JPH03109554A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH03109554A
JPH03109554A JP24845489A JP24845489A JPH03109554A JP H03109554 A JPH03109554 A JP H03109554A JP 24845489 A JP24845489 A JP 24845489A JP 24845489 A JP24845489 A JP 24845489A JP H03109554 A JPH03109554 A JP H03109554A
Authority
JP
Japan
Prior art keywords
charge
photoreceptor
layer
formula
heterocyclic group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24845489A
Other languages
Japanese (ja)
Inventor
Masami Kuroda
昌美 黒田
Yoshinobu Sugata
好信 菅田
Noboru Kosho
古庄 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP24845489A priority Critical patent/JPH03109554A/en
Publication of JPH03109554A publication Critical patent/JPH03109554A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enhance sensitivity and repeated uses enduring characteristics by forming a photosensitive layer containing a specified compound. CONSTITUTION:The photosensitive layer 20 to be formed on a conductive substrate 1 contains an electric charge generating material 3 and as a charge transfer material 5 at least one of the compounds represented by formula I and II, and in formula I each of R1 and R2 is H, halogen, alkyl, or aryl, and A is an aryl or heterocyclic group each optionally substituted, and in formula II, R1 is H, halogen, or alkyl; each of R2 and R3 is H, an alkyl, aryl, or heterocyclic group; and A is an aryl or heterocyclic group each optionally substituted, thus permitting sensitivity and repeated enduring characteristics even in the case of both of positive and negative charging to be enhanced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は電子写真用感光体に関し、詳しくは導電性基
体上に形成した感光層の中に新規な化合物を含有するこ
とを特徴とする電子写真用感光体に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an electrophotographic photoreceptor, and more particularly to an electrophotographic photoreceptor characterized by containing a novel compound in a photosensitive layer formed on a conductive substrate. Related to photographic photoreceptors.

〔従来の技術〕[Conventional technology]

従来より電子写真用感光体(以下感光体とも称する)の
感光材料としては、セレンまたはセレン合金などの無機
光導電性物質、酸化亜鉛あるいは硫化カドミウムなどの
無機光導電性物質を樹脂結着剤中に分散させたもの、ポ
リ−N−ビニルカルバゾールまたはポリビニルアントラ
センなどの有機光導電性物質、フタロシアニン化合物あ
るいはビスアゾ化合物などの有機光導電性物質を樹脂結
着剤中に分散させたものや真空蒸着させたものなどが利
用されている。
Conventionally, photosensitive materials for electrophotographic photoreceptors (hereinafter also referred to as photoreceptors) have been made of inorganic photoconductive substances such as selenium or selenium alloys, or inorganic photoconductive substances such as zinc oxide or cadmium sulfide in a resin binder. organic photoconductive substances such as poly-N-vinylcarbazole or polyvinylanthracene, organic photoconductive substances such as phthalocyanine compounds or bisazo compounds dispersed in a resin binder or vacuum-deposited. and other items are being used.

また、感光体には暗所で表面電荷を保持する機能、光を
受容して電荷を発生する機能、同じく光を受容して電荷
を輸送する機能とが必要であるが、一つの層でこれらの
機能をあわせもったいわゆる単層型感光体と、主として
電荷発生に寄与する層と暗所での表面電荷の保持と光受
容時の電荷輸送に寄与する層とに機能分離した層を積層
したいわゆる積層型感光体がある。これらの感光体を用
いた電子写真法による画像形成には、例えばカールソン
方式が適用される。この方式での画像形成は暗所での感
光体へのコロナ放電による帯電、帯電された感光体表面
上への露光による原稿の文字や絵などの静電潜像の形成
、形成された静電潜像のトナーによる現像、現像された
トナー像の紙などの支持体への転写、定着により行われ
、トナー像転写後の感光体は除電、残留トナーの除去、
光除電などを行った後、再使用に供される。
In addition, a photoreceptor must have the function of retaining surface charge in the dark, the function of receiving light and generating charge, and the function of receiving light and transporting charge, all of which can be achieved in one layer. A so-called single-layer photoreceptor with the following functions is laminated with functionally separated layers: a layer that mainly contributes to charge generation, and a layer that contributes to surface charge retention in the dark and charge transport during light reception. There is a so-called laminated photoreceptor. For example, the Carlson method is applied to image formation by electrophotography using these photoreceptors. Image formation in this method involves charging the photoconductor in a dark place by corona discharge, forming electrostatic latent images such as letters and pictures on the document by exposing the surface of the charged photoconductor, and This is done by developing the latent image with toner, transferring the developed toner image to a support such as paper, and fixing it. After the toner image is transferred, the photoreceptor is charged, the residual toner is removed,
After photostatic charge removal, etc., it is reused.

近年、可とう性、熱安定性、膜形成性などの利点により
、電荷輸送能の優れた光導電性有機化合物の感光体への
応用が数多く提案されている。例えばオキサジアゾール
化合物としては、米国特許第3189447号明細書、
 ピラゾリン化合物としては特公昭59−2023号公
報、またヒドラゾン化合物としては特公昭55−423
80号公報、特開昭57−101844号公報、特開昭
54−150128号公報、スチルベン化合物としては
特開昭58−198043号公報などにより種々の電荷
輸送材料が知られている。
In recent years, many applications of photoconductive organic compounds with excellent charge transport ability to photoreceptors have been proposed due to their advantages such as flexibility, thermal stability, and film-forming properties. For example, as oxadiazole compounds, US Pat. No. 3,189,447;
For pyrazoline compounds, see Japanese Patent Publication No. 59-2023, and for hydrazone compounds, see Japanese Patent Publication No. 55-423.
Various charge transport materials are known from Japanese Patent Application Laid-open No. 80, JP-A-57-101844, JP-A-54-150128, and as a stilbene compound, JP-A-58-198043.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のように有機材料は無機材料にない多くの長所を持
つが、また同時に電子写真用感光体に要求されるすべて
の特性を充分に満足するものが得られていないのが現状
であり、特に光感度および繰り返し連続使用時の特性に
問題があった。
As mentioned above, organic materials have many advantages that inorganic materials do not have, but at the same time, there is currently no material that fully satisfies all the characteristics required of electrophotographic photoreceptors. There were problems with photosensitivity and characteristics during repeated and continuous use.

この発明は、上述の点に鑑みてなされたものであって、
感光層に電荷輸送物質として今まで用いられたことのな
い新しい有機材料を用いることにより、応答性に優れ高
感度でかつ繰り返し特性の優れた複写機用およびプリン
タ用の電子写真用感光体を提供することを課題とする。
This invention was made in view of the above points, and
By using a new organic material that has never been used as a charge transport material in the photosensitive layer, we provide electrophotographic photoreceptors for copiers and printers that have excellent responsiveness, high sensitivity, and excellent repeatability. The task is to do so.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するために、 この発明によれば、 下記一般式(I)または(II)のうちのいずれかで示
される化合物のうちの少なくとも一種類を含む感光層を
備えている電子写真用感光体とする。
In order to solve the above problems, according to the present invention, there is provided a photosensitive layer for electrophotography comprising at least one compound represented by the following general formula (I) or (II). Use as a photoreceptor.

〔式(I)中、R5およびR2はそれぞれ水素原子。[In formula (I), R5 and R2 are each a hydrogen atom.

ハロゲン原子、アルキル基、アリール基のうちのいずれ
かを表し、Aは置換もしくは無置換のアリール基、複素
環基のうちのいずれかを表す。〕1 〔式(n)中、R1は水素原子、ハロゲン原子、アルキ
ル基のうちのいずれかを表し、R2およびR3はそれぞ
れ水素原子、アルキル基、アリール基。
It represents any one of a halogen atom, an alkyl group, and an aryl group, and A represents either a substituted or unsubstituted aryl group or a heterocyclic group. [1] [In formula (n), R1 represents any one of a hydrogen atom, a halogen atom, and an alkyl group, and R2 and R3 are a hydrogen atom, an alkyl group, and an aryl group, respectively.

複素環基のうちのいずれかを表し、Aは置換もしくは無
置換のアリール基、複素環基のうちのいずれかを表す。
It represents any of the heterocyclic groups, and A represents either a substituted or unsubstituted aryl group or a heterocyclic group.

〕 前記一般式(I)または(II)で示される化合物は、
例えば下記一般式(III)または(rV)で示される
アルデヒド類と、例えば下記一般式(V)または(Vl
)で示されるWittig試薬とを公知のWittig
反応により反応させることにより合成することができる
] The compound represented by the general formula (I) or (II) is
For example, aldehydes represented by the following general formula (III) or (rV) and, for example, the following general formula (V) or (Vl
) and a known Wittig reagent.
It can be synthesized by a reaction.

A −(HO−(nl) 〔式(III)および(rV)中のAは置換もしくは無
置換のアリール基、複素環基のうちのいずれかを表し、
式(V)中のRIおよびR2はそれぞれ水素原子、ハロ
ゲン原、子、アルキル基、アリール基のうちのいずれか
を表し、式(Vl)中のR2およびR3はそれぞれ水素
原子、アルキル基、アリール基、複素環基のうちのいず
れかを表し、 R1は低級アルキル基を表す。〕 前記一般式(I)または(II)で示される化合物の具
体例を例示すると次の通りである。
A -(HO-(nl) [A in formulas (III) and (rV) represents either a substituted or unsubstituted aryl group or a heterocyclic group,
RI and R2 in formula (V) each represent a hydrogen atom, a halogen atom, a halogen atom, an alkyl group, or an aryl group, and R2 and R3 in formula (Vl) each represent a hydrogen atom, an alkyl group, or an aryl group. group or a heterocyclic group, and R1 represents a lower alkyl group. ] Specific examples of the compound represented by the general formula (I) or (II) are as follows.

(2H5 L、M1 C2H5 〔作用〕 前記一般式(I)または(II)で示される化合物を感
光層に用いた例は知られていない。本発明者らは、前記
課題を解決するために各種有機材料について鋭意検討す
るなかで、これら化合物について数多くの実験を行った
結果、その技術的解明は、まだ充分なされてはいないが
、このような前記一般式(I)または(II)で示され
る特定の化合物を電荷輸送物質として使用することが、
電子写真特性の向上に極めて有効であることを見出し、
高感度で繰り返し特性の優れた感光体を得るに至ったの
である。
(2H5 L, M1 C2H5 [Function] There is no known example of using a compound represented by the above general formula (I) or (II) in a photosensitive layer.The present inventors have developed various methods to solve the above problems. As a result of conducting a number of experiments on these compounds while intensively studying organic materials, we found that although the technical elucidation of these compounds has not yet been fully elucidated, the compounds represented by the above-mentioned general formula (I) or (II) The use of certain compounds as charge transport materials
discovered that it is extremely effective in improving electrophotographic properties,
This led to the creation of a photoreceptor with high sensitivity and excellent repeatability.

〔実施例〕〔Example〕

この発明の感光体は前述のような化合物を感光層中に含
有させたものであるが、これら化合物の応用の仕方によ
って、第1図、第2図、あるいは第3図に示したごとく
用いることができる。
The photoreceptor of this invention contains the above-mentioned compounds in the photosensitive layer, but depending on the application of these compounds, it can be used as shown in FIG. 1, FIG. 2, or FIG. 3. I can do it.

第1図〜第3図はこの発明の感光体の概念的断面図で、
1は導電性基体、20.21.22は感光層、3は電荷
発生物質、4は電荷発生層、5は電荷輸送物質、6は電
荷輸送層、7は被覆層である。
1 to 3 are conceptual cross-sectional views of the photoreceptor of the present invention,
1 is a conductive substrate, 20, 21, 22 is a photosensitive layer, 3 is a charge generating material, 4 is a charge generating layer, 5 is a charge transporting material, 6 is a charge transporting layer, and 7 is a coating layer.

第1図は、導電性基体1上に電荷発生物質3と電荷輸送
物質5を樹脂バインダー(結着剤)中に分散した感光層
20(通常単層型感光体と称せられる構成)が設けられ
たものである。
FIG. 1 shows a photosensitive layer 20 (commonly referred to as a single-layer photoreceptor) in which a charge-generating substance 3 and a charge-transporting substance 5 are dispersed in a resin binder (binder) is provided on a conductive substrate 1. It is something that

第2図は、導電性基体1上に電荷発生物質3を主体とす
る電荷発生層4と、電荷輸送物質5を含有する電荷輸送
層6との積層からなる感光層21(通常積層型感光体と
称せられる構成)が設けられたものである。
FIG. 2 shows a photosensitive layer 21 (usually a laminated type photoreceptor) consisting of a charge generation layer 4 mainly containing a charge generation substance 3 and a charge transport layer 6 containing a charge transport substance 5 on a conductive substrate 1. It is equipped with a configuration called .

第3図は、第2図の逆の層構成の感光層22が設けられ
たものである。この場合には、電荷発生層4を保護する
ためさらに被覆層7を設けるのが一般的である。
In FIG. 3, a photosensitive layer 22 having a layer structure opposite to that in FIG. 2 is provided. In this case, it is common to further provide a coating layer 7 to protect the charge generation layer 4.

第2図および第3図に示す2種類の層構成とする理由は
、負帯電方式として通常用いられる第2図の層構成で正
帯電方式で用いようとしても、これに適合する電荷輸送
物質がまだ見つかっておらず、したがって、正帯電方式
の感光体として現段階では第3図に示した層構成とする
ことが必要なためである。
The reason for the two types of layer configurations shown in Figures 2 and 3 is that even if the layer configuration shown in Figure 2, which is normally used for a negative charging system, is intended to be used for a positive charging system, there is no compatible charge transport material. This is because it has not been found yet, and therefore, at the current stage, it is necessary to have the layer structure shown in FIG. 3 as a positive charging type photoreceptor.

第1図の感光体は、電荷発生物質を電荷輸送物質および
樹脂バインダーを溶解した溶液中に分散あるいは溶解さ
せ、この塗布液を導電性基体上に塗布することによって
作製できる。
The photoreceptor shown in FIG. 1 can be produced by dispersing or dissolving a charge generating substance in a solution containing a charge transporting substance and a resin binder, and coating this coating liquid on a conductive substrate.

第2図の感光体は、導電性基体上に電荷発生物質を真空
蒸着するか、あるいは電荷発生物質の粒子を溶剤または
樹脂バインダー中に分散あるいは溶解して得た塗布液を
塗布、乾燥し、その上に電荷輸送物質および樹脂バイン
ダーを溶解した溶液を塗布、乾燥することにより作製で
きる。
The photoreceptor shown in FIG. 2 is produced by vacuum-depositing a charge-generating substance on a conductive substrate, or by applying a coating solution obtained by dispersing or dissolving particles of a charge-generating substance in a solvent or a resin binder, and drying it. It can be produced by applying a solution containing a charge transport substance and a resin binder thereon and drying it.

第3図の感光体は、電荷輸送物質および樹脂バインダー
を溶解した溶液を導電性基体上に塗布、乾燥し、その上
に電荷発生物質を真空蒸着するか、あるいは電荷発生物
質の粒子を溶剤または樹脂バインダー中に分散あるいは
溶解して得た塗布液を塗布、乾燥し、さらに被覆層を形
成することにより作製できる。
The photoreceptor shown in Figure 3 is produced by coating a conductive substrate with a solution containing a charge transporting substance and a resin binder and drying it, and then vacuum-depositing a charge generating substance thereon, or by depositing charge generating substance particles in a solvent or a solvent. It can be produced by applying a coating liquid obtained by dispersing or dissolving in a resin binder, drying it, and further forming a coating layer.

導電性基体1は感光体の電極としての役目と同時に他の
各層の支持体となっており、円筒状、板状、フィルム状
のいずれでも良く、材質的にはアルミニウム、ステンレ
ス鋼、ニッケルなどの金属、あるいはガラス、樹脂など
の上に導電処理をほどこしたものでも良い。
The conductive substrate 1 serves as an electrode for the photoreceptor and at the same time serves as a support for the other layers, and may be cylindrical, plate-shaped, or film-shaped, and may be made of aluminum, stainless steel, nickel, etc. It may also be made of metal, glass, resin, or the like, which has been subjected to conductive treatment.

電荷発生層4は、前記したように電荷発生物質3の粒子
を溶剤または樹脂バインダー中に分散あるいは溶解させ
た材料を塗布するか、あるいは、真空蒸着などの方法に
より形成され、光を受容して電荷を発生する。また、そ
の電荷発生効率が高いことと同時に発生した電荷の電荷
輸送層6および被覆層7への注入性が重要で、電場依存
性が少なく低電場でも注入の良いことが望ましい。電荷
発生物質としては、無金属フタロシアニン、チタニルフ
タロシアニンなどのフタロシアニン化合物、各種アゾ、
キノン、インジゴなどの顔料、あるいは、シアニン、ス
クアリリウム、アズレニウム。
The charge generation layer 4 is formed by applying a material in which particles of the charge generation substance 3 are dispersed or dissolved in a solvent or a resin binder as described above, or by a method such as vacuum deposition, and is formed by receiving light. Generates electric charge. In addition to the high charge generation efficiency, the ability to inject the generated charges into the charge transport layer 6 and the coating layer 7 is also important, and it is desirable that the charge is less dependent on the electric field and can be easily injected even in a low electric field. As charge generating substances, phthalocyanine compounds such as metal-free phthalocyanine and titanyl phthalocyanine, various azo,
Pigments such as quinone and indigo, or cyanine, squaryllium, and azulenium.

ビリリウム化合物などの染料や、セレンまたはセレン化
合物などが用いられ、画像形成に使用される露光光源の
光波長領域に応じて好適な物質を選ぶことができる。電
荷発生層は電荷発生機能を有すればよいので、その膜厚
は電荷発生物質の光吸収係数より決まり一般的には5μ
m以下であり、好適には1μm以下である。電荷発生層
は電荷発生物質を主体としてこれに電荷輸送物質などを
添加して使用することも可能である。樹脂バインダーと
しては、ポリカーボネート、ポリエステル、ポリアミド
、ポリウレタン、塩化ビニル、エポキシ。
Dyes such as biryllium compounds, selenium or selenium compounds are used, and suitable substances can be selected depending on the light wavelength range of the exposure light source used for image formation. Since the charge generation layer only needs to have a charge generation function, its thickness is determined by the light absorption coefficient of the charge generation substance and is generally 5μ.
m or less, preferably 1 μm or less. The charge generation layer is mainly composed of a charge generation substance, and a charge transport substance or the like may be added thereto. Resin binders include polycarbonate, polyester, polyamide, polyurethane, vinyl chloride, and epoxy.

ジアリルフタレート樹脂、シリコン樹脂、メタクリル酸
エステルの重合体および共重合体などを適宜組み合わせ
て使用することが可能である。
Diaryl phthalate resins, silicone resins, polymers and copolymers of methacrylic acid esters, etc. can be used in appropriate combinations.

電荷輸送層6は樹脂バインダー中に有機電荷輸送物質と
して前記一般式(I)または(II)で示される化合物
を分散させた塗膜であり、暗所では絶縁体層として感光
体の電荷を保持し、光受容時には電荷発生層から注入さ
れる電荷を輸送する機能を発揮する。樹脂バインダーと
しては、ポリカーボネート、ポリエステル、ポリアミド
、ポリウレタン、エポキシ、シリコン樹脂、メタクリル
酸エステルの重合体および共重合体などを用いることが
できる。
The charge transport layer 6 is a coating film in which a compound represented by the general formula (I) or (II) as an organic charge transport substance is dispersed in a resin binder, and serves as an insulating layer to retain the charge of the photoreceptor in a dark place. However, when receiving light, it functions to transport charges injected from the charge generation layer. As the resin binder, polycarbonate, polyester, polyamide, polyurethane, epoxy, silicone resin, polymers and copolymers of methacrylic acid ester, etc. can be used.

被覆層7は暗所ではコロナ放電の電荷を受容して保持す
る機能を有しており、かつ電荷発生層が感応する光を透
過する性能を有し、露光時に光を透過し、電荷発生層に
到達させ、発生した電荷の注入を受けて表面電荷を中和
消滅させることが必要である。被覆材料としては、ポリ
エステル、ポリアミドなどの有機絶縁性皮膜形成材料が
適用できる。また、これら有機材料と無機高分子樹脂。
The coating layer 7 has the function of receiving and retaining the charge of corona discharge in a dark place, and has the ability to transmit the light to which the charge generation layer is sensitive, and transmits the light upon exposure, and the charge generation layer It is necessary to neutralize and eliminate the surface charges by injecting the generated charges. As the coating material, organic insulating film-forming materials such as polyester and polyamide can be used. In addition, these organic materials and inorganic polymer resins.

5i02などの無機材料さらには金属、金属酸化物など
の電気抵抗を低減させる材料とを混合して用いることも
できる。被覆材料としては有機絶縁性皮膜形成材料に限
定されることはな(5i02などの無機材料、さらには
金属、金属酸化物などを蒸着。
It is also possible to use a mixture of inorganic materials such as 5i02 and materials that reduce electrical resistance such as metals and metal oxides. The coating material is not limited to organic insulating film-forming materials (inorganic materials such as 5i02, as well as metals, metal oxides, etc., can be vapor-deposited).

スパッタリングなどの方法により形成することも可能で
ある。被覆材料は前述の通り電荷発生物質の光の吸収極
大の波長領域においてできるだけ透明であることが望ま
しい。
It is also possible to form by a method such as sputtering. As mentioned above, it is desirable that the coating material be as transparent as possible in the wavelength region where the charge generating substance absorbs maximum light.

被覆層自体の膜厚は被覆層の配合組成にも依存するが、
繰り返し連続使用したとき残留電位が増大するなどの悪
影響が出ない範囲で任意に設定できる。
The thickness of the coating layer itself depends on the composition of the coating layer, but
It can be set arbitrarily within a range that does not cause adverse effects such as an increase in residual potential when used repeatedly and continuously.

以下、この発明の実施例について説明する。Examples of the present invention will be described below.

実施例1 X型無金属フタロシアニン(82PC) 50重量部と
前記化合物Nα1で示される化合物100重量部とをポ
リエステル樹脂(商品名バイロン200:東洋紡製)1
00重量部とテトラヒドロフラン(THF)溶剤ととも
に3時間混合機により混練して塗布液を調製し、導電性
基体であるアルミ蒸着ポリエステルフィルム(AJ−P
ET)上に、ワイヤーバー法にて塗布して、乾燥後の膜
厚が15μmになるように感光層を形成し、第1図に示
した構成の感光体を作製した。
Example 1 50 parts by weight of X-type metal-free phthalocyanine (82PC) and 100 parts by weight of the compound represented by the compound Nα1 were mixed into a polyester resin (trade name: Vylon 200, manufactured by Toyobo) 1
00 parts by weight and a tetrahydrofuran (THF) solvent for 3 hours in a mixer to prepare a coating solution, and coated with aluminum vapor-deposited polyester film (AJ-P) as a conductive substrate.
ET) by a wire bar method to form a photosensitive layer having a dry film thickness of 15 μm, thereby producing a photoreceptor having the structure shown in FIG. 1.

実施例2 前記化合物Nα2で示される化合物80重量部とポリカ
ーボネート樹脂(商品名パンライトL−1225:音大
製)100重量部とを塩化メチレンに溶解してできた塗
液をアルミ蒸着ポリエステルフィルム基体上にワイヤー
バー法にて塗布し、乾燥後の膜厚が15μmになるよう
に電荷輸送層を形成した。 このようにして得られた電
荷輸送層上に、ボールミルにより150時間粉砕処理し
たチタニルフタロシアニン(TiOPc) 50重量部
とポリエステル樹脂(商品名バイロン200:東洋紡製
)50重量部とをTHF溶剤とともに3時間混合機によ
り混練して塗布液を調製し、ワイヤーバー法にて塗布し
、乾燥後の膜厚が1μmになるように電荷発生層を形成
し、第3図に示した構成に対応する感光体を作製した。
Example 2 A coating solution prepared by dissolving 80 parts by weight of the compound represented by the compound Nα2 and 100 parts by weight of polycarbonate resin (trade name Panlite L-1225, manufactured by Ondai) in methylene chloride was applied to an aluminum-deposited polyester film substrate. A charge transport layer was formed by coating on top by a wire bar method so that the film thickness after drying was 15 μm. On the charge transport layer thus obtained, 50 parts by weight of titanyl phthalocyanine (TiOPc), which had been pulverized by a ball mill for 150 hours, and 50 parts by weight of a polyester resin (trade name: Vylon 200, manufactured by Toyobo) were mixed with a THF solvent for 3 hours. A coating solution was prepared by kneading it with a mixer, and it was applied using a wire bar method to form a charge generation layer so that the film thickness after drying was 1 μm, and a photoreceptor corresponding to the structure shown in FIG. 3 was prepared. was created.

ただし、この発明に直接関与しない被覆層は設けなかっ
た。
However, a coating layer not directly related to this invention was not provided.

実施例3 実、施例2におけるTi0Pcを下記構造式で示される
スクアリリウム化合物に変え、さらに電荷輸送物質を前
記化合物N13で示される化合物に変え、その他は実施
例2と同様にして感光体を作製した。
Example 3 In fact, a photoreceptor was produced in the same manner as in Example 2, except that Ti0Pc in Example 2 was changed to a squarylium compound represented by the following structural formula, and the charge transport material was changed to a compound represented by the compound N13. did.

実施例4 実施例2におけるTi0Pcを例えば特開昭47−37
543号公報に示されるようなビスアゾ顔料であるクロ
ロダイアンブルーに変え、さらに電荷輸送物質を前記化
合物Nα4で示される化合物に変え、その他は実施例2
と同様にして感光体を作製した。
Example 4 Ti0Pc in Example 2 was prepared using, for example, JP-A-47-37.
The procedure of Example 2 was changed to Chlorodiane Blue, a bisazo pigment as shown in Japanese Patent No. 543, and the charge transport substance was changed to the compound represented by the compound Nα4.
A photoreceptor was produced in the same manner as described above.

このようにして得られた感光体の電子写真特性を川口電
機製静電記録紙試験装置r S P−428Jを用いて
測定した。
The electrophotographic properties of the photoreceptor thus obtained were measured using an electrostatic recording paper tester RSP-428J manufactured by Kawaguchi Electric.

感光体の表面電位V、(ボルト)は暗所で+6.0kV
のコロナ放電を10秒間行って感光体表面を正帯電させ
たときの初期の表面電位であり、続いてコロナ放電を中
止した状態で2秒間暗所保持したときの表面電位Vd(
ボルト)を測定し、さらに続いて感光体表面に照度2ル
ツクスの白色光を照射してVdが半分になるまでの時間
(秒)を求め半減衰露光量El、□(ルックス・秒)と
した。また、照度2ルツクスの白色光を10秒間照射し
たときの表面電位を残留電位V、(ボルト)とした。ま
た、実施例1〜3については、長波長光での高感度が期
待できるので、波長780nmの単色光を用いたときの
電子写真特性も同時に測定した。すなわち、Vdまでは
同様に測定し、次に白色光の替わりに1μWの単色光(
780重m)を照射して半減衰露光量(μJ/am)を
求め、また、この光を10秒間感光体表面に照射したと
きの残留電位V、(ボルト)を測定した。
The surface potential V, (volt) of the photoreceptor is +6.0kV in the dark.
This is the initial surface potential when corona discharge is performed for 10 seconds to positively charge the surface of the photoreceptor, and the surface potential is Vd (
Next, the photoreceptor surface was irradiated with white light with an illuminance of 2 lux, and the time (seconds) until Vd was halved was determined, and the half-attenuation exposure amount El, □ (lux seconds) was determined. . Further, the surface potential when white light with an illuminance of 2 lux was irradiated for 10 seconds was defined as the residual potential V (volt). Further, for Examples 1 to 3, since high sensitivity with long wavelength light can be expected, the electrophotographic characteristics when using monochromatic light with a wavelength of 780 nm were also measured at the same time. That is, measurements were made in the same way up to Vd, and then 1 μW monochromatic light (
The half-attenuation exposure amount (μJ/am) was determined by irradiating the photoreceptor with 780 weight m), and the residual potential V, (volt) when the surface of the photoreceptor was irradiated with this light for 10 seconds was measured.

測定結果を第1表に示す。The measurement results are shown in Table 1.

第  1  表 第1表に見られるように、実施例1,2.3および4は
半減衰露光量、残留電位ともに互いに遜色はなく、また
表面電位でも良好な特性を示している。また、実施例1
〜3においては波長?3Qnmの長波長光でも高感度を
示し、半導体レーザプリンタ用として充分使用可能であ
ることが判る。
Table 1 As seen in Table 1, Examples 1, 2.3 and 4 are comparable in half-attenuation exposure and residual potential, and also exhibit good characteristics in terms of surface potential. In addition, Example 1
~Wavelength in 3? It can be seen that it shows high sensitivity even with long wavelength light of 3Qnm, and can be used satisfactorily for semiconductor laser printers.

実施例5 厚さ500μmのアルミニウム板上に、セレンを厚さ1
.5μmに真空蒸着し電荷発生層を形成し、次に、化合
物Nα5で示される化合物100重1111とポリカー
ボネート樹脂P C2200:三菱ガス化学製)100
重量部とを塩化メチレンに溶解してできた塗液をワイヤ
ーバー法にて塗布し、乾燥後の膜厚が20μmになるよ
うに電荷輸送層を形成し、第2図に示した構成の感光体
を作製した。この感光体について、コロナ放電電圧を−
6,0kVとしたこと以外は、前述の実施例1〜4の場
合と同様にして電子写真特性を測定したとコロ、V、=
−680V、 V、=−50V。
Example 5 Selenium was deposited to a thickness of 1 on a 500 μm thick aluminum plate.
.. A charge generation layer was formed by vacuum evaporation to a thickness of 5 μm, and then a compound represented by compound Nα5 (100×1111) and polycarbonate resin (PC2200: manufactured by Mitsubishi Gas Chemical Co., Ltd.) 100
A coating liquid prepared by dissolving parts of The body was created. For this photoreceptor, the corona discharge voltage is −
The electrophotographic characteristics were measured in the same manner as in Examples 1 to 4 above, except that the voltage was 6.0 kV.
-680V, V, = -50V.

E、/2=1.9ルツクス・秒と良好な結果が得られた
A good result was obtained, E,/2=1.9 lux·sec.

実施例6 X型無金属フタロシアニン50重量部と塩化ビニル共重
合体(商品名MR−41f):日本ゼオン製)51)重
量部とを塩化メチレンとともに3時間混合機により混練
して塗市液を調製し、アルミニウム支持体上に約1μm
になるように塗布し、電荷発生層を形成した。次に、化
合物Nα6で示される化合物100重量部とポリカーボ
ネート樹脂(商品名パンライトL−1250:音大M)
 100重量部とシリコンオイル0.1重量部とを塩化
メチレンで混合し、電荷発生層の上に約15μmとなる
ように塗布し、電荷輸送層を形成し、感光体を作製した
Example 6 50 parts by weight of X-type metal-free phthalocyanine and 51 parts by weight of vinyl chloride copolymer (trade name MR-41f, manufactured by Nippon Zeon) were kneaded together with methylene chloride in a mixer for 3 hours to prepare a coating liquid. prepared and deposited approximately 1 μm on an aluminum support.
A charge generation layer was formed. Next, 100 parts by weight of a compound represented by compound Nα6 and a polycarbonate resin (trade name Panlite L-1250: Music University M)
100 parts by weight of silicone oil and 0.1 parts by weight of silicone oil were mixed with methylene chloride, and the mixture was coated on the charge generation layer to a thickness of about 15 μm to form a charge transport layer, thereby producing a photoreceptor.

このようにして得られた感光体を実施例5と同様にして
、電子写真特性を測定したところ、 V。
The electrophotographic properties of the thus obtained photoreceptor were measured in the same manner as in Example 5.V.

=−650V、E l/2 =2.3 ルー/ クス・
秒(!: 良好す結果が得られた。
=-650V, E l/2 =2.3 ru/x.
seconds (!: Good results were obtained.

実施例7 実施例6における無金属フタロシアニンを下記構造式で
示されるビスアゾ顔料に変え、また電荷輸送物質を化合
物Nα7で示される化合物に変え、その他は実施例6と
同様にして感光体を作製した。
Example 7 A photoreceptor was produced in the same manner as in Example 6, except that the metal-free phthalocyanine in Example 6 was changed to a bisazo pigment represented by the following structural formula, and the charge transport substance was changed to a compound represented by compound Nα7. .

このようにして得られた感光体を実施例5と同様にして
、電子写真特性を測定したところ、V−=−650V、
 E l/2−2.1ルツクス・秒と良好な結果が得ら
れた。
When the electrophotographic characteristics of the thus obtained photoreceptor were measured in the same manner as in Example 5, V-=-650V,
A good result of E l/2-2.1 lux·sec was obtained.

実施例8 化合物Nα8〜N[L42それぞれについて実施例4と
同様にして感光体を作製し、実施例1〜4の場合と同様
にして電子写真特性を測定した。
Example 8 Photoreceptors were prepared in the same manner as in Example 4 for each of the compounds Nα8 to N[L42, and the electrophotographic properties were measured in the same manner as in Examples 1 to 4.

そのうちの半減衰露光量El/l(ルックス・秒)の測
定結果を第2表に示す。
Among them, the measurement results of the half-attenuation exposure amount El/l (lux/second) are shown in Table 2.

第 2 表 (その2) 第2表に見られるように、前記化合物Nα8〜Nα42
を電荷輸送物質として用いた感光体についても、半減衰
露光量El/□はすべで良好であった。
Table 2 (Part 2) As seen in Table 2, the compounds Nα8 to Nα42
The half-attenuation exposure amount El/□ of the photoreceptor using as a charge transport material was also good in all cases.

〔発明の効果〕〔Effect of the invention〕

この発明によれば、導電性基体上に電荷輸送物質として
前記一般式(I)または(I[)で示される化合物を用
いることとしたため、正帯電および負帯電においても高
感度でしかも繰り返し特性の優れた感光体を得ることが
できる。また、電荷発生物質は露光光源の種類に対応し
て好適な物質を選ぶことができ、−例をあげるとフタロ
シアニン化合物、スクアリリウム化合物ふよびある種の
ビスアゾ化合物などを用いれば、半導体レーザプリンタ
に使用可能な感光体を得ることができる。さらに、必要
に応じて表面に被覆層を設置して耐久性を向上すること
が可能である。
According to this invention, since the compound represented by the general formula (I) or (I[) is used as a charge transport substance on a conductive substrate, it is highly sensitive even when positively charged and negatively charged, and has excellent repeatability. An excellent photoreceptor can be obtained. In addition, suitable charge-generating substances can be selected depending on the type of exposure light source; for example, phthalocyanine compounds, squarylium compounds, and certain bisazo compounds can be used in semiconductor laser printers. It is possible to obtain a photoreceptor that is possible. Furthermore, if necessary, it is possible to provide a coating layer on the surface to improve durability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図および第3図はこの発明の感光体のそれ
ぞれ異なる実施例を示す概念的断面図である。 1 導電性基体、3・電荷発生物質、4 電荷発生層、
5 電荷輸送物質、6 電荷輸送層、7被覆層、20.
21.22  感光層。
FIGS. 1, 2, and 3 are conceptual cross-sectional views showing different embodiments of the photoreceptor of the present invention. 1. Conductive substrate, 3. Charge generating substance, 4. Charge generating layer,
5 charge transport material, 6 charge transport layer, 7 coating layer, 20.
21.22 Photosensitive layer.

Claims (1)

【特許請求の範囲】 1)下記一般式( I )または(II)のうちのいずれか
で示される化合物のうちの、少なくとも一種を含む感光
層を備えていることを特徴とする電子写真用感光体。 ▲数式、化学式、表等があります▼・・・・・・( I
) 〔式( I )中、R_1およびR_2はそれぞれ水素原
子、ハロゲン原子、アルキル基、アリール基のうちのい
ずれかを表し、Aは置換もしくは無置換のアリール基、
複素環基のうちのいずれかを表す。〕▲数式、化学式、
表等があります▼・・・・・・(II) 〔式(II)中、R_1は水素原子、ハロゲン原子、アル
キル基のうちのいずれかを表し、R_2およびR_3は
それぞれ水素原子、アルキル基、アリール基、複素環基
のうちのいずれかを表し、Aは置換もしくは無置換のア
リール基、複素環基のうちのいずれかを表す。〕
[Scope of Claims] 1) An electrophotographic photosensitive layer comprising a photosensitive layer containing at least one compound represented by the following general formula (I) or (II): body. ▲There are mathematical formulas, chemical formulas, tables, etc.▼・・・・・・( I
) [In formula (I), R_1 and R_2 each represent a hydrogen atom, a halogen atom, an alkyl group, or an aryl group, and A is a substituted or unsubstituted aryl group,
Represents any heterocyclic group. 〕▲Mathematical formula, chemical formula,
There are tables, etc.▼・・・・・・(II) [In formula (II), R_1 represents a hydrogen atom, a halogen atom, or an alkyl group, and R_2 and R_3 represent a hydrogen atom, an alkyl group, or an alkyl group, respectively. It represents either an aryl group or a heterocyclic group, and A represents either a substituted or unsubstituted aryl group or a heterocyclic group. ]
JP24845489A 1989-09-25 1989-09-25 Electrophotographic sensitive body Pending JPH03109554A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24845489A JPH03109554A (en) 1989-09-25 1989-09-25 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24845489A JPH03109554A (en) 1989-09-25 1989-09-25 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH03109554A true JPH03109554A (en) 1991-05-09

Family

ID=17178375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24845489A Pending JPH03109554A (en) 1989-09-25 1989-09-25 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH03109554A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120172599A1 (en) * 2009-08-24 2012-07-05 Akira Otomo Second-order nonlinear optical compound and nonlinear optical element comprising the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120172599A1 (en) * 2009-08-24 2012-07-05 Akira Otomo Second-order nonlinear optical compound and nonlinear optical element comprising the same
US8846955B2 (en) * 2009-08-24 2014-09-30 National Institute Of Information And Communications Technology Second-order nonlinear optical compound and nonlinear optical element comprising the same
US9488755B2 (en) 2009-08-24 2016-11-08 National Institute Of Information And Communications Technology Second-order nonlinear optical compound and nonlinear optical element comprising the same
US9977150B2 (en) 2009-08-24 2018-05-22 National Institute Of Information And Communications Technology Second-order nonlinear optical compound and nonlinear optical element comprising the same
US10754064B2 (en) 2009-08-24 2020-08-25 National Institute Of Information And Communications Technology Second-order nonlinear optical compound and nonlinear optical element comprising the same

Similar Documents

Publication Publication Date Title
JPH0279855A (en) Electrophotographic sensitive body
JPH04119360A (en) Electrophotographic sensitive body
JP2770539B2 (en) Electrophotographic photoreceptor
JPH032760A (en) Electrophotographic sensitive body
JPH05204175A (en) Electrophotographic sensitive body
JPH0194349A (en) Electrophotographic sensitive body
JP3006329B2 (en) Electrophotographic photoreceptor
JP2814739B2 (en) Electrophotographic photoreceptor
JP3114394B2 (en) Electrophotographic photoreceptor
JP3240765B2 (en) Electrophotographic photoreceptor
JPH03109554A (en) Electrophotographic sensitive body
JPH04304465A (en) Electrophotographic sensitive body
JPH03255453A (en) Electrophotographic sensitive body
JP2817807B2 (en) Electrophotographic photoreceptor
JP3173298B2 (en) Electrophotographic photoreceptor
JPH03109555A (en) Electrophotographic sensitive body
JP3346411B2 (en) Electrophotographic photoreceptor
JPH0394263A (en) Electrophotographic sensitive body
JPH09134021A (en) Electrophotographic photoreceptor
JPH04136949A (en) Electrophotographic sensitive body
JPH03282555A (en) Electrophotographic sensitive body
JPH05158260A (en) Electrophotographic sensitive body
JPH03102359A (en) Electrophotographic sensitive body
JPH04263265A (en) Electrophotograhic sensitive body
JPH0683084A (en) Electrophotographic sensitive body