JPH032760A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH032760A
JPH032760A JP13715689A JP13715689A JPH032760A JP H032760 A JPH032760 A JP H032760A JP 13715689 A JP13715689 A JP 13715689A JP 13715689 A JP13715689 A JP 13715689A JP H032760 A JPH032760 A JP H032760A
Authority
JP
Japan
Prior art keywords
photoreceptor
charge
compound
layer
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13715689A
Other languages
Japanese (ja)
Inventor
Masami Kuroda
昌美 黒田
Masayo Amano
天野 雅世
Noboru Kosho
古庄 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP13715689A priority Critical patent/JPH032760A/en
Publication of JPH032760A publication Critical patent/JPH032760A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)

Abstract

PURPOSE:To obtain an electrophotographic sensitive body for a copying machine or a printer having high sensitivity and superior repetitive characteristics by forming a photosensitive layer contg. at least one kind of specified hydrazone compd. CONSTITUTION:A photosensitive layer contg. at least one kind of hydrazone compd. represented by formula I or II is formed. In the formula I, A is an optionally substd. arom. residue, a condensed polycyclic residue or a heterocyclic residue, R1 is optionally substd. aryl and m is 0 or 1. In the formula II, each of R2-R8 is halogen, alkoxy, optionally substd. alkyl, alkenyl, aralkyl or aryl and n is 0 or 1. A sensitive body having high sensitivity at the time of positive charging and negative charging and superior repetitive characteristics is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電子写真用感光体に関し、詳しくは導電性基
体上に形成した感光層の中に新規なヒドラゾン化合物を
含有することを特徴とする電子写真用感光体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrophotographic photoreceptor, and more specifically, it is characterized in that a novel hydrazone compound is contained in a photosensitive layer formed on a conductive substrate. This invention relates to a photoreceptor for electrophotography.

〔従来の技術〕[Conventional technology]

従来より電子写真用感光体く以下感光体とも称する)の
感光材料としてはセレンまたはセレン合金などの無機光
導電性物質、酸化亜鉛あるいは硫化カドミウムなどの無
機光導電性物質を樹脂結着剤中に分散させたもの、ポリ
−N−ビニルカルバゾールまたはポリビニルアントラセ
ンなどの有機光導電性物質、フタロシアニン化合物ある
いはビスアゾ化合物などの有機光導電性物質、またはこ
れらの有機光導電性物質を樹脂結着剤中に分散させたも
のなどが利用されている。
Conventionally, photosensitive materials for electrophotographic photoreceptors (hereinafter also referred to as photoreceptors) have been made using inorganic photoconductive substances such as selenium or selenium alloys, or inorganic photoconductive substances such as zinc oxide or cadmium sulfide in a resin binder. dispersions, organic photoconductive materials such as poly-N-vinylcarbazole or polyvinylanthracene, phthalocyanine compounds or bisazo compounds, or dispersions of these organic photoconductive materials in resin binders. Dispersed ones are used.

また、感光体には暗所で表面電荷を保持する機能、光を
受容して電荷を発生する機能、同じく光を受容して電荷
を輸送する機能とが必要であるが、一つの層でこれらの
機能をあわせもったいわゆる単層型感光体と、主として
電荷発生に寄与する層と暗所での表面電荷の保持と光受
容時の電荷輸送に寄与する層とに機能分離した層を積層
したいわゆる積層型感光体がある。これらの感光体を用
いた電子写真法による画像形成には、例えばカールソン
方式が適用される。この方式での画像形成は暗所での感
光体へのコロナ放電による帯電、帯電された感光体表面
上への露光による原稿の文字や絵などの静電潜像の形成
、形成された静電潜像のトナーによる現像、現像された
トナー像の紙などの支持体への転写、定着により行われ
、トナー像転写後の感光体は除電、残留トナーの除去、
光除電などを行った後、再使用に供される。
In addition, a photoreceptor must have the function of retaining surface charge in the dark, the function of receiving light and generating charge, and the function of receiving light and transporting charge, all of which can be achieved in one layer. A so-called single-layer photoreceptor with the following functions is laminated with functionally separated layers: a layer that mainly contributes to charge generation, and a layer that contributes to surface charge retention in the dark and charge transport during light reception. There is a so-called laminated photoreceptor. For example, the Carlson method is applied to image formation by electrophotography using these photoreceptors. Image formation in this method involves charging the photoconductor in a dark place by corona discharge, forming electrostatic latent images such as letters and pictures on the document by exposing the surface of the charged photoconductor, and This is done by developing the latent image with toner, transferring the developed toner image to a support such as paper, and fixing it. After the toner image is transferred, the photoreceptor is charged, the residual toner is removed,
After photostatic charge removal, etc., it is reused.

近年、可とう性、熱安定性、膜形成性などの利点により
、有機材料を用いた電子写真用感光体が実用化されてき
ている。例えば、ポリ−N−ビニルカルバゾール、!=
2.4.7−)ジニトロフルオレン−9−オンとからな
る感光体(米国特許第3484237号明細書に記載)
、有機顔料を主成分とする感光体(特開昭47−375
43号公報に記載)、染料と樹脂とからなる共晶錯体を
主成分とする感光体(特開昭47−10785号公報に
記載)などである。さらに、新規ヒドラゾン化合物も数
多く実用化されている。
In recent years, electrophotographic photoreceptors using organic materials have been put into practical use due to their advantages such as flexibility, thermal stability, and film-forming properties. For example, poly-N-vinylcarbazole,! =
2.4.7-) dinitrofluoren-9-one (described in U.S. Pat. No. 3,484,237)
, a photoreceptor whose main component is an organic pigment (Japanese Patent Application Laid-Open No. 47-375
43 (described in Japanese Patent Laid-open No. 43), and a photoreceptor whose main component is a eutectic complex consisting of a dye and a resin (described in Japanese Patent Application Laid-open No. 10785/1983). Furthermore, many new hydrazone compounds have also been put into practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように、有機材料は無機材料にない多くの長所を
持つが、また同時に電子写真用感光体に要求されるすべ
ての特性を充分に満足するものが得られていないのが現
状であり、特に光感度および繰り返し連続使用時の特性
に問題があった。
As mentioned above, organic materials have many advantages that inorganic materials do not have, but at the same time, there is currently no material that fully satisfies all the characteristics required of electrophotographic photoreceptors. In particular, there were problems with photosensitivity and characteristics during repeated and continuous use.

この発明が解決しようとする課題は、感光層に電荷輸送
物質として今まで用いられたことのない新゛しい有機材
料を用いることにより、高感度で繰り返し特性の優れた
複写機用およびプリンタ用の電子写真用感光体を提供す
ることにある。
The problem to be solved by this invention is to create a photosensitive layer for copiers and printers that has high sensitivity and excellent repeatability by using a new organic material that has never been used as a charge transport material in the photosensitive layer. An object of the present invention is to provide a photoreceptor for electrophotography.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題は、この発明によれば、下記一般式(1)およ
び(II)に示されるヒドラゾン化合物のうちの、少な
くとも一種を含む感光層を備えた感光体とすることによ
って解決される。
According to the present invention, the above problem is solved by providing a photoreceptor including a photosensitive layer containing at least one of the hydrazone compounds represented by the following general formulas (1) and (II).

〔式(1)中、Δは置接もしくは無置換の芳香族残基、
縮合多環残基または複素環残基のうちのいずれかを表し
、 R6は置換もしくは無置換のアリール基を表し、m
は0または1の整数を表す。〕〔式(1中、R2ないし
R8は、それぞれハロゲン原子、アルコキシ基、または
以下の置換もしくは無置換のアルキル基、アルケニル基
、アラルキル基、アリール基のうちのいずれかを表し、
nは0または1の整数を表す。〕 〔作用〕 前記一般式(1)および([1)で示されるヒドラゾン
化合物を感光層に用いた例は知られていない。
[In formula (1), Δ is a substituted or unsubstituted aromatic residue,
represents either a fused polycyclic residue or a heterocyclic residue, R6 represents a substituted or unsubstituted aryl group, m
represents an integer of 0 or 1. ] [Formula (1, R2 to R8 each represent a halogen atom, an alkoxy group, or any of the following substituted or unsubstituted alkyl groups, alkenyl groups, aralkyl groups, and aryl groups,
n represents an integer of 0 or 1. ] [Function] There are no known examples in which the hydrazone compounds represented by the above general formulas (1) and ([1) are used in photosensitive layers.

本発明者らは、前記課題を解決するために各種有機材料
について鋭意検討するなかで、これらヒドラゾン化合物
について数多くの実験を行った結果、その技術的解明は
まだ充分なされてはいないが、このような前記一般式(
1)および(II)で示される特定のヒドラゾン化合物
を電荷輸送物質として使用することが、電子写真特性の
向上に極めて有効であることを見出し、高感度で繰り返
し特性の優れた感光体を得るに至ったのである。
The present inventors conducted a number of experiments on these hydrazone compounds while intensively studying various organic materials to solve the above-mentioned problems. The above general formula (
We have discovered that the use of specific hydrazone compounds shown in 1) and (II) as charge transport materials is extremely effective in improving electrophotographic properties, and we have found that the use of specific hydrazone compounds shown in 1) and (II) is extremely effective in improving electrophotographic properties, and in order to obtain photoreceptors with high sensitivity and excellent repeatability. It has come to this.

〔実施例〕〔Example〕

この発明に用いられる前記一般式(1)のヒドラゾン化
合物は、通常の方法により合成することができる。すな
わち、下記一般式(III)で示されるアルデヒド類と
下記一般式(IV)で示されるヒドラジン類を、酸など
の触媒存在下適当な有機溶媒(例えばエタノールなど)
中で脱水縮合させることにより、容易に合成することが
できる。
The hydrazone compound of general formula (1) used in this invention can be synthesized by a conventional method. That is, aldehydes represented by the following general formula (III) and hydrazines represented by the following general formula (IV) are mixed in a suitable organic solvent (such as ethanol) in the presence of a catalyst such as an acid.
It can be easily synthesized by dehydration condensation in a medium.

A(−(H−CH丹cho   −−(IIj)〔式(
III)中、Aは置換もしくは無置換の芳香族残基、縮
合多環残基または複素環残基のうちのいずれかを表し、
mは0または1の整数を表す。また、式(rV)中、 
R,は置換もしくは無置換のアリール基を表す。〕 こうして得られる一般式(1)で示されるヒドラゾン化
合物の具体例を示すと次の通りである。
A(-(H-CHtancho --(IIj) [Formula (
In III), A represents either a substituted or unsubstituted aromatic residue, a fused polycyclic residue or a heterocyclic residue,
m represents an integer of 0 or 1. Moreover, in the formula (rV),
R represents a substituted or unsubstituted aryl group. ] Specific examples of the hydrazone compound represented by the general formula (1) thus obtained are as follows.

化合物N91−7 gl−1O N!!l−11 N91−12 化合物N91−1 坐1−2 gI−4 N=]−5 化合物歯l−13 N91−14 gI−16 C2H5 化合物N9l−19 また、この発明に用いられる前記一般式(II)のヒド
ラゾン化合物は、通常の方法により合成することができ
る。すなわち、下記一般式(V)で示されるアルデヒド
類と下記一般式(Vl)で示されるヒドラジン類を、酸
などの触媒存在下適当な有機溶媒(例えばエタノールな
ど)中で脱水縮合させることにより、容易に合成するこ
とができる。
Compound N91-7 gl-1O N! ! l-11 N91-12 Compound N91-1 Iza 1-2 gI-4 N=]-5 Compound tooth l-13 N91-14 gI-16 C2H5 Compound N9l-19 Also, the general formula (II) used in this invention ) can be synthesized by a conventional method. That is, by dehydrating and condensing aldehydes represented by the following general formula (V) and hydrazines represented by the following general formula (Vl) in a suitable organic solvent (such as ethanol) in the presence of a catalyst such as an acid, Can be easily synthesized.

〔式(V)および(Vl)中、R2ないしRoはそれぞ
れハロゲン原子、アルコキシ基、または以下の置換もし
くは無置換のアルキル基、アルケニル基、アラルキル基
、アリール基のうちのいずれかを表し、nは0または1
の整数を表す。〕 こうして得られる前記一般式(II)で示されるヒ坐1
−24 化合物歯I!−1 化合物歯11−7 坐1l−9 N!!ll−10 ?M −6 N911−12 化合物Npl!−13 N911−15 II;11−1に の発明の感光体は前述のようなヒドラゾン化合物を感光
層中に含有させたものであるが、これらヒドラゾン化合
物の応用の仕方によって、第1図、第2図、あるいは第
3図に示したごとくに用いることができる。
[In formulas (V) and (Vl), R2 to Ro each represent a halogen atom, an alkoxy group, or any of the following substituted or unsubstituted alkyl groups, alkenyl groups, aralkyl groups, and aryl groups, and n is 0 or 1
represents an integer. ] Hyza 1 represented by the general formula (II) thus obtained
-24 Compound tooth I! -1 Compound tooth 11-7 Sitting 1l-9 N! ! ll-10? M −6 N911-12 Compound Npl! -13 N911-15 II; The photoreceptor of the invention described in 11-1 contains the above-mentioned hydrazone compound in the photosensitive layer. It can be used as shown in FIG. 2 or 3.

第1図ないし第3図はこの発明の感光体の概念的断面図
で、lは導電性基体、20.21.22は感光層、3は
電荷発生物質、4は電荷発生層、5は電荷輸送物質、6
は電荷輸送層、7は被覆層である。
1 to 3 are conceptual cross-sectional views of the photoreceptor of the present invention, where l is a conductive substrate, 20, 21, and 22 are photosensitive layers, 3 is a charge generation material, 4 is a charge generation layer, and 5 is a charge Transport substance, 6
is a charge transport layer, and 7 is a coating layer.

第1図は、導電性基体1上に電荷発生物質3と電荷輸送
物質5である前記一般式(I)および([1)で示され
るヒドラゾン化合物を樹脂バインダー(結着剤)中に分
散した感光層20(通常単層型感光体と称せられる構成
)が設けられたものである。
FIG. 1 shows a structure in which a charge generating substance 3 and a charge transporting substance 5, hydrazone compounds represented by the general formulas (I) and ([1), are dispersed in a resin binder (binder) on a conductive substrate 1. A photosensitive layer 20 (commonly referred to as a single-layer photosensitive member) is provided.

第2図は、導電性基体1上に電荷発生物質3を主体とす
る電荷発生層4と、電荷輸送物質5である前記一般式(
1)および(II)で示されるヒドラゾン化合物を含有
する電荷輸送層6との積層からなる感光層21(通常積
層型感光体と称せられる構成)が設けられたものである
。この構成の感光体は通常負帯電方式で用いられる。
FIG. 2 shows a charge generation layer 4 mainly composed of a charge generation substance 3 on a conductive substrate 1, and a charge transport substance 5 of the general formula (
A photosensitive layer 21 (commonly referred to as a laminate type photoreceptor) is provided, which is formed by laminating a charge transport layer 6 containing a hydrazone compound represented by 1) or (II). A photoreceptor having this configuration is normally used in a negative charging system.

第3図は、第2図の逆の層構成の感光層22が設けられ
たものであり、通常正帯電方式で用いられる。この場合
には、電荷発生層4を保護するためさらに被覆層7を設
けるのが一般的である。
In FIG. 3, a photosensitive layer 22 having a layer structure opposite to that in FIG. 2 is provided, and is normally used in a positive charging system. In this case, it is common to further provide a coating layer 7 to protect the charge generation layer 4.

このように、積層型感光体として二種類の層構成をとる
理由は、負帯電方式として通常用いられる第2図の層構
成の感光体を正帯電方式で用いようとしても、これに適
合する電荷輸送物質がまだ見つかっておらず、したがっ
て、正帯電方式の感光体として現段階では第3図に示し
た層構成とすることが必要なためである。
The reason why the laminated photoconductor has two types of layer configurations is that even if you try to use a photoconductor with the layer configuration shown in Figure 2, which is normally used for a negative charging system, in a positive charging system, the charge that is compatible with this cannot be used. This is because a transport substance has not yet been found, and therefore, at this stage, it is necessary to use the layer structure shown in FIG. 3 as a positively charging type photoreceptor.

第1図の感光体は、電荷発生物質を電荷輸送物質および
樹脂バインダーを溶解した溶液中に分散させ、この分散
液を導電性基体上に塗布することによって作製できる。
The photoreceptor shown in FIG. 1 can be produced by dispersing a charge generating material in a solution containing a charge transporting material and a resin binder, and applying this dispersion onto a conductive substrate.

第2図の感光体は、導電性基体上に電荷発生物質を真空
蒸着するか、あるいは電荷発生物質の粒子を溶剤または
樹脂バインダー中に分散して得た分散液を塗布、乾燥し
、その上に電荷輸送物質および樹脂バインダーを溶解し
た溶液を塗布、乾燥することにより作製できる。
The photoreceptor shown in Figure 2 is produced by vacuum-depositing a charge-generating substance on a conductive substrate, or by coating and drying a dispersion obtained by dispersing particles of a charge-generating substance in a solvent or resin binder, and then It can be produced by applying a solution containing a charge transporting substance and a resin binder to the surface of the substrate and drying the solution.

第3図の感光体は、電荷輸送物質および樹脂バインダー
を溶解した溶液を導電性基体上に塗布。
The photoreceptor shown in Figure 3 is made by coating a conductive substrate with a solution containing a charge transport substance and a resin binder.

乾燥し、その上に電荷発生物質を真空蒸着するか、ある
いは電荷発生物質の粒子を溶剤または樹脂バインダー中
に分散して得た分散液を塗布、乾燥し、さらに被覆層を
形成することにより作製できる。
It is prepared by drying and vacuum-depositing a charge-generating substance thereon, or by applying a dispersion obtained by dispersing charge-generating substance particles in a solvent or resin binder, drying, and further forming a coating layer. can.

導電性基体1は感光体の電極としての役目と同時に他の
各層の支持体となっており、円筒状、板状、フィルム状
のいずれでも良く、材質的にはアルミニウム、ステンレ
ス鋼、ニッケルなどの金属、あるいはガラス、樹脂など
の上に導電処理をほどこしたものでも良い。
The conductive substrate 1 serves as an electrode for the photoreceptor and at the same time serves as a support for the other layers, and may be cylindrical, plate-shaped, or film-shaped, and may be made of aluminum, stainless steel, nickel, etc. It may also be made of metal, glass, resin, or the like, which has been subjected to conductive treatment.

電荷発生層4は、前記したように電荷発生物質3の粒子
を樹脂バインダー中に分散させた材料を塗布するか、あ
るいは、真空蒸着などの方法により形成され、光を受容
して電荷を発生する。また、その電荷発生効率が高いこ
とと同時に発生した電荷の電荷輸送層6および被覆層7
への注入性が重要で、電場依存性が少なく低電場でも注
入の良いことが望ましい。電荷発生物質としては、無金
属フタロシアニン、チタニルフタロシアニンなどのフタ
ロシアニン化合物、各種アゾ、キノン、インジゴ顔料あ
るいは、シアニン、スクアリリウム。
The charge generation layer 4 is formed by applying a material in which particles of the charge generation substance 3 are dispersed in a resin binder as described above, or by a method such as vacuum deposition, and generates charges by receiving light. . In addition, the charge transport layer 6 and the coating layer 7 for the generated charges at the same time have a high charge generation efficiency.
It is important to have good injection properties even in low electric fields with little dependence on electric fields. Examples of the charge generating substance include phthalocyanine compounds such as metal-free phthalocyanine and titanyl phthalocyanine, various azo, quinone, and indigo pigments, or cyanine and squarylium.

アズレニウム、ピIJ IJウム化合物などの染料や、
セレンまたはセレン化合物などが用いられ、画像形成に
使用される露光光源の光波長領域に応じて好適な物質を
選ぶことができる。電荷発生層は電荷発生機能を有すれ
ばよいので、その膜厚は電荷発生物質の光吸収係数より
決まり、−船釣には5μm以下であり、好適には1μm
以下である。電荷発生層は電荷発生物質を主体としてこ
れに電荷輸送物質などを添加して使用することも可能で
ある。樹脂バインダーとしては、ポリカーボネート。
Dyes such as azulenium, pyridium compounds,
Selenium or a selenium compound is used, and a suitable substance can be selected depending on the light wavelength range of the exposure light source used for image formation. Since the charge generation layer only needs to have a charge generation function, its film thickness is determined by the light absorption coefficient of the charge generation substance, and is 5 μm or less for boat fishing, preferably 1 μm.
It is as follows. The charge generation layer is mainly composed of a charge generation substance, and a charge transport substance or the like may be added thereto. Polycarbonate is used as a resin binder.

ポリエステル、ポリアミド、ポリウレタン、塩化ビニル
、エポキシ、ジアリルフタレート樹脂、シリコン樹脂、
メタクリル酸エステルの重合体および共重合体などを適
宜組み合わせて使用することが可能である。
Polyester, polyamide, polyurethane, vinyl chloride, epoxy, diallyl phthalate resin, silicone resin,
It is possible to use a suitable combination of polymers, copolymers, etc. of methacrylic acid esters.

電荷輸送層6は樹脂バインダー中に有機電荷輸送物質と
して前記一般式(I)および(n)で示されるヒドラゾ
ン化合物を分散させた塗膜であり、暗所では絶縁体層と
して感光体の電荷を保持し、光受容時には電荷発生層か
ら注入される電荷を輸送する機能を発揮する。樹脂バイ
ンダーとしては、ポリカーボネート、ポリエステル、ポ
リアミドポリウレタン、エポキシ、シリコン樹脂、メタ
クリル酸エステルの重合体および共重合体などを用いる
ことができる。
The charge transport layer 6 is a coating film in which a hydrazone compound represented by the general formulas (I) and (n) as an organic charge transport substance is dispersed in a resin binder. It functions to hold and transport charges injected from the charge generation layer when receiving light. As the resin binder, polycarbonate, polyester, polyamide polyurethane, epoxy, silicone resin, polymers and copolymers of methacrylic acid ester, etc. can be used.

被覆層7は暗所ではコロナ放電の電荷を受容して保持す
る機能を有しており、かつ電荷発生層が感応する光を透
過する性能を有し、露光時に光を透過し、電荷発生層に
到達させ、発生した電荷の注入を受けて表面電荷を中和
消滅させることが必要である。被覆材料としては、ポリ
エステル、ポリアミドなどの有機絶縁性皮膜形成材料が
適用できる。また、これら有機材料とガラス樹脂、 5
i02などの無機材料さらには金属、金属酸化物などの
電気抵抗を低減させる材料とを混合して用いることもで
きる。被覆材料としては有機絶縁性皮膜形成材料に限定
されることはなく810□などの無機材料さらには金属
、金属酸化物などを蒸着、スパッタリングなどの方法に
より形成することも可能である。被覆材料は前述の通り
電荷発生物質の光の吸収極大の波長領域においてできる
だけ透明であることが望ましい。
The coating layer 7 has the function of receiving and retaining the charge of corona discharge in a dark place, and has the ability to transmit the light to which the charge generation layer is sensitive, and transmits the light upon exposure, and the charge generation layer It is necessary to neutralize and eliminate the surface charges by injecting the generated charges. As the coating material, organic insulating film-forming materials such as polyester and polyamide can be used. In addition, these organic materials and glass resin, 5
It is also possible to use a mixture of inorganic materials such as i02 and materials that reduce electrical resistance such as metals and metal oxides. The coating material is not limited to organic insulating film-forming materials, and may also be formed using inorganic materials such as 810□, metals, metal oxides, etc. by methods such as vapor deposition and sputtering. As mentioned above, it is desirable that the coating material be as transparent as possible in the wavelength region where the charge generating substance absorbs maximum light.

被覆層自体の膜厚は被覆層の配合組成にも依存するが、
繰り返し連続使用したとき残留電位が増大するなどの悪
影響が出ない範囲で任意に設定できる。
The thickness of the coating layer itself depends on the composition of the coating layer, but
It can be set arbitrarily within a range that does not cause adverse effects such as an increase in residual potential when used repeatedly and continuously.

以下、この発明の実施例について説明する。Examples of the present invention will be described below.

実施例1 ボールミルで150時間粉砕した無金属フタロシアニン
(東京化成製)50重量部と前記化合物NCL I−1
で示されるヒドラゾン化合物100重量部をポリエステ
ル樹脂(商品名バイロン200:東洋紡製)100重量
部とテトラヒドロフラン(THF)溶剤とともに3時間
混合機により混練して塗布液を調製し、導電性基体であ
るアルミ蒸着ポリエステルフィルム(^1−PET)上
に、ワイヤーバー法で塗布して、乾煙後の膜厚が15μ
mになるように感光層を形成し、第1図に示した構成の
感光体を作製した。
Example 1 50 parts by weight of metal-free phthalocyanine (manufactured by Tokyo Kasei) milled in a ball mill for 150 hours and the above compound NCL I-1
A coating solution was prepared by kneading 100 parts by weight of a hydrazone compound represented by 100 parts by weight of a polyester resin (trade name: Vylon 200, manufactured by Toyobo Co., Ltd.) and a tetrahydrofuran (THF) solvent for 3 hours in a mixer. Coated on vapor-deposited polyester film (^1-PET) using wire bar method, film thickness after drying is 15μ
A photoreceptor having the structure shown in FIG. 1 was prepared by forming a photoreceptor layer so as to have a thickness of m.

実施例2 まず、α型無金属フタロシアニンを出発原料とし、二つ
のリニアモーターを対向して配置した間にα型無金属フ
タロシアニンと作用小片として被覆磁性体テフロンピー
スを内蔵した非磁性離体を用いて粉砕する電磁粉砕装置
(商品名LIMMAC:富士電機製)を用いて粉砕処理
を20分間行い微粉末化した。この微粉末化された試料
1重量部とDMF (N、N−ジメチルホルムアミド)
溶剤50重量部とを超音波分散処理を行った。その後、
試料とDMFとを分離濾過し、乾燥して無金属フタロシ
アニンの処理を行った。
Example 2 First, α-type metal-free phthalocyanine was used as a starting material, and a non-magnetic separation body containing α-type metal-free phthalocyanine and a coated magnetic Teflon piece as a working piece was used between two linear motors placed opposite each other. The powder was pulverized for 20 minutes using an electromagnetic pulverizer (trade name: LIMMAC, manufactured by Fuji Electric). 1 part by weight of this finely powdered sample and DMF (N,N-dimethylformamide)
Ultrasonic dispersion treatment was performed with 50 parts by weight of a solvent. after that,
The sample and DMF were separated and filtered, dried, and processed for metal-free phthalocyanine.

次に、前記化合物No、I−2で示されるヒドラゾン化
合物80重量部とポリカーボネート樹脂(商品名パンラ
イ) L −1225:音大製)100重量部を塩化メ
チレンに溶解してできた塗液をアルミ蒸着ポリエステル
フィルム基体上にワイヤーバー法で塗布し、乾燥後の膜
厚が15μmになるように電荷輸送層を形成した。この
ようにして得られた電荷輸送層上に、上記の処理をされ
た無金属フタロシアニン50重量部、ポリエステル樹脂
(商品名バイロン200:東洋紡製)50重量部をTH
F溶剤とともに3時間混合機により混練して調製した塗
布液を、ワイヤーバー法で塗布し、乾燥後の膜厚が1μ
mになるように電荷発生層を形成し、第3図に示した構
成に対応する感光体を作製した。ただし、この発明に直
接関与しない被覆層は設けなかった。
Next, a coating solution prepared by dissolving 80 parts by weight of the hydrazone compound represented by Compound No. I-2 and 100 parts by weight of polycarbonate resin (trade name Panrai L-1225, manufactured by Ondai) in methylene chloride was applied to aluminum. A charge transport layer was formed by coating on a vapor-deposited polyester film substrate by a wire bar method so that the film thickness after drying was 15 μm. On the charge transport layer thus obtained, 50 parts by weight of the above-treated metal-free phthalocyanine and 50 parts by weight of a polyester resin (trade name: Vylon 200, manufactured by Toyobo Co., Ltd.) were added to TH.
A coating solution prepared by kneading with F solvent in a mixer for 3 hours was applied using a wire bar method, and the film thickness after drying was 1 μm.
A charge generation layer was formed to have a thickness of m, and a photoreceptor corresponding to the structure shown in FIG. 3 was produced. However, a coating layer not directly related to this invention was not provided.

実施例3 実施例2において、無金属フタロシアニンに変えて下記
構造式で示されるスクアIJ IJウム化合物を用い、
電荷輸送物質を前記化合物NαI−2に変えて前記化合
物NαI−3で示されるヒドラゾン化合物を用い、その
他は実施例2と同様にして感光体をを作製した。
Example 3 In Example 2, a SQUA IJ compound represented by the following structural formula was used instead of the metal-free phthalocyanine,
A photoreceptor was produced in the same manner as in Example 2 except that the charge transport material was replaced with the compound NαI-2 and a hydrazone compound represented by the compound NαI-3 was used.

実施例4 実施例2において、無金属フタロシアニンに変えて例え
ば特開昭47−37543に示されるようなビスアゾ顔
料であるクロログイアンプル−を用い、電荷輸送物質を
前記化合物NαI−2に変えて前記化合物NCLI−4
で示されるヒドラゾン化合物を用い、その他は実施例2
と同様にして感光体を作製した。
Example 4 In Example 2, a chlorodiapolymer, which is a bisazo pigment as shown in JP-A-47-37543, was used instead of the metal-free phthalocyanine, and the charge transport substance was changed to the compound NαI-2, and the compound NαI-2 was used. Compound NCLI-4
Using the hydrazone compound shown by, the rest was as in Example 2.
A photoreceptor was produced in the same manner as described above.

実施例5 実施例1において、電荷輸送物質を前記化合物kllに
変えて前記化合物kn−1で示されるヒドラゾン化合物
を用い、その他は実施例1と同様にして感光体を作製し
た。
Example 5 A photoreceptor was produced in the same manner as in Example 1 except that the charge transport substance was replaced with the compound kll and a hydrazone compound represented by the compound kn-1 was used.

実施例6 実施例2において、電荷輸送物質を前記化合物に+−2
に変えて前記化合物Nαll−2で示されるヒドラゾン
化合物を用い、その他は実施例2と同様にして感光体を
作製した。
Example 6 In Example 2, a charge transport substance is added to the compound +-2
A photoreceptor was produced in the same manner as in Example 2 except that a hydrazone compound represented by the compound Nαll-2 was used instead of .

実施例7 実施例3において、電荷輸送物質を前記化合物kI−3
に変えて前記化合物Nαll−3で示されるヒドラゾン
化合物を用い、その他は実施例3と同様にして感光体を
作製した。
Example 7 In Example 3, the charge transport material was the compound kI-3.
A photoreceptor was produced in the same manner as in Example 3 except that a hydrazone compound represented by the compound Nαll-3 was used instead of .

実施例8 実施例4において、電荷輸送物質を前記化合物No、I
−4に変えて前記化合物NαI[−4で示されるヒドラ
ゾン化合物を用い、その他は実施例4と同様にして感光
体を作製した。
Example 8 In Example 4, the charge transport substance was used as the compound No.
A photoreceptor was produced in the same manner as in Example 4 except that the hydrazone compound represented by the compound NαI[-4 was used instead of -4.

このようにして得られた感光体の電子写真特性を川口電
機製静電記録紙試験装置r S P−428Jを用いて
測定した。
The electrophotographic properties of the photoreceptor thus obtained were measured using an electrostatic recording paper tester RSP-428J manufactured by Kawaguchi Electric.

感光体の表面電位V、(ボルト)は暗所で+6. Ok
Vのコロナ放電を10秒間行って感光体表面を正帯電さ
せたときの初期の表面電位であり、続いてコロナ放電を
中止した状態で2秒間暗所保持したときの表面電位Va
<ボルト)を測定し、さらに続いて感光体表面に照度2
ルツクスの白色光を照射してV、が半分になるまでの時
間(秒)を求め半減衰露光量El/2(ルックス・秒)
とした。また、照度2ルツクスの白色光を10秒間照射
したときの表面電位を残留電位V、(ボルト)とした。
The surface potential V (volts) of the photoreceptor is +6. Ok
This is the initial surface potential when the surface of the photoreceptor is positively charged by corona discharge of V for 10 seconds, and the surface potential Va is when it is held in the dark for 2 seconds with corona discharge stopped.
<volts), and then apply an illuminance of 2 to the surface of the photoreceptor.
Calculate the time (seconds) it takes for V to be halved after irradiating the white light of Lux. Half-attenuation exposure amount El/2 (lux seconds)
And so. Further, the surface potential when white light with an illuminance of 2 lux was irradiated for 10 seconds was defined as the residual potential V (volt).

また、実施例1ないし3および実施例5ないし7につい
ては、長波長光での高感度が期待できるので、波長78
0nmの単色光を用いたときの電子写真特性も同時に測
定した。すなわち、 Vdまでは同様に測定し、次に白
色光の替わりに1μWの単色光(780nm)を照射し
て半減衰露光量(μJ/cd)を求め、また、この光を
10秒間感光体表面に照射したときの残留電位V、(ポ
ル))を測定した。測定結果を第1表に示す。
In addition, for Examples 1 to 3 and Examples 5 to 7, high sensitivity with long wavelength light can be expected, so the wavelength 78
Electrophotographic properties using 0 nm monochromatic light were also measured at the same time. That is, measurements were taken in the same manner up to Vd, then 1 μW monochromatic light (780 nm) was irradiated instead of white light to obtain the half-attenuation exposure amount (μJ/cd), and this light was applied to the photoreceptor surface for 10 seconds. The residual potential V, (Pol)) was measured when irradiated with . The measurement results are shown in Table 1.

第  1 表 第1表に見られるように、実施例1ないし8は半減衰露
光量、残留電位ともに互いに遜色はなく、また表面電位
でも良好な特性を示している。また、実施例1ないし3
および5ないし7においては波長780nmの長波長光
でも高感度を示し、半導体レーザプリンタ用として充分
使用可能であることが判る。
Table 1 As seen in Table 1, Examples 1 to 8 are comparable in both half-attenuation exposure and residual potential, and also exhibit good characteristics in terms of surface potential. In addition, Examples 1 to 3
It can be seen that samples No. 5 to No. 7 show high sensitivity even with long wavelength light of 780 nm, and are sufficiently usable for semiconductor laser printers.

実施例9 厚さ500μmのアルミニウム板上に、セレンを厚さ1
.5μmに真空蒸着し電荷発生層を形成し、次に、化合
物N[Li5で示されるヒドラゾン化合物100重量部
をテトラヒドロフラン(THF)700重量部に溶かし
た液とポリメタクリル酸メチルポリマー(PMMA :
東京化成製)100重量部をトルエン700重量部に溶
かした液とを混合してできた塗液をワイヤーバー法で塗
布し、乾燥後の膜厚が20μmになるように電荷輸送層
を形成した。前述の試験装置r S P−428Jを用
い、この感光体に−6,0kVのコロナ帯電を10秒間
行い電子写真特性を測定したとコロ、V、=−620V
、  V、=−60V、  El/2=3.9ルツクス
・秒と良好な結果が得られた。
Example 9 Selenium was deposited to a thickness of 1 on a 500 μm thick aluminum plate.
.. A charge generation layer was formed by vacuum evaporation to a thickness of 5 μm, and then a solution obtained by dissolving 100 parts by weight of a hydrazone compound represented by Compound N[Li5 in 700 parts by weight of tetrahydrofuran (THF) and polymethyl methacrylate polymer (PMMA:
A coating solution prepared by mixing 100 parts by weight (manufactured by Tokyo Kasei) with a solution prepared by dissolving 700 parts by weight of toluene was applied using a wire bar method to form a charge transport layer so that the film thickness after drying was 20 μm. . The electrophotographic characteristics were measured by corona charging the photoreceptor at -6,0 kV for 10 seconds using the above-mentioned test device rSP-428J.
, V,=-60V, El/2=3.9 lux·sec, and good results were obtained.

実施例10 実施例9において、電荷輸送物質を前記化合物NαI−
5に変えて前記化合物NαI[−5で示されるヒドラゾ
ン化合物を用い、その他は実施例9と同様にして感光体
を作製した。
Example 10 In Example 9, the charge transport material was the compound NαI-
A photoreceptor was produced in the same manner as in Example 9 except that the hydrazone compound represented by the compound NαI[-5 was used instead of 5.

このようにして得られた感光体の電子写真特性を実施例
9と同様にして測定したところ、Vs=−660V、 
Vr=−80V、 El/x=4.3ルーt クス・秒
(!:良好な結果が得られた。
When the electrophotographic characteristics of the photoreceptor thus obtained were measured in the same manner as in Example 9, Vs=-660V,
Vr=-80V, El/x=4.3root x·sec (!: Good results were obtained.

実施例11 実施例2で処理された無金属フタロシアニン50重量部
、塩化ビニル共重合体(商品名MR−110:日本ゼオ
ン製日本ゼオン部を塩化メチレンとともに3時間混合機
により混練して塗布液を調製し、アルミニウム支持体上
に約1μmになるように塗布し、電荷発生層を形成した
。次に、化合物N(LI−6で示されるヒドラゾン化合
物100重量部、ポリカーボネート樹脂(商品名パンラ
イトL−1250:奇人製)100重量部、シリコンオ
イル0.1重量部を塩化メチレンで混合し、電荷発生層
の上に約15μmとなるように塗布し、電荷輸送層を形
成し、第2図に示した構成の感光体を作製した。
Example 11 50 parts by weight of the metal-free phthalocyanine treated in Example 2, vinyl chloride copolymer (trade name MR-110: Nippon Zeon Co., Ltd. manufactured by Nippon Zeon) were kneaded with methylene chloride in a mixer for 3 hours to form a coating solution. A charge generation layer was formed by coating the aluminum support to a thickness of approximately 1 μm.Next, Compound N (100 parts by weight of a hydrazone compound represented by LI-6), polycarbonate resin (trade name Panlite L) -1250: manufactured by Kijin), 100 parts by weight of silicone oil and 0.1 part by weight of silicone oil were mixed with methylene chloride and coated on the charge generation layer to a thickness of about 15 μm to form a charge transport layer. A photoreceptor having the configuration shown was produced.

このようにして得られた感光体の電子写真特性を実施例
9と同様にして、測定したところ、Vs=−660V 
、  E l/2 =4.5 ルックス・秒と良好な結
果が得られた。
When the electrophotographic characteristics of the photoreceptor thus obtained were measured in the same manner as in Example 9, Vs=-660V
, E l/2 =4.5 lux·sec, and a good result was obtained.

実施例12 実施例11において、電荷輸送物質を前記化合物NcL
l−6に変えて前記化合物Nαll−6で示されるヒド
ラゾン化合物を用い、その他は実施例11と同様にして
感光体を作製した。
Example 12 In Example 11, the charge transport material was the compound NcL.
A photoreceptor was produced in the same manner as in Example 11 except that a hydrazone compound represented by the compound Nαll-6 was used in place of Nαll-6.

このようにして得られた感光体の電子写真特性を実施例
11と同様にして測定したところ、 ■1=−700V
、  E1/i=4.0ルツクス・秒と良好な結果が得
られた。
When the electrophotographic characteristics of the photoreceptor thus obtained were measured in the same manner as in Example 11, it was found that: 1=-700V
A good result was obtained with E1/i=4.0 lux·sec.

実施例13 実施例11において、無金属フタロシアニンに変えて下
記構造式で示されるビスアゾ顔料を用い、また電荷輸送
物質を化合物N(Ll−6に変えて化合物Nα■づで示
されるヒドラゾン化合物を用い、その他は実施例11と
同様にして感光体を作製した。
Example 13 In Example 11, a bisazo pigment represented by the following structural formula was used instead of the metal-free phthalocyanine, and a hydrazone compound represented by the compound Nα was used instead of the charge transport substance Ll-6. A photoreceptor was produced in the same manner as in Example 11 except for the following.

このようにして得られた感光体の電子写真特性を実施例
11と同様にして測定したところ、 Vs=660V 
、 E 1y2−4.8ルツクス・秒と良好な結果が得
られた。
When the electrophotographic characteristics of the photoreceptor thus obtained were measured in the same manner as in Example 11, Vs = 660V.
, E 1y2-4.8 lux·sec, and good results were obtained.

実施例14 実施例13において、電荷輸送物質を前記化合物NαI
−7に変えて前記化合物Nαll−7で示されるヒドラ
ゾン化合物を用い、その他は実施例13と同様にして感
光体を作製した。
Example 14 In Example 13, the charge transport material was the compound NαI.
A photoreceptor was produced in the same manner as in Example 13 except that a hydrazone compound represented by the compound Nαll-7 was used instead of Nαll-7.

このようにして得られた感光体の電子写真特性を実施例
11と同様にして測定したところ、 VS=−680V
、 E l/2 =5.5ルツクス・秒と良好な結果が
得られた。
When the electrophotographic characteristics of the photoreceptor thus obtained were measured in the same manner as in Example 11, VS=-680V.
, E l/2 =5.5 lux·sec, and good results were obtained.

実施例15 前記化合物NαI−8ないしNαl−24それぞれにつ
いて、実施例4と同様にして感光体を作製した。
Example 15 Photoreceptors were produced in the same manner as in Example 4 for each of the compounds NαI-8 to NαI-24.

これらの感光体について、前述の試験装置「5P428
」を用い、暗所で+6.OkVのコロナ放電を10秒間
行い正帯電させ、照度2ルツクスの白色光を照射した場
合の半減衰露光量E=/2(ルックス・秒)を測定した
。その結果を第2表に示す。
These photoreceptors were tested using the aforementioned test equipment "5P428".
" +6. in the dark. Corona discharge at OkV was performed for 10 seconds to positively charge the sample, and the half-attenuation exposure amount E=/2 (lux·sec) when white light with an illuminance of 2 lux was irradiated was measured. The results are shown in Table 2.

第2表に見られるように、前記ヒドラゾン化合物NαI
−8ないしNα■−24を電荷輸送物質として用いた感
光体についても半減衰露光IE1/2 は良好であった
As seen in Table 2, the hydrazone compound NαI
The half-attenuation exposure IE1/2 was also good for the photoreceptors using -8 to Nα-24 as charge transport materials.

実施例16 前記化合物Nαll−8ないしNαll−16それぞれ
について、実施例4と同様にして感光体を作製し、その
半減衰露光量E 172を実施例15と同様にして測定
した。その結果を第3表に示す。
Example 16 For each of the compounds Nαll-8 to Nαll-16, photoreceptors were prepared in the same manner as in Example 4, and the half-attenuation exposure amount E 172 was measured in the same manner as in Example 15. The results are shown in Table 3.

第3表に見られるように、前記ヒドラゾン化合物Nαn
−8ないしNαIf−16を電荷輸送物質として用いた
感光体についても半減衰露光量E1/、は良好であった
As seen in Table 3, the hydrazone compound Nαn
The half-attenuation exposure amount E1/ was also good for photoreceptors using -8 to NαIf-16 as charge transport materials.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、導電性基体上に電荷輸送物質として
前記一般式(1)および(II)で示されるヒドラゾン
化合物を用いることとしたため、正帯電および負帯電に
おいても高感度でしかも繰り返し特性の優れた感光体を
得ることができる。また、電荷発生物質は露光光源の種
類に対応して好適な物質を選ぶことができ、−例をあげ
るとフタロシアニン化合物、スクアリリウム化合物およ
びある種のビスアゾ化合物を用いれば半導体レーザプリ
ンタに使用可能な感光体を得ることができる。さらに、
必要に応じて表面に被覆層を設置して耐久性を向上する
ことが可能である。
According to this invention, since the hydrazone compound represented by the general formulas (1) and (II) is used as a charge transport material on a conductive substrate, it is highly sensitive even in positive and negative charging, and has excellent repeatability. An excellent photoreceptor can be obtained. In addition, suitable charge-generating substances can be selected depending on the type of exposure light source; for example, phthalocyanine compounds, squarylium compounds, and certain bisazo compounds are photosensitive materials that can be used in semiconductor laser printers. You can get a body. moreover,
If necessary, a coating layer can be provided on the surface to improve durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図はこの発明の感光体のそれ
ぞれ異なる実施例を示す概念的断面図である。 1 導電性基体、3 電荷発生物質、4 電荷発生層、
5 電荷輸送物質、6 電荷輸送層、7被覆層、20.
21.22.−・感光層。
FIGS. 1, 2, and 3 are conceptual cross-sectional views showing different embodiments of the photoreceptor of the present invention. 1 conductive substrate, 3 charge generation substance, 4 charge generation layer,
5 charge transport material, 6 charge transport layer, 7 coating layer, 20.
21.22. -・Photosensitive layer.

Claims (1)

【特許請求の範囲】 1)下記一般式( I )および(II)で示されるヒドラ
ゾン化合物のうちの、少なくとも一種を含む感光層を備
えたことを特徴とする電子写真用感光体。 ▲数式、化学式、表等があります▼・・・・( I ) 〔式( I )中、Aは置換もしくは無置換の芳香族残基
、縮合多環残基または複素環残基のうちのいずれかを表
し、R_1は置換もしくは無置換のアリール基を表し、
mは0または1の整数を表す。〕▲数式、化学式、表等
があります▼・・・・・(II) 〔式(II)中、R_2ないしR_8は、それぞれハロゲ
ン原子、アルコキシ基、または以下の置換もしくは無置
換のアルキル基、アルケニル基、アラルキル基、アリー
ル基のうちのいずれかを表し、nは0または1の整数を
表す。〕
[Scope of Claims] 1) An electrophotographic photoreceptor comprising a photosensitive layer containing at least one of the hydrazone compounds represented by the following general formulas (I) and (II). ▲There are mathematical formulas, chemical formulas, tables, etc.▼...(I) [In formula (I), A is any substituted or unsubstituted aromatic residue, fused polycyclic residue, or heterocyclic residue. R_1 represents a substituted or unsubstituted aryl group,
m represents an integer of 0 or 1. [In formula (II), R_2 to R_8 are each a halogen atom, an alkoxy group, or the following substituted or unsubstituted alkyl group, alkenyl represents any one of a group, an aralkyl group, and an aryl group, and n represents an integer of 0 or 1. ]
JP13715689A 1989-05-30 1989-05-30 Electrophotographic sensitive body Pending JPH032760A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13715689A JPH032760A (en) 1989-05-30 1989-05-30 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13715689A JPH032760A (en) 1989-05-30 1989-05-30 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH032760A true JPH032760A (en) 1991-01-09

Family

ID=15192129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13715689A Pending JPH032760A (en) 1989-05-30 1989-05-30 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH032760A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5213925A (en) * 1990-11-22 1993-05-25 Fuji Electric Co., Ltd. Photoconductor for electrophotography
US5252416A (en) * 1990-11-22 1993-10-12 Fuji Electric Co., Ltd. Photoconductor for electrophotography
US5453343A (en) * 1993-02-09 1995-09-26 Industrial Technology Research Institute Hydrazone compounds as charge transport material in photoreceptors
GB2332199A (en) * 1997-12-11 1999-06-16 Lexmark Int Inc Imaging members with improved wear characteristics
JP2013209357A (en) * 2012-02-03 2013-10-10 Ricoh Co Ltd Amine compound, electrophotographic photoreceptor, and image forming method, image forming apparatus and process cartridge for image formation using the electrophotographic photoreceptor
JP2014013379A (en) * 2012-06-06 2014-01-23 Ricoh Co Ltd Photoreceptor, image forming apparatus, cartridge, and image forming method
JP2014174420A (en) * 2013-03-12 2014-09-22 Ricoh Co Ltd Electrophotographic photoreceptor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5213925A (en) * 1990-11-22 1993-05-25 Fuji Electric Co., Ltd. Photoconductor for electrophotography
US5252416A (en) * 1990-11-22 1993-10-12 Fuji Electric Co., Ltd. Photoconductor for electrophotography
US5453343A (en) * 1993-02-09 1995-09-26 Industrial Technology Research Institute Hydrazone compounds as charge transport material in photoreceptors
GB2332199A (en) * 1997-12-11 1999-06-16 Lexmark Int Inc Imaging members with improved wear characteristics
GB2332199B (en) * 1997-12-11 2002-02-06 Lexmark Int Inc Imaging members with improved wear characteristics
JP2013209357A (en) * 2012-02-03 2013-10-10 Ricoh Co Ltd Amine compound, electrophotographic photoreceptor, and image forming method, image forming apparatus and process cartridge for image formation using the electrophotographic photoreceptor
JP2014013379A (en) * 2012-06-06 2014-01-23 Ricoh Co Ltd Photoreceptor, image forming apparatus, cartridge, and image forming method
JP2014174420A (en) * 2013-03-12 2014-09-22 Ricoh Co Ltd Electrophotographic photoreceptor

Similar Documents

Publication Publication Date Title
JP2629885B2 (en) Electrophotographic photoreceptor
JPH027061A (en) Electrophotographic sensitive body
JPH01237555A (en) Electrophotographic sensitive body
JPH01102469A (en) Electrophotographic sensitive body
JPH032760A (en) Electrophotographic sensitive body
JPH04119360A (en) Electrophotographic sensitive body
JPS63158560A (en) Electrophotographic sensitive body
JPH0194349A (en) Electrophotographic sensitive body
JPH01273049A (en) Electrophotographic sensitive body
JPH03255453A (en) Electrophotographic sensitive body
JPS63157159A (en) Electrophotographic sensitive body
JPH01107262A (en) Electrophotographic sensitive body
JPH0524505B2 (en)
JPH0394263A (en) Electrophotographic sensitive body
JPH01172965A (en) Electrophotographic sensitive body
JPH01107263A (en) Electrophotographic sensitive body
JPH01107261A (en) Electrophotographic sensitive body
JPH01152463A (en) Electrophotographic sensitive body
JPH01172967A (en) Electrophotographic sensitive body
JPS63158557A (en) Electrophotographic sensitive body
JPS63158555A (en) Electrophotographic sensitive body
JPS63157160A (en) Electrophotographic sensitive body
JPS63157161A (en) Electrophotographic sensitive body
JPH01159658A (en) Electrophotographic sensitive body
JPH01164951A (en) Electrophotographic sensitive body