JPH01152467A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH01152467A
JPH01152467A JP31131287A JP31131287A JPH01152467A JP H01152467 A JPH01152467 A JP H01152467A JP 31131287 A JP31131287 A JP 31131287A JP 31131287 A JP31131287 A JP 31131287A JP H01152467 A JPH01152467 A JP H01152467A
Authority
JP
Japan
Prior art keywords
charge
photoreceptor
layer
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31131287A
Other languages
Japanese (ja)
Inventor
Masami Kuroda
昌美 黒田
Yoichi Nakamura
洋一 中村
Noboru Kosho
古庄 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP31131287A priority Critical patent/JPH01152467A/en
Priority to US07/257,260 priority patent/US4957837A/en
Priority to DE3835108A priority patent/DE3835108C2/en
Publication of JPH01152467A publication Critical patent/JPH01152467A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0664Dyes
    • G03G5/0666Dyes containing a methine or polymethine group
    • G03G5/0668Dyes containing a methine or polymethine group containing only one methine or polymethine group
    • G03G5/067Dyes containing a methine or polymethine group containing only one methine or polymethine group containing hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/20Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/28Halogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/42Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms with nitro or nitroso radicals directly attached to ring carbon atoms
    • C07D333/44Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms with nitro or nitroso radicals directly attached to ring carbon atoms attached in position 5
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0624Heterocyclic compounds containing one hetero ring
    • G03G5/0627Heterocyclic compounds containing one hetero ring being five-membered
    • G03G5/0629Heterocyclic compounds containing one hetero ring being five-membered containing one hetero atom
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0622Heterocyclic compounds
    • G03G5/0644Heterocyclic compounds containing two or more hetero rings
    • G03G5/0661Heterocyclic compounds containing two or more hetero rings in different ring systems, each system containing at least one hetero ring

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enhance sensitivity and repetition characteristics by forming a photosensitive layer containing at least one of specified hydrazone compounds. CONSTITUTION:The photosensitive layer formed on a conductive substrate contains as an electric charge transfer material at least one of the hydrazone compounds represented by formula I and II in which each of R1, R2, R3 and R6 is H, halogen, alkyl, alkoxy, hydroxy, allyl, nitro, optionally substituted aryl, or amino; each of R4 and R5 is optionally substituted aryl; n is 1 or 2, and m is an integer of 2-5, thus permitting the obtained photosensitive body to the high in sensitivity and superior in repetion characteristics in cases of positive and negative chargings.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子写真用感光体に関し、詳しくは導電性基体
上に形成せしめた感光層の中に新規なヒドラゾン化合物
を含有することを特徴とする電子写真用感光体に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrophotographic photoreceptor, and more specifically, it is characterized in that a novel hydrazone compound is contained in a photosensitive layer formed on a conductive substrate. The present invention relates to a photoreceptor for electrophotography.

〔従来の技術〕[Conventional technology]

従来より電子写真用感光体(以下感光体とも称する)の
感光材料としてはセレンまたはセレン合金などの無機光
導電性物質、酸化亜鉛あるいは硫化カドミウムなどの無
機光導電性物質を樹脂結着剤中に分散させたもの、ポI
JN−ビニールカルバゾールまたはポリビニールアント
ラセンなどの有機光導電性物質、フタロシアニン化合物
あるいはビスアゾ化合物などの有機光導電性物質を樹脂
結着剤中に分散させたものや真空蒸着させたものなどが
利用されている。
Conventionally, photosensitive materials for electrophotographic photoreceptors (hereinafter also referred to as photoreceptors) include inorganic photoconductive substances such as selenium or selenium alloys, or inorganic photoconductive substances such as zinc oxide or cadmium sulfide in a resin binder. Dispersed, Po I
JN- Organic photoconductive substances such as vinyl carbazole or polyvinyl anthracene, organic photoconductive substances such as phthalocyanine compounds or bisazo compounds dispersed in a resin binder or vacuum-deposited are used. There is.

また感光体には暗所で表面電荷を保持する機能。The photoreceptor also has the ability to retain surface charge in the dark.

光を受容して電荷を発生する機能、同じく光を受容して
電荷を輸送する機能とが必要であるが、一つの層でこれ
らの機能をあわせもったいわゆる単層型感光体と、主と
して電荷発生に寄与する層と暗所での表面電荷の保持と
光受容時の電荷輸送に寄与する層とに機能分離した層を
積層したいわゆる積層型感光体がある。これらの感光体
を用いた電子写真法による画像形成には、例えばカール
ソン方式が適用される。この方式での画像形成は暗所で
の感光体へのコロナ放電による帯電、帯電された感光体
表面上への露光による原稿の文字や絵などの静電潜像の
形成、形成された静電潜像のトナーによる現像、現像さ
れたトナー像の紙などの支持体への定着により行われ、
トナー像転写後の感光体は除電、残留トナーの除去、光
除電などを行った後、再使用に供される。
It is necessary to have the function of receiving light and generating a charge, as well as the function of receiving light and transporting a charge. There is a so-called laminated photoreceptor in which functionally separated layers are laminated, including a layer that contributes to charge generation, a layer that contributes to surface charge retention in the dark, and a layer that contributes to charge transport during light reception. For example, the Carlson method is applied to image formation by electrophotography using these photoreceptors. Image formation in this method involves charging the photoconductor in a dark place by corona discharge, forming electrostatic latent images such as letters and pictures on the document by exposing the surface of the charged photoconductor, and This is done by developing a latent image with toner and fixing the developed toner image on a support such as paper.
After the toner image has been transferred, the photoreceptor is subjected to static electricity removal, residual toner removal, optical static electricity removal, etc., and is then reused.

近年、可とう性、熱安定性、膜形成性などの利点により
、有機材料を用いた電子写真用感光体が実用化されてき
ている。例えば、ポ’J−N−ビニールカルバゾールと
2.4.7−)!Jニトロフルオレンー9−オンとから
なる感光体(米国特許第3484237号明細書に記載
)、有機顔料を主成分とする感光体く特開昭47−37
543号公報に記載)、染料と樹脂とからなる共晶錯体
を主成分とする感光体(特開昭47−10735号公報
に記載)などである。さらに、新規ヒドラゾン化合物も
数多く実用化されている。
In recent years, electrophotographic photoreceptors using organic materials have been put into practical use due to their advantages such as flexibility, thermal stability, and film-forming properties. For example, Po'J-N-vinylcarbazole and 2.4.7-)! A photoreceptor comprising J nitrofluoren-9-one (described in U.S. Pat. No. 3,484,237), a photoreceptor comprising an organic pigment as a main component, JP-A-47-37
543), and a photoreceptor whose main component is a eutectic complex consisting of a dye and a resin (described in JP-A-47-10735). Furthermore, many new hydrazone compounds have also been put into practical use.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように、有機材料は無機材料にない多くの長所を
持つが、また同時に電子写真用感光体に要求されるすべ
ての特性を充分に満足するものがまだ得られていないの
が現状であり、特に光感度および繰り返し連続使用時の
特性に問題があった。
As mentioned above, organic materials have many advantages that inorganic materials do not have, but at the same time, there is currently no material that fully satisfies all the characteristics required of electrophotographic photoreceptors. In particular, there were problems with photosensitivity and characteristics during repeated and continuous use.

本発明は、上述の点に鑑みてなされたものであって、感
光層に電荷輸送物質として今まで用いられたことのない
新しい有機材料を用いることにより、高感度で繰り返し
特性に優れた複写機用およびプリンタ用の電子写真用感
光体を提供することを目的とする。
The present invention has been made in view of the above points, and by using a new organic material that has never been used as a charge transport material in the photosensitive layer, a copying machine with high sensitivity and excellent repeatability can be achieved. The purpose of the present invention is to provide an electrophotographic photoreceptor for use in cameras and printers.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するために、本発明によれば、下記一般
式(I)または(II)で示されるヒドラゾン化合物の
うちの、少なくとも1種類を含む感光層を有する電子写
真用感光体とする。
In order to achieve the above object, the present invention provides an electrophotographic photoreceptor having a photosensitive layer containing at least one type of hydrazone compound represented by the following general formula (I) or (II).

〔式(I)、  (II)中、R1,R2,R3および
R6はそれぞれ水素原子、ハロゲン原子、アルキル基、
アルコキシ基、ヒドロキシ基、アリル基、ニトロ基。
[In formulas (I) and (II), R1, R2, R3 and R6 are each a hydrogen atom, a halogen atom, an alkyl group,
Alkoxy group, hydroxy group, allyl group, nitro group.

置換されていてもよいアリール基、アミノ基を表し、R
4,Rsは置換されていてもよいアリール基を表す。ま
た、nは1または22mは°2〜5の整数を表す。〕 〔作用〕 前記一般式(I)または(If)で示されるヒドラゾン
化合物を感光層に用いた例は知られていない。
Represents an optionally substituted aryl group or amino group, R
4, Rs represents an optionally substituted aryl group. Moreover, n represents 1 or 22m represents an integer of 2 to 5 degrees. ] [Function] There is no known example in which a hydrazone compound represented by the above general formula (I) or (If) is used in a photosensitive layer.

本発明者らは、前記目的を達成するために各種有機材料
について鋭意検討を進めるなかで、これらヒドラゾン化
合物について数多くの実験を行った結果、その技術的解
明はまだ充分なされてはいないが、このような前記一般
式(I)または(II)で示される特定のヒドラゾン化
合物を電荷輸送物質として使用することが、電子写真特
性の向上に極めて有効であることを見出し、高感度で繰
り返し特性の優れた感光体を得るに至ったのである。
In order to achieve the above objective, the present inventors conducted a number of experiments on these hydrazone compounds while conducting intensive studies on various organic materials. It has been discovered that the use of a specific hydrazone compound represented by the above general formula (I) or (II) as a charge transport material is extremely effective in improving electrophotographic properties, and the use of a specific hydrazone compound represented by the above general formula (I) or (II) as a charge transport material has been found to be extremely effective in improving electrophotographic properties. As a result, we were able to obtain a photoreceptor with a unique structure.

〔実施例〕〔Example〕

本発明に用いられる前記一般式(1)または(n)のヒ
ドラゾン化合物は、通常の方法により合成することがで
きる。すなわち、必要に応じて縮合剤として少量の酸を
用い、アルコールなどの適当な有機溶媒中でアルデヒド
類とヒドラジン類を縮合させることにより得られる。
The hydrazone compound of the general formula (1) or (n) used in the present invention can be synthesized by a conventional method. That is, it can be obtained by condensing aldehydes and hydrazines in a suitable organic solvent such as alcohol, using a small amount of acid as a condensing agent if necessary.

こうして得られる一般式(I)または(n)で表される
ヒドラゾン化合物の具体例を例示すると次のとおりであ
る。
Specific examples of the hydrazone compound represented by the general formula (I) or (n) thus obtained are as follows.

化合物No、 I No、 2 No、 3 No、 4 No、 5 化合物No、 6 No、 7 No、 8 No、 9 化合物N011 No、12 No、13 No、14 化合物No、16 No、18 化合物No、21 N022 No、23 No、24 化合物No、26 No、27 No、28 No、29 No、 34 No、 37 No、 38 本発明の感光体は前述のようなヒドラゾン化合物を感光
層中に含有させたものであるが、これらヒドラゾン化合
物の応用の仕方によって、第1図。
Compound No. I No. 2 No. 3 No. 4 No. 5 Compound No. 6 No. 7 No. 8 No. 9 Compound No. 11 No. 12 No. 13 No. 14 Compound No. 16 No. 18 Compound No. 21 No22 No, 23 No, 24 Compound No, 26 No, 27 No, 28 No, 29 No, 34 No, 37 No, 38 The photoreceptor of the present invention contains the above-mentioned hydrazone compound in the photosensitive layer. However, depending on how these hydrazone compounds are applied, Figure 1.

第2図、あるいは第3図に示したごとくに用いることが
できる。
It can be used as shown in FIG. 2 or 3.

第1図〜第3図は本発明の感光体の概念的断面図で、■
は導電性基体、20.21.22は感光層、3は電荷発
生物質、4は電荷発生層、5は電荷輸送物質、6は電荷
輸送層、7は被覆層である。
Figures 1 to 3 are conceptual cross-sectional views of the photoreceptor of the present invention.
20, 21 and 22 are a conductive substrate, 20, 21 and 22 are photosensitive layers, 3 is a charge generating material, 4 is a charge generating layer, 5 is a charge transporting material, 6 is a charge transporting layer, and 7 is a coating layer.

第1図は、導電性基体1上に電荷発生物質3と電荷輸送
物質5であるヒドラゾン化合物を樹脂バインダー(結着
剤)中に分散した感光層20(通常単層型感光体と称せ
られる構成)が設けられたものである。
FIG. 1 shows a photosensitive layer 20 (commonly referred to as a single-layer photoreceptor) in which a charge generating substance 3 and a hydrazone compound as a charge transporting substance 5 are dispersed in a resin binder on a conductive substrate 1. ) is provided.

第2図は、導電性基体1上に電荷発生物質3を主体とす
る電荷発生層4と、電荷輸送物質5であるヒドラゾン化
合物を含有する電荷輸送層6との積層からなる感光層2
1(通常積層型感光体と称せられる構成)が設けられた
ものである。
FIG. 2 shows a photosensitive layer 2 formed by laminating a charge generation layer 4 mainly containing a charge generation substance 3 and a charge transport layer 6 containing a hydrazone compound as a charge transport substance 5 on a conductive substrate 1.
1 (a configuration commonly referred to as a laminated photoreceptor).

第3図は、第2図の逆の層構成のものである。FIG. 3 shows an inverse layer configuration to that of FIG.

この場合には、電荷発生層4を保護するためにさらに被
覆層7を設けるのが一般的である。
In this case, it is common to further provide a coating layer 7 to protect the charge generation layer 4.

第2図および第3図に示す2種類の層構成とする理由は
、負帯電方式として通常用いられる第2図の層構成で正
帯電方式で用いようとしても、これに適合する電荷輸送
物質がまだ見つかっておらず、したがって、現段階では
、第3図に示した層構成の感光体とすることが必要なた
めである。
The reason for the two types of layer configurations shown in Figures 2 and 3 is that even if the layer configuration shown in Figure 2, which is normally used for a negative charging system, is intended to be used for a positive charging system, there is no compatible charge transport material. This is because it has not been found yet, and therefore, at this stage, it is necessary to form a photoreceptor with the layer structure shown in FIG.

第1図の感光体は、電荷発生物質を電荷輸送物質および
樹脂バインダーを溶解した溶液中に分散せしめ、この分
散液を導電性基体上に塗布することによって作製できる
The photoreceptor shown in FIG. 1 can be produced by dispersing a charge generating material in a solution containing a charge transporting material and a resin binder, and applying this dispersion onto a conductive substrate.

第2図の感光体は、導電性基体上に電荷発生物質を真空
蒸着するか、あるいは電荷発生物質の粒子を溶剤または
樹脂バインダー中に分散して得た分散液を塗布、乾燥し
、その上に電荷輸送物質および樹脂バインダーを溶解し
た溶液を塗布、乾燥することにより作製できる。
The photoreceptor shown in Figure 2 is produced by vacuum-depositing a charge-generating substance on a conductive substrate, or by coating and drying a dispersion obtained by dispersing particles of a charge-generating substance in a solvent or resin binder, and then It can be produced by applying a solution containing a charge transporting substance and a resin binder to the surface of the substrate and drying the solution.

第3図の感光体は、電荷輸送物質および樹脂バインダー
を溶解した溶液を導電性基体上に塗布、乾燥し、その上
に電荷発生物質を真空蒸着するか、あるいは電荷発生物
質の粒子を溶剤または樹脂バインダー中に分散して得た
分散液を塗布、乾燥し、さらに被覆層を形成することに
より作製できる。
The photoreceptor shown in Figure 3 is produced by coating a conductive substrate with a solution containing a charge transporting substance and a resin binder and drying it, and then vacuum-depositing a charge generating substance thereon, or by depositing charge generating substance particles in a solvent or a solvent. It can be produced by applying a dispersion obtained by dispersing it in a resin binder, drying it, and further forming a coating layer.

導電性基体1は感光体の電極としての役目と同時に他の
各層の支持体となっており、円筒状、板状、フィルム状
のいずれでも良く、材質的にはアルミニウム、ステンレ
ス鋼、ニッケルなどの金属、あるいはガラス、樹脂など
の上に導電処理をほどこしたものでも良い。
The conductive substrate 1 serves as an electrode for the photoreceptor and at the same time serves as a support for the other layers, and may be cylindrical, plate-shaped, or film-shaped, and may be made of aluminum, stainless steel, nickel, etc. It may also be made of metal, glass, resin, or the like, which has been subjected to conductive treatment.

電荷発生層4は、前記したように電荷発生物質3の粒子
を樹脂バインダー中に分散させた材料を塗布するか、あ
るいは、真空蒸着などの方法により形成され、光を受容
して電荷を発生する。また、その電荷発生効率が高いこ
とと同時に発生した電荷の電荷輸送層6および被覆層7
への注入性が重要で、電場依存性が少なく低電場でも注
入の良いことが望ましい。電荷発生物質としては、無金
属フタロシアニン、チクニルフタロシアニンなどのフタ
ロシアニン化合物、各種アゾ、キノン、インジゴ顔料あ
るいは、シアニン、スクアリリウム。
The charge generation layer 4 is formed by applying a material in which particles of the charge generation substance 3 are dispersed in a resin binder as described above, or by a method such as vacuum deposition, and generates charges by receiving light. . In addition, the charge transport layer 6 and the coating layer 7 for the generated charges at the same time have a high charge generation efficiency.
It is important to have good injection properties even in low electric fields with little dependence on electric fields. Examples of the charge generating substance include phthalocyanine compounds such as metal-free phthalocyanine and chichnylphthalocyanine, various azo, quinone, and indigo pigments, or cyanine and squarylium.

アズレニウム、ピリリウム化合物などの染料や、セレン
またはセレン化合物などが用いられ、画像形成に使用さ
れる露光光源の光波長領域に応じて好適な物質を選ぶこ
とができる。電荷発生層は電荷発生機能を有すればよい
ので、その膜厚は電荷発生物質の光吸収係数より決まり
一般的には5μm以下であり、好適には1μm以下であ
る。電荷発生層は電荷発生物質を主体としてこれに電荷
輸送物質などを添加して使用することも可能である。
Dyes such as azulenium and pyrylium compounds, selenium or selenium compounds, and the like are used, and suitable substances can be selected depending on the light wavelength range of the exposure light source used for image formation. Since the charge generation layer only needs to have a charge generation function, its thickness is determined by the light absorption coefficient of the charge generation substance and is generally 5 μm or less, preferably 1 μm or less. The charge generation layer is mainly composed of a charge generation substance, and a charge transport substance or the like may be added thereto.

樹脂バインダーとしては、ポリカーボネート、ポリエス
テル、ポリアミド、ポリウレタン、エポキシ、シリコン
樹脂、メタクリル酸エステルの重合体および共重合体な
どを適宜組み合わせて使用することが可能である。
As the resin binder, polycarbonate, polyester, polyamide, polyurethane, epoxy, silicone resin, polymers and copolymers of methacrylic acid ester, etc. can be used in appropriate combinations.

電荷輸送層6は樹脂バインダー中に有機電荷輸送物質と
して前記−殺伐(I)または(I[)で示されるヒドラ
ゾン化合物を分散させた塗膜であり、暗所では絶縁体層
として感光体の電荷を保持し、光受容時には電荷発生層
から注入される電荷を輸送する機能を発揮する。樹脂バ
インダーとしては、ポリカーボネート、ポリエステル、
ポリアミド。
The charge transport layer 6 is a coating film in which a hydrazone compound represented by the above-mentioned (I) or (I[) as an organic charge transport substance is dispersed in a resin binder, and in the dark, it acts as an insulating layer and absorbs the charge of the photoreceptor. It also functions to transport charges injected from the charge generation layer during light reception. As a resin binder, polycarbonate, polyester,
polyamide.

ポリウレタン、エポキシ、シリコン樹脂、メタクリル酸
エステルの重合体および共重合体などを用いることがで
きる。
Polyurethane, epoxy, silicone resin, methacrylic acid ester polymers and copolymers, etc. can be used.

被覆層7は暗所ではコロナ放電の電荷を受容して保持す
る機能を有しており、かつ電荷発生層が感応する光を透
過する性能を有し、露光時に光を透過し、電荷発生層に
到達させ、発生した電荷の注入を受けて表面電荷を中和
消滅させることが必要である。被覆材料としては、ポリ
エステル、ポリアミドなどの有機絶縁性皮膜形成材料が
適用できる。また、これら有機材料とガラス樹脂、 5
in2などの無機材料さらには金属、金属酸化物などの
電気抵抗を低減せしめる材料とを混合して用いることも
できる。被覆材料としては有機絶縁性皮膜形成材料に限
定されることはな(5in2などの無機材料さらには金
属、金属酸化物などを蒸着、スパッタリングなどの方法
により形成することも可能である。被覆材料は前述の通
り電荷発生物質の光の吸収極大の波長領域においてでき
るだけ透明であるこきが望ましい。
The coating layer 7 has the function of receiving and retaining the charge of corona discharge in a dark place, and has the ability to transmit the light to which the charge generation layer is sensitive, and transmits the light upon exposure, and the charge generation layer It is necessary to neutralize and eliminate the surface charges by injecting the generated charges. As the coating material, organic insulating film-forming materials such as polyester and polyamide can be used. In addition, these organic materials and glass resin, 5
It is also possible to use a mixture of an inorganic material such as in2, or a material that reduces electrical resistance such as a metal or metal oxide. The coating material is not limited to organic insulating film forming materials (inorganic materials such as 5in2, metals, metal oxides, etc. can also be formed by vapor deposition, sputtering, etc.). As mentioned above, it is desirable that the material be as transparent as possible in the wavelength region where the light absorption of the charge generating material is maximum.

被覆層自体の膜厚は被覆層の配合組成にも依存するが、
繰り返し連続使用したとき残留電位が増大するなどの悪
影響が出ない範囲で任意に設定できる。
The thickness of the coating layer itself depends on the composition of the coating layer, but
It can be set arbitrarily within a range that does not cause adverse effects such as an increase in residual potential when used repeatedly and continuously.

以下、本発明の実施例について説明する。Examples of the present invention will be described below.

実施例1 ボールミルで150時間粉砕した無金属フタロシアニン
(東京化成製)50重量部と前記化合物No、 1で示
されるヒドラゾン化合物100重量部をポリエステル樹
脂(商品名バイロン200:東洋紡製)100重量部と
テトラヒドロフラン(THF)溶剤とともに3時間混合
機により混練して塗布液を調整し、導電性基体であるア
ルミ蒸着ポリエステルフィルム(A A −P E T
 )上に、ワイヤーバー法にて塗布して、乾燥後の膜厚
が15μmになるように感光層を形成し、第1図に示し
た構成の感光体を作製した。
Example 1 50 parts by weight of metal-free phthalocyanine (manufactured by Tokyo Kasei) ground for 150 hours in a ball mill and 100 parts by weight of the hydrazone compound represented by Compound No. 1 were mixed with 100 parts by weight of a polyester resin (trade name: Vylon 200, manufactured by Toyobo). A coating solution was prepared by kneading with a tetrahydrofuran (THF) solvent in a mixer for 3 hours, and the aluminum-deposited polyester film (A A-P E T
), a photosensitive layer was formed by coating using a wire bar method so that the film thickness after drying would be 15 μm, thereby producing a photoreceptor having the structure shown in FIG. 1.

実施例2 まず、α型無金属フタロシアニンを出発原料とし、二つ
のリニアモーターを対向して配置した間にα型無金属フ
タロシアニンと作用小片としてテフロンピースを内蔵し
た非磁性離体をおいて粉砕する電磁粉砕装置(商品名L
IMMAC,:富士電機製)を富士電機枠処理を20分
間行い微粉末化した。この微粉末化された試料1重量部
とDMF(N、N−ジメチルホルムアミド)溶剤50重
量部とを超音波分散処理を行った。その後、試料とDM
Fとを分離濾過し、乾燥して無金属フタロシアニンの処
理を行った。
Example 2 First, α-type metal-free phthalocyanine is used as a starting material, and while two linear motors are placed facing each other, α-type metal-free phthalocyanine and a non-magnetic separation body containing a Teflon piece as a working piece are placed and pulverized. Electromagnetic pulverizer (product name L)
IMMAC (manufactured by Fuji Electric) was subjected to Fuji Electric frame treatment for 20 minutes to be pulverized. 1 part by weight of this finely powdered sample and 50 parts by weight of DMF (N,N-dimethylformamide) solvent were subjected to ultrasonic dispersion treatment. After that, the sample and DM
F was separated by filtration and dried to obtain metal-free phthalocyanine.

次に、前記化合物No、 2で示されるヒドラゾン化合
物100重量部をテトラヒドロフラン(THF)700
重量部に溶かした液とポリメククリル酸メチルポリマー
(PMMA :東京化成製)100重量部をトルエン7
00重量部に溶かした液とを混合してできた塗液をアル
ミ蒸着ポリエステルフィルム基体上にワイヤーバー法に
て塗布し、乾燥後の膜厚が15μmになるように電荷輸
送層を形成した。このようにして得られた電荷輸送層上
に上記の処理をされた無金属フタロシアニン50重量部
、ポリエステル樹脂(商品名バイロン200:東洋紡製
)50重量部、PMMA50重量部をTHF溶剤ととも
に3時間混合機により混練して塗布液を調整し、ワイヤ
ーバー法にて塗布し、乾燥後の膜厚が1μmになるよう
に電荷発生層を形成し、第3図に示した構成に対応する
感光体を作製した。
Next, 100 parts by weight of the hydrazone compound represented by Compound No. 2 was added to 700 parts by weight of tetrahydrofuran (THF).
7 parts by weight of the solution and 100 parts by weight of polymethyl methacrylate polymer (PMMA: manufactured by Tokyo Kasei) were mixed with 7 parts by weight of toluene.
A coating solution prepared by mixing a solution of 0.00 parts by weight was applied onto an aluminum vapor-deposited polyester film substrate by a wire bar method to form a charge transport layer so that the film thickness after drying was 15 μm. On the thus obtained charge transport layer, 50 parts by weight of the above-treated metal-free phthalocyanine, 50 parts by weight of polyester resin (trade name: Vylon 200, manufactured by Toyobo Co., Ltd.), and 50 parts by weight of PMMA were mixed together with THF solvent for 3 hours. A coating solution was prepared by kneading it with a machine, and it was applied using a wire bar method to form a charge generation layer with a thickness of 1 μm after drying. Created.

実施例3 実施例1の感光層の組成を、無金属フタロシアニン50
重量部、化合物N023で示されるヒドラゾン化合物1
00重量部、ポリエステル樹脂(商品名バイロン200
:東洋紡製)50重量部、PMMA5Q重量部とに変更
して実施例1と同様に感光層を形成し感光体を作製した
Example 3 The composition of the photosensitive layer of Example 1 was changed to 50% metal-free phthalocyanine.
Parts by weight, hydrazone compound 1 represented by compound N023
00 parts by weight, polyester resin (trade name Byron 200
: manufactured by Toyobo Co., Ltd.) and 50 parts by weight of PMMA5Q, a photosensitive layer was formed in the same manner as in Example 1, and a photoreceptor was produced.

実施例4 実施例3において、無金属フタロシアニンに変えて例え
ば特開昭47−37543に示されるようなビスアゾ顔
料であるクロログイアンプル−を用い実施例1と同様に
感光層を形成し感光体を作製した。
Example 4 In Example 3, a photosensitive layer was formed in the same manner as in Example 1 using, for example, a chlorodiapolymer, which is a bisazo pigment as disclosed in JP-A-47-37543, instead of metal-free phthalocyanine, and a photoreceptor was formed. Created.

このようにして得られた感光体の電子写真特性を川口電
機製静電記録紙試験装置r S P−428Jを用いて
測定した。
The electrophotographic properties of the photoreceptor thus obtained were measured using an electrostatic recording paper tester RSP-428J manufactured by Kawaguchi Electric.

感光体の表面電位Vs(ボルト)は暗所で+6. Ok
Vのコロナ放電を10秒間行って感光体表面を正帯電せ
しめたときの初期の表面電位であり、続いてコロナ放電
を中止した状態で2秒間暗所保持したときの表面電位V
、(ボルト)を測定し、さらに続いて感光体表面に照度
2ルツクスの白色光を照射してVd が半分になるまで
の時間(秒)を求め半減衰露光量E1/2(ルックス・
秒)とした。また、照度2ルツクスの白色光を10秒間
照射したときの表面電位を残留電位Vr(ボルト)とし
た。また、フタロシアニン化合物を電荷発生物質とした
場合、長波長光での高感度が期待できるので、波長78
0nmの単色光を用いたときの篭手写真特性も同時に測
定した。すなわち、Vdまでは同様に測定し、次に白色
光の替わりに1μWの単色光(780nm)を照射して
半減衰露光量(μJ/cnりを求め、また、この光を1
0秒間感光体表面に照射したときの残留電位Vr(ボル
ト)を測定した。測定結果を第1表に示す。
The surface potential Vs (volts) of the photoreceptor is +6. Ok
This is the initial surface potential when corona discharge of V is performed for 10 seconds to positively charge the surface of the photoreceptor, and then the surface potential is V when held in the dark for 2 seconds with corona discharge stopped.
, (volts), and then irradiate the surface of the photoreceptor with white light with an illuminance of 2 lux to find the time (seconds) it takes for Vd to be halved, and calculate the half-attenuation exposure amount E1/2 (lux.
seconds). Further, the surface potential when white light with an illuminance of 2 lux was irradiated for 10 seconds was defined as the residual potential Vr (volt). In addition, when a phthalocyanine compound is used as a charge generating substance, high sensitivity with long wavelength light can be expected.
At the same time, the gauntlet photographic characteristics were measured using 0 nm monochromatic light. That is, measure up to Vd in the same way, then irradiate 1 μW monochromatic light (780 nm) instead of white light to find the half-attenuation exposure amount (μJ/cn), and
The residual potential Vr (volts) when the surface of the photoreceptor was irradiated for 0 seconds was measured. The measurement results are shown in Table 1.

第1表に見られるように、実施例1,2,3゜4は半減
衰露光量、残留電位ともに互いに遜色はなく、また表面
電位でも良好な特性を示している。
As seen in Table 1, Examples 1, 2, and 3.4 are comparable in half-attenuation exposure and residual potential, and also exhibit good characteristics in terms of surface potential.

また、電荷発生物質としてフタロシアニン化合物を用い
た実施例1,2.3は波長780nmの長波長光でも高
感度を示し、半導体レーザプリンタ用として充分使用可
能であることが判る。
Furthermore, Examples 1 and 2.3 in which a phthalocyanine compound was used as the charge generating substance showed high sensitivity even with long wavelength light of 780 nm, and it was found that they could be sufficiently used for semiconductor laser printers.

実施例5 厚さ500μ印のアルミニウム板上に、セレンを厚さ1
.5μmに真空蒸着し電荷発生層を形成し、次に、化合
物No、 4で示されるヒドラゾン化合物100重量部
をテトラヒドロフラン(THF)700重量部に溶かし
た液とポリメタクリル酸メチルポリマー(PMMA :
東京化成製)100重量部をトルエン700重量部に溶
かした液とを混合してできた塗液をワイヤーバー法にて
塗布し、乾燥後の膜厚が20μmになるように電荷輸送
層を形成し、第2図に示した構成の感光体を作製した。
Example 5 Selenium was deposited to a thickness of 1 on an aluminum plate marked with a thickness of 500μ.
.. A charge generation layer was formed by vacuum evaporation to a thickness of 5 μm, and then a solution prepared by dissolving 100 parts by weight of a hydrazone compound represented by Compound No. 4 in 700 parts by weight of tetrahydrofuran (THF) and polymethyl methacrylate polymer (PMMA:
A coating liquid made by mixing 100 parts by weight of 100 parts by weight (manufactured by Tokyo Kasei) in 700 parts by weight of toluene is applied using the wire bar method to form a charge transport layer so that the film thickness after drying is 20 μm. Then, a photoreceptor having the configuration shown in FIG. 2 was manufactured.

この感光体に−5,QkVのコロナ帯電を0.2秒間行
ったところ、Vs−−610V。
When this photoreceptor was corona charged at -5,QkV for 0.2 seconds, the result was Vs--610V.

Vr=−60V、 E1/2=5.2ルツクス・秒と良
好な結果が得られた。
Good results were obtained with Vr=-60V and E1/2=5.2 lux·sec.

実施例6 実施例1で処理された無金属フタロシアニン50重量部
、ポリエステル樹脂(商品名バイロン200:東洋紡製
)50重量部、PMMA50重量部をTHF溶剤ととも
に3時間混合機により混練して塗布液を調整し、アルミ
ニウム支持体上に約1μmになるように塗布し、電荷発
生層を形成した。次に、化合物No、 5で示されるヒ
ドラゾン化合物100重量部、ポリカーボネート樹脂(
パンライトL−1250”)100重量部、シリコンオ
イル0.1重量部をTHF700重量部とトルエン70
0重量部で混合し、電荷発生層の上に約15μmとなる
ように塗布し、電荷輸送層を形成した。
Example 6 50 parts by weight of the metal-free phthalocyanine treated in Example 1, 50 parts by weight of polyester resin (trade name Byron 200, manufactured by Toyobo), and 50 parts by weight of PMMA were kneaded with a THF solvent in a mixer for 3 hours to prepare a coating solution. The mixture was adjusted and coated on an aluminum support to a thickness of about 1 μm to form a charge generation layer. Next, 100 parts by weight of a hydrazone compound represented by Compound No. 5, a polycarbonate resin (
Panlite L-1250'') 100 parts by weight, 0.1 part by weight of silicone oil, 700 parts by weight of THF and 70 parts by weight of toluene.
They were mixed at 0 parts by weight and coated on the charge generation layer to a thickness of about 15 μm to form a charge transport layer.

このようにして得られた感光体に実施例5と同様にして
、−6: 0kvのコロナ帯電を0.2秒間行ったトコ
口、Vs = 630V 、  E l/2 =6.4
 ルyクス・秒と良好な結果が得られた。
The photoreceptor thus obtained was subjected to -6:0 kV corona charging for 0.2 seconds in the same manner as in Example 5, Vs = 630V, E l/2 = 6.4.
A good result of lux·sec was obtained.

実施例7 化合物No、 6〜No、40それぞれについて実施例
4と同様、感光層を作製しr S P−428Jを用い
て測定した結果を第2表に示す。この結果は、暗所で+
5. QkVのコロナ放電を10秒間行い正帯電せしめ
、照度2ルツクスの白色光を照射した場合の半減衰露光
量E1/2(ルックス・秒)で示した。
Example 7 Photosensitive layers were prepared in the same manner as in Example 4 for each of Compounds No. 6 to No. 40, and the results were measured using rSP-428J, and the results are shown in Table 2. This result is + in the dark.
5. It is expressed as half-attenuation exposure amount E1/2 (lux seconds) when corona discharge of QkV is performed for 10 seconds to positively charge and white light with an illuminance of 2 lux is irradiated.

第  2  表 第2表に見られるように、前記ヒドラゾン化合物No、
 6〜No、40を電荷輸送物質として用いた感光体に
ついても、半減衰露光量E +、2は良好であった。
Table 2 As seen in Table 2, the hydrazone compound No.
The half-attenuation exposure amount E +, 2 was also good for the photoconductors using No. 6 to No. 40 as the charge transport material.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、導電性基体上に電荷輸送物質として前
記−殺伐(I)または(II)で示されるヒドラゾン化
合物を用いることとしたため、正帯電および負帯電にお
いても高感度でしかも繰り返し特性の優れた感光体を得
ることができる。また、電荷発生物質は露光光源の種類
に対応して好適な物質を選ぶことができ、−例をあげる
とフタロシアニン化合物およびある種のビスアゾ化合物
を用いれば半導体レーザプリンタに使用可能な感光体を
得ることができる。さらに、必要に応じて表面に被覆層
を設置して耐久性を向上することが可能である。
According to the present invention, since the hydrazone compound represented by (I) or (II) above is used as a charge transport substance on a conductive substrate, it is highly sensitive even in positive and negative charging, and has excellent repeatability. An excellent photoreceptor can be obtained. In addition, a suitable charge-generating substance can be selected depending on the type of exposure light source; for example, by using phthalocyanine compounds and certain bisazo compounds, a photoreceptor that can be used in semiconductor laser printers can be obtained. be able to. Furthermore, if necessary, it is possible to provide a coating layer on the surface to improve durability.

【図面の簡単な説明】 第1図、第2図および第3図は本発明の感光体のそれぞ
れ異なる実施例を示す概念的断面図である。 1 導電性基体、3 電荷発生物質、4 電荷発生層、
5 電荷輸送物質、6 電荷輸送層、7被覆層、20.
21.22  感光層。
BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1, 2, and 3 are conceptual sectional views showing different embodiments of the photoreceptor of the present invention. 1 conductive substrate, 3 charge generation substance, 4 charge generation layer,
5 charge transport material, 6 charge transport layer, 7 coating layer, 20.
21.22 Photosensitive layer.

Claims (1)

【特許請求の範囲】 1)下記一般式( I )または(II)で示されるヒドラ
ゾン化合物のうちの、少なくとも1種類を含む感光層を
有することを特徴とする電子写真用感光体。 ▲数式、化学式、表等があります▼・・・・・・( I
) ▲数式、化学式、表等があります▼・・・・・・(II) 〔式( I )、(II)中、R_1、R_2、R_3およ
びR_4はそれぞれ水素原子、ハロゲン原子、アルキル
基、アルコキシ基、ヒドロキシ基、アリル基、ニトロ基
。 置換されていてもよいアリール基、アミノ基を表し、R
_4、R_5は置換されていてもよいアリール基を表す
。また、nは1または2、mは2〜5の整数を表す。〕
[Scope of Claims] 1) An electrophotographic photoreceptor comprising a photosensitive layer containing at least one hydrazone compound represented by the following general formula (I) or (II). ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・( I
) ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・(II) [In formulas (I) and (II), R_1, R_2, R_3 and R_4 are hydrogen atoms, halogen atoms, alkyl groups, and alkoxy, respectively. group, hydroxy group, allyl group, nitro group. Represents an optionally substituted aryl group or amino group, R
_4 and R_5 represent an optionally substituted aryl group. Further, n represents 1 or 2, and m represents an integer of 2 to 5. ]
JP31131287A 1987-10-15 1987-12-09 Electrophotographic sensitive body Pending JPH01152467A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP31131287A JPH01152467A (en) 1987-12-09 1987-12-09 Electrophotographic sensitive body
US07/257,260 US4957837A (en) 1987-10-15 1988-10-13 Photosensitive member for electrophotography containing hydrazone in charge transport layer
DE3835108A DE3835108C2 (en) 1987-10-15 1988-10-14 Electrophotographic recording material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31131287A JPH01152467A (en) 1987-12-09 1987-12-09 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH01152467A true JPH01152467A (en) 1989-06-14

Family

ID=18015620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31131287A Pending JPH01152467A (en) 1987-10-15 1987-12-09 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH01152467A (en)

Similar Documents

Publication Publication Date Title
JPH0279855A (en) Electrophotographic sensitive body
JPH01237555A (en) Electrophotographic sensitive body
JPH01102469A (en) Electrophotographic sensitive body
JPS63158560A (en) Electrophotographic sensitive body
JPH04119360A (en) Electrophotographic sensitive body
JPH032760A (en) Electrophotographic sensitive body
JPH0194349A (en) Electrophotographic sensitive body
JPH01273049A (en) Electrophotographic sensitive body
JPS63157159A (en) Electrophotographic sensitive body
JPH01172965A (en) Electrophotographic sensitive body
JPH01107262A (en) Electrophotographic sensitive body
JPH01152467A (en) Electrophotographic sensitive body
JPS63158557A (en) Electrophotographic sensitive body
JPH01152463A (en) Electrophotographic sensitive body
JPH0394263A (en) Electrophotographic sensitive body
JPH01107263A (en) Electrophotographic sensitive body
JPS63157160A (en) Electrophotographic sensitive body
JPH01172967A (en) Electrophotographic sensitive body
JPH0524505B2 (en)
JPH01152466A (en) Electrophotographic sensitive body
JPH01107261A (en) Electrophotographic sensitive body
JPH01164952A (en) Electrophotographic sensitive body
JPH01159658A (en) Electrophotographic sensitive body
JPS63158555A (en) Electrophotographic sensitive body
JPH01164951A (en) Electrophotographic sensitive body