば特開
昭47−37543号公報に示されるようなビスアゾ顔
料であるクロロダイアンプルーに替え、電荷輸送物質を
前記化合物Nα4で示されるヒドラゾン化合物に替え、
その他は実施例2と同様にして感光体を作製した。
Example 4 The metal-free phthalocyanine in Example 2 was replaced with chlorodiane blue, which is a bisazo pigment as shown in JP-A No. 47-37543, and the charge transport material was replaced with a hydrazone compound represented by the compound Nα4. ,
A photoreceptor was produced in the same manner as in Example 2 in other respects.

このようにして得られた感光体の電子写真特性を川口電
機製静電記録紙試験装置r S P−428Jを用いて
測定した。
The electrophotographic properties of the photoreceptor thus obtained were measured using an electrostatic recording paper tester RSP-428J manufactured by Kawaguchi Electric.

感光体の表面電位V.(ボルト)は暗所で+6. Ok
Vのコロナ放電をlO秒間行って感光体表面を正帯電せ
しめたときの初期の表面電位であり、続いてコロナ放電
を中止した状態で2秒間暗所保持したときの表面電位V
,(ボルト)を測定し、さらに続いて感光体表面に照度
2ルックスの白色光を照射してvdが半分になるまでの
時間(秒〉を求め半減衰露光IE+,’2(ルックス・
秒)とした。また、照度2ルックスの白色光を10秒間
照射したときの表面電位を残留電位V,(ボルト)とし
た。また、実施例1〜3については、長波長光での高感
度が期待できるので、波長780nmの単色光を用いた
ときの電子写真特性も同時に測定した。すなわち、■,
までは同様に測定し、次に白色光の替わりに1μWの単
色光(780nm)を照射して半減衰露光量(μJ/c
at)を求め、また、この光をlO秒間感光体表面に照
射したときの残留電位V,(ボルト)を測定した。
Surface potential of photoreceptor V. (Volt) is +6 in the dark. Ok
This is the initial surface potential when corona discharge of V is performed for 10 seconds to positively charge the surface of the photoreceptor, and then the surface potential V is when the corona discharge is stopped and the surface is held in the dark for 2 seconds.
, (volts), and then irradiate the surface of the photoreceptor with white light with an illuminance of 2 lux to find the time (seconds) it takes for vd to be halved.
seconds). Further, the surface potential when white light with an illuminance of 2 lux was irradiated for 10 seconds was defined as the residual potential V, (volt). Further, for Examples 1 to 3, since high sensitivity with long wavelength light can be expected, the electrophotographic characteristics when using monochromatic light with a wavelength of 780 nm were also measured at the same time. That is, ■,
Measurements were carried out in the same manner up to the previous step, and then 1 μW monochromatic light (780 nm) was irradiated instead of white light to obtain a half-attenuation exposure amount (μJ/c
at) was determined, and the residual potential V, (volt) when the surface of the photoreceptor was irradiated with this light for 10 seconds was measured.

測定結果を第1表に示す。The measurement results are shown in Table 1.

第1表に見られるように、実施例1,2,3.4は半減
衰露光量,残留電位ともに互いに遜色はなく、また表面
電位でも良好な特性を示している。
As shown in Table 1, Examples 1, 2, and 3.4 are comparable in half-attenuation exposure and residual potential, and also exhibit good characteristics in terms of surface potential.

また、実施例1〜3においては波長730nmの長波長
光でも高感度を示し、半導体レーザプリンタ用として充
分使用可能であることが判る。
Further, Examples 1 to 3 showed high sensitivity even to long wavelength light of 730 nm, and it was found that they could be sufficiently used for semiconductor laser printers.

実施例5 厚さ500μmのアルミニウム板上に、セレンを厚さ1
.5μmに真空蒸着し電荷発生層を形成し、次に、化合
物N(L 5で示されるヒドラゾン化合物100重量部
をテトラヒドロフラン(THF)700重量部に溶かし
た液とポリメタクリル酸メチルポリマー(PMMA :
東京化戒製)100重量部をトルエン700重量部に溶
かした液とを混合してできた塗液をワイヤーバー法にて
塗布し、乾燥後の膜厚が20μmになるように電荷輸送
層を形或し、第2図に示した構或の感光体を作製した。
Example 5 Selenium was deposited to a thickness of 1 on a 500 μm thick aluminum plate.
.. A charge generation layer was formed by vacuum evaporation to a thickness of 5 μm, and then a solution prepared by dissolving 100 parts by weight of a hydrazone compound represented by Compound N (L 5) in 700 parts by weight of tetrahydrofuran (THF) and polymethyl methacrylate polymer (PMMA:
A charge transport layer was formed by mixing 100 parts by weight (manufactured by Tokyo Kakai Co., Ltd.) with 700 parts by weight of toluene and applying it using the wire bar method, so that the film thickness after drying was 20 μm. A photoreceptor having the shape or structure shown in FIG. 2 was manufactured.

この感光体について、コロナ放電電圧を−6, OkV
に替え、その他は前述の測定法と同様にして電子写真特
性を測定したところ、 Vs=−600V.  vr=
−50v,  El/2=4.5/L’−/クス・秒と
良好な結果が得られた。
For this photoreceptor, the corona discharge voltage was set to -6, OkV.
When the electrophotographic characteristics were measured in the same manner as the above-mentioned measurement method except for Vs=-600V. vr=
-50v, El/2=4.5/L'-/cus·sec, and good results were obtained.

実施例6 実施例2で処理された無金属フタロシアニン50重量部
,塩化ビニル共重合体く商品名MR−110:日本ゼオ
ン製)50重量部を塩化メチレンとともに3時間混合機
により混練して塗布液を調製し、アルミニウム支持体上
に約lμmになるように塗布し、電荷発生層を形或した
。次に、化合物Nα6で示されるヒドラゾン化合物10
0重量部,ポリカーボネート樹脂(商品名バンライ} 
L−1250:帝人製)100重量部.シリコンオイル
0.1重量部を塩化メチレンで混合し、電荷発生層の上
に約15μmとなるように塗布し、電荷輸送層を形威し
、第2図に示した構或の感光体を作製した。
Example 6 50 parts by weight of the metal-free phthalocyanine treated in Example 2 and 50 parts by weight of vinyl chloride copolymer (trade name: MR-110 manufactured by Nippon Zeon) were kneaded with methylene chloride in a mixer for 3 hours to prepare a coating solution. was prepared and coated on an aluminum support to a thickness of about 1 μm to form a charge generation layer. Next, hydrazone compound 10 represented by compound Nα6
0 parts by weight, polycarbonate resin (product name Banrai)
L-1250: manufactured by Teijin) 100 parts by weight. 0.1 part by weight of silicone oil was mixed with methylene chloride and applied to the charge generation layer to a thickness of about 15 μm to form a charge transport layer, producing a photoreceptor having the structure shown in Figure 2. did.

このようにして得られた感光体について実施例5と同様
にして、電子写真特性を測定したところ、V.=−75
0V,  El/l=3.8ルックス・秒と良好な結果
が得られた。
When the electrophotographic characteristics of the thus obtained photoreceptor were measured in the same manner as in Example 5, V. =-75
Good results were obtained at 0V and El/l=3.8 lux·sec.

実施例7 実施例6における無金属フタロシアニンを、下記構造式
(V)で示されるビスアゾ顔料に替え、また電荷輸送物
質を化合物N(L 7で示されるヒドラゾン化合物に替
え、その他は実施例6と同様にして感光体を作製した。
Example 7 The metal-free phthalocyanine in Example 6 was replaced with a bisazo pigment represented by the following structural formula (V), and the charge transport substance was replaced with a hydrazone compound represented by compound N (L 7), and the other procedures were as in Example 6. A photoreceptor was produced in the same manner.

このようにして得られた感光体について実施例5と同様
にして、電子写真特性を測定したところ、Va =−6
30V,  El/2 =5.4ルックス’秒と良好な
結果が得られた。
When the electrophotographic characteristics of the thus obtained photoreceptor were measured in the same manner as in Example 5, Va = -6
Good results were obtained at 30V and El/2 = 5.4 lux' seconds.

実施例8 化合物Nl18〜21それぞれについて、実施例4と同
様にして感光体を作製し、r S P−428Jを用い
て電子写真特性を測定した結果を第2表に示す。
Example 8 Photoreceptors were prepared in the same manner as in Example 4 for each of Compounds N118 to N121, and the electrophotographic properties were measured using rSP-428J. The results are shown in Table 2.

暗所で+6. OkVのコロナ放電をlO秒間行い正帯
電させ、照度2ルックスの白色光を照射した場合の半減
衰露光ffiE+/z(ルックス・秒)で示した。
+6 in the dark. Corona discharge at OkV was performed for 10 seconds to positively charge the sample, and the half-attenuation exposure was expressed as ffiE+/z (lux seconds) when white light with an illuminance of 2 lux was irradiated.

第  2 表 第2表に見られるように、前記ヒドラゾン化合物Nα8
〜Nα21を電荷輸送物質として用いた感光体について
も、半減衰露光11E1y2は良好であった。
Table 2 As seen in Table 2, the hydrazone compound Nα8
The half-attenuation exposure 11E1y2 was also good for the photoreceptor using ~Nα21 as the charge transport material.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、導電性基体上に電荷輸送物質として
前記一船式(1)で示されるヒドラゾン化合物を用いる
こととしたため、正帯電および負帯電においても高感度
でしかも繰り返し特性の優れた感光体を得ることができ
る。また、電荷発生物質は露光光源の種類に対応して好
適tよ物質を選ぶことができ、一例をあげるとフタロシ
アニン化合物,スクアリリワム化合物およびある種のビ
スアゾ化合物などを用いれば、半導体レーザプリンタに
使用可能な感光体を得ることができる。さらに、必要に
応じて表面に被覆層を設置して耐久性を向上することが
可能である。
According to this invention, since the hydrazone compound represented by the above-mentioned one-ship formula (1) is used as a charge transport material on a conductive substrate, a photosensitive material with high sensitivity and excellent repeatability even in positive and negative charging can be obtained. You can get a body. In addition, suitable charge-generating substances can be selected depending on the type of exposure light source. For example, phthalocyanine compounds, squaryliwam compounds, and certain bisazo compounds can be used in semiconductor laser printers. A photoreceptor can be obtained. Furthermore, if necessary, it is possible to provide a coating layer on the surface to improve durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図,第2図および第3図はこの発明の感光体のそれ
ぞれ異なる実施例を示す概念的断面図である。
1, 2, and 3 are conceptual sectional views showing different embodiments of the photoreceptor of the present invention.

Claims (1)

【特許請求の範囲】 1)下記一般式( I )で示されるヒドラゾン化合物の
うちの、少なくとも一種を含む感光層を有することを特
徴とする電子写真用感光体。 ▲数式、化学式、表等があります▼( I ) 〔式( I )中、Aは置換もしくは無置換の縮合多環芳
香族残基、複素環残基のうちのいずれかを表し、R_1
ないしR_3はそれぞれ水素原子、以下のそれぞれ置換
もしくは無置換のアルキル基、アリール基、アルケニル
基、アニル基のうちのいずれかを表す。〕
[Scope of Claims] 1) An electrophotographic photoreceptor comprising a photosensitive layer containing at least one type of hydrazone compound represented by the following general formula (I). ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (I) [In formula (I), A represents either a substituted or unsubstituted fused polycyclic aromatic residue or a heterocyclic residue, and R_1
to R_3 each represent a hydrogen atom, or each of the following substituted or unsubstituted alkyl groups, aryl groups, alkenyl groups, and anyl groups. ]
JP23231689A 1989-09-07 1989-09-07 Electrophotographic sensitive body Pending JPH0394263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23231689A JPH0394263A (en) 1989-09-07 1989-09-07 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23231689A JPH0394263A (en) 1989-09-07 1989-09-07 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH0394263A true JPH0394263A (en) 1991-04-19

Family

ID=16937294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23231689A Pending JPH0394263A (en) 1989-09-07 1989-09-07 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH0394263A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5213925A (en) * 1990-11-22 1993-05-25 Fuji Electric Co., Ltd. Photoconductor for electrophotography
US5252416A (en) * 1990-11-22 1993-10-12 Fuji Electric Co., Ltd. Photoconductor for electrophotography

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5213925A (en) * 1990-11-22 1993-05-25 Fuji Electric Co., Ltd. Photoconductor for electrophotography
US5252416A (en) * 1990-11-22 1993-10-12 Fuji Electric Co., Ltd. Photoconductor for electrophotography

Similar Documents

Publication Publication Date Title
JPH0279855A (en) Electrophotographic sensitive body
JPH01237555A (en) Electrophotographic sensitive body
JPH01102469A (en) Electrophotographic sensitive body
JPH04119360A (en) Electrophotographic sensitive body
JPH032760A (en) Electrophotographic sensitive body
JPH0194349A (en) Electrophotographic sensitive body
JPH0394263A (en) Electrophotographic sensitive body
JPH02254467A (en) Electrophotographic sensitive body
JPH03255453A (en) Electrophotographic sensitive body
JPH01273049A (en) Electrophotographic sensitive body
JPH04188144A (en) Photosensitive body for electrophotography
JPS63157159A (en) Electrophotographic sensitive body
JPH01172965A (en) Electrophotographic sensitive body
JPH01107262A (en) Electrophotographic sensitive body
JPS63157160A (en) Electrophotographic sensitive body
JPH01152463A (en) Electrophotographic sensitive body
JPH01107263A (en) Electrophotographic sensitive body
JPS63158557A (en) Electrophotographic sensitive body
JPH03109554A (en) Electrophotographic sensitive body
JPH01172967A (en) Electrophotographic sensitive body
JPH03109555A (en) Electrophotographic sensitive body
JPH01152467A (en) Electrophotographic sensitive body
JPH01159659A (en) Electrophotographic sensitive body
JPH01107265A (en) Electrophotographic sensitive body
JPS63157161A (en) Electrophotographic sensitive body