JPH0559424A - Method for producing high cleanliness steel - Google Patents

Method for producing high cleanliness steel

Info

Publication number
JPH0559424A
JPH0559424A JP22168191A JP22168191A JPH0559424A JP H0559424 A JPH0559424 A JP H0559424A JP 22168191 A JP22168191 A JP 22168191A JP 22168191 A JP22168191 A JP 22168191A JP H0559424 A JPH0559424 A JP H0559424A
Authority
JP
Japan
Prior art keywords
steel
molten steel
molten
slag
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22168191A
Other languages
Japanese (ja)
Other versions
JPH0791577B2 (en
Inventor
Nobuyuki Makino
伸幸 槙野
Iwao Matsui
巌 松井
Tsugio Yoshikawa
次男 吉川
Katsushiro Yanagi
勝城 柳
Suteyoshi Yamada
捨美 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22168191A priority Critical patent/JPH0791577B2/en
Publication of JPH0559424A publication Critical patent/JPH0559424A/en
Publication of JPH0791577B2 publication Critical patent/JPH0791577B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To easily produce a low Cr clean steel by blowing oxygen-containing gas into molten steel in a furnace and also suitably adjusting temp. of the molten steel and T-Fe content in molten slag at the time of producing the low Cr clean steel by using a furnace producing the Cr-containing steel. CONSTITUTION:By using the metal refining furnace contaminated with Cr caused by production of alloy steel containing much Cr content, steel scrap, etc., for raw material is melted and Fe2O3-containing raw material of scale, etc., is added and also, the pure oxygen gas or the oxygen-containing gas is blown into the molten steel for raw material. The Fe2O3 in the molten slag is made to strong oxidizing property of >=30% as the T-Fe and also, C, Si and Cr in the molten steel are refined to the oxidized-removal oxidizing force of the gaseous oxygen. The ratio (Cr)/[Cr] of the Cr content (Cr) as Cr2O3 in the molten slag to the Cr content [Cr] in the molten steel rapidly becomes large when the temp. of molten steel is <=1650 deg.C, and de-Cr reaction is promoted. After preventing restoration of Cr in the molten slag into the molten steel by removing the molten slag containing much (Cr), the molten steel temp. is risen and the high purity molten steel containing <=0.1% [Cr] is stably tapped off from the refining furnace.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、含クロム鋼を溶製した
炉を用いて高清浄度鋼を溶製する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing high-cleanliness steel using a furnace in which chromium-containing steel is produced.

【0002】[0002]

【従来の技術】一般に、同一の炉を用いて成分の大きく
異なる鋼を溶製する際には、各ヒート間の溶鋼の汚染が
問題となるため、炉洗いを目的とした鋼を溶製し溶鋼汚
染を防止する手段が取られているが、微量成分の完全除
去は困難であった。ステンレス鋼等の高クロム鋼を溶製
した炉を用いた場合においても、溶鋼中にクロムが不可
避的に混入するためクロムを除去した高清浄度鋼の溶製
が容易ではなかった。
2. Description of the Related Art Generally, when melting steels having greatly different components in the same furnace, contamination of molten steel between heats poses a problem. Although measures have been taken to prevent molten steel contamination, it has been difficult to completely remove trace components. Even when using a furnace in which high-chromium steel such as stainless steel is smelted, it is not easy to smelt high-cleanliness steel from which chrome is removed because chromium is inevitably mixed in the molten steel.

【0003】[0003]

【発明が解決しようとする課題】本発明は、クロムによ
る溶鋼汚染の回避が困難な含クロム鋼を溶製した炉を用
いて、[Cr]≦0.1%の高清浄度鋼を効率よく製造
する精錬方法の提供を課題としている。
DISCLOSURE OF THE INVENTION The present invention uses a furnace in which chromium-containing steel, which is difficult to avoid contamination with molten steel due to chromium, is melted, and [Cr] ≦ 0.1% of high cleanliness steel is efficiently produced. The challenge is to provide a refining method for manufacturing.

【0004】[0004]

【課題を解決するための手段および作用】高清浄度鋼を
製造する場合の粗溶鋼は、屑鉄等を所定の成分に配合し
て例えばアーク式電気炉で溶解して製造する。配合原料
としてクロムを含有しないものを使用した場合において
も、含クロム鋼を溶製した炉を用いた場合は、粗溶鋼中
に約1%のクロムが混入する。本発明における脱クロム
方法は、粗溶鋼を転炉などの各種精錬炉に装入し必要に
応じて造滓材を添加して、酸素または酸素を含むガスを
吹込み、C,Si等の酸化反応により除去可能な成分と
ともにクロムを酸化除去して0.1%以下にするもので
ある。
Means and Actions for Solving the Problems Crude molten steel for producing high cleanliness steel is produced by mixing scrap iron or the like with predetermined components and melting it in an arc type electric furnace, for example. Even when a material containing no chromium is used as a compounding raw material, when a furnace in which chromium-containing steel is smelted is used, about 1% of chromium is mixed in the crude molten steel. In the dechromization method of the present invention, crude molten steel is charged into various refining furnaces such as a converter, a slag material is added if necessary, and oxygen or a gas containing oxygen is blown to oxidize C, Si or the like. Chromium is oxidized and removed together with the components that can be removed by the reaction to 0.1% or less.

【0005】本発明は、前記脱クロムを効率的に行うた
め、精錬中の温度を1650℃以下に制御すると同時
に、スラグ中のT−Feを30%以上に制御する。一般
に脱クロム反応は下記の式で表される。 2Cr+30=Cr23 溶鋼温度の低下はこの反応を促進する作用をするため、
溶鋼温度が低いほど有利となる。図1は、酸化工程末期
の溶鋼温度と脱クロム率(Cr)/[Cr]の関係を示
す。
In the present invention, in order to efficiently carry out the dechromization, the temperature during refining is controlled to 1650 ° C. or lower, and at the same time, T-Fe in the slag is controlled to 30% or higher. Generally, the dechromation reaction is represented by the following formula. 2Cr + 30 = Cr 2 O 3 Since lowering the molten steel temperature acts to accelerate this reaction,
The lower the molten steel temperature, the more advantageous. FIG. 1 shows the relationship between the molten steel temperature at the end of the oxidation step and the dechromization rate (Cr) / [Cr].

【0006】図1にみられる如く、溶鋼温度の低下にと
もない(Cr)/[Cr]は増加し、特に1650℃以
下でその傾向が顕著に現われる。従って溶鋼温度は16
50℃以下とすることが必要である。また、スラグ中の
T−Feは脱クロム反応によって生成したクロム酸化物
のスラグ中の活量を低減させるため、T−Feの増加に
つれ(Cr)/[Cr]が向上する。図2はスラグ中T
−Feと脱クロム率(Cr)/[Cr]の関係を示す。
As shown in FIG. 1, (Cr) / [Cr] increases with a decrease in molten steel temperature, and the tendency is remarkable especially at 1650 ° C. or lower. Therefore, the molten steel temperature is 16
It is necessary to set the temperature to 50 ° C or lower. Further, since T-Fe in the slag reduces the activity of chromium oxide produced by the dechromization reaction in the slag, (Cr) / [Cr] improves as T-Fe increases. Figure 2 T during slag
The relationship between -Fe and the dechromization rate (Cr) / [Cr] is shown.

【0007】図2にみられる如く、T−Feの増加にと
もない(Cr)/[Cr]は増加し溶鋼温度1650℃
以下の場合、特にT−Feを30%以上においてその傾
向が顕著に現われる、従ってT−Feは30%以上とす
る事が必要である。
As shown in FIG. 2, (Cr) / [Cr] increases with an increase in T-Fe, and the molten steel temperature is 1650 ° C.
In the following cases, the tendency is particularly remarkable when T-Fe is 30% or more, and therefore it is necessary to set T-Fe to 30% or more.

【0008】酸化工程におけるC,Si,Cr等の成分
の除去は、酸化発熱を伴った反応であり、さらにスラグ
中T−Feを増加させるための鉄の酸化も同様である。
従って、精錬が進行するにつれ溶鋼温度は上昇する傾向
にある。そこで、酸化反応に必要な酸素の一部を酸化鉄
を含む固体酸素源にて補うことで、その冷却効果を利用
して溶鋼温度を制御しつつ、酸化反応を進行させること
が可能となる。特に固体酸素源としての鉄鉱石などの酸
化鉄の使用は、酸化鉄の溶解及び分解反応による吸熱効
果を利用出来るため、溶鋼温度制御が容易になるばかり
でなく、酸化鉄によりスラグ中のT−Feも増加するこ
とが可能である。
Removal of components such as C, Si and Cr in the oxidation step is a reaction accompanied by exothermic heat of oxidation, and the same applies to the oxidation of iron for increasing T-Fe in slag.
Therefore, the molten steel temperature tends to rise as refining proceeds. Therefore, by supplementing a part of oxygen necessary for the oxidation reaction with a solid oxygen source containing iron oxide, it becomes possible to advance the oxidation reaction while controlling the molten steel temperature by utilizing the cooling effect. In particular, the use of iron oxide such as iron ore as a solid oxygen source not only facilitates molten steel temperature control because the endothermic effect of the dissolution and decomposition reaction of iron oxide can be utilized, but the iron oxide causes T-in the slag. Fe can also be increased.

【0009】また、酸化工程の後の還元工程やさらにそ
の後の鋳造工程等において必要な溶鋼温度が酸化工程終
了時の温度より高い場合、酸化工程において溶鋼温度を
高めに推移させ、還元や脱硫処理に必要な温度を確保す
る手段が一般的に採られている。しかし低クロム鋼の溶
製を行う場合には、溶鋼温度を上昇させると脱クロム反
応が阻害されるため、酸化工程においては溶鋼温度を低
めに推移させることが必要である。脱クロムのための酸
化工程を実施した後に、クロムが鋼中に戻ることを防止
するための強制排滓を実施し、その後に必要な溶鋼温度
まで上げる昇熱期を設けることで、脱クロム反応を阻害
することなく必要な溶鋼温度の確保が可能となる。
If the molten steel temperature required in the reduction step after the oxidation step and further in the casting step thereafter is higher than the temperature at the end of the oxidation step, the molten steel temperature is changed to a higher temperature in the oxidation step to carry out the reduction or desulfurization treatment. The means for ensuring the necessary temperature is generally adopted. However, when performing melting of low chromium steel, it is necessary to keep the temperature of molten steel low in the oxidation step because the dechromization reaction is hindered by raising the temperature of molten steel. After carrying out the oxidation process for dechromization, the dechromization reaction is carried out by performing a forced slag to prevent the chromium from returning to the steel and then providing a heating period to raise the temperature to the required molten steel. It is possible to secure the required molten steel temperature without inhibiting the above.

【0010】以上述べた如く、粗溶鋼に本発明における
脱クロム処理を実施することにより、[Cr]≦0.1
%の低クロム鋼が容易に製造出来る。
As described above, the Cr removal treatment according to the present invention is applied to the crude molten steel, whereby [Cr] ≤0.1.
% Low chromium steel can be easily manufactured.

【0011】[0011]

【実施例】以下に本発明の実施例を示す。アーク式電気
炉で、粗溶鋼を製造し、この粗溶鋼を用いて60トンA
OD炉にてインバー(36%Ni鋼)溶製を行った。その
結果を表1に示す。試験No.1からNo.5は本発明例で
あり、溶鋼に酸素及びArガスを吹き込むと同時に、溶
鋼温度を約1650℃以下に制御しつつ、T−Fe≧3
0%となるスラグを形成する酸化処理を行った。この酸
化工程により約80分以下で溶鋼中のクロムは、0.0
7%以下に低減し成品[Cr]を0.1%以下とすること
ができた。
EXAMPLES Examples of the present invention will be shown below. Crude molten steel is produced in an arc type electric furnace, and 60 tons A are produced using this crude molten steel.
Invar (36% Ni steel) was melted in an OD furnace. The results are shown in Table 1. Tests No. 1 to No. 5 are examples of the present invention, in which oxygen and Ar gas were blown into the molten steel, and at the same time the molten steel temperature was controlled to about 1650 ° C. or lower, while T-Fe ≧ 3.
Oxidation treatment was performed to form 0% slag. Due to this oxidation step, chromium in molten steel is 0.0
It was possible to reduce the amount to 7% or less and the product [Cr] to 0.1% or less.

【0012】[0012]

【表1】 [Table 1]

【0013】表1の、試験No.6及び試験No.7は比較
例を示す。試験No.6でみられる如く、スラグ中T−F
eを約59%まで高めることで、溶鋼中クロムは0.08
%まで低減可能であるが、溶鋼温度が高いため溶製時間
が約2倍となり生産性の著しい低下を招く。また試験N
o.7では溶鋼温度を1610℃、T−Feを23%とし
て精錬を行った結果を示すが、酸化工程におけるT−F
eが低いため試験No.2と同等の時間まで溶製を行って
も脱クロムが不十分で、溶製後の鋼中クロムは0.13
%、成品Crは0.17%であり、0.1%以下とするこ
とができなかった。なお、表1の炉体耐火物損傷指数
は、試験No.1における耐火物溶損量を1とした場合
の、他実施例での溶損量を示したもので、本発明例は比
較例に比べ1/5〜1/25倍の炉体耐火物の損傷に止
まっている。
In Table 1, Test No. 6 and Test No. 7 show comparative examples. As seen in Test No.6, TF in slag
By increasing e to about 59%, chromium in molten steel is 0.08
%, But since the molten steel temperature is high, the smelting time is approximately doubled, resulting in a marked decrease in productivity. Also test N
In o.7, the results of refining with the molten steel temperature at 1610 ° C and T-Fe at 23% are shown.
Since the e is low, dechromization is insufficient even if smelting is performed for a time equivalent to that of test No. 2, and chromium in steel after smelting is 0.13
%, The product Cr was 0.17%, and could not be made 0.1% or less. In addition, the furnace body refractory damage index shows the amount of melting loss in other examples when the amount of refractory melting in Test No. 1 is 1, and the present invention example is a comparative example. It is only 1/5 to 1/25 times the damage to the furnace refractories.

【0014】[0014]

【発明の効果】本発明を実施することにより、[Cr]
≦0.1%の高清浄度鋼を、含クロム鋼を溶製した炉を
用いて、効率良く生産することができる。従来、低クロ
ム鋼の溶製においては、クロムを酸化除去するために溶
鋼中に多量の酸素を吹き込んでいた。このため溶鋼温度
の上昇によって脱クロム反応が阻害されて溶製に長時間
を要していた。また溶鋼温度上昇および長時間の溶製に
よって炉体耐火物の損傷も大きかった。これに対し、本
発明は溶鋼温度を低温側に制御することで脱クロム反応
を効率よく行うことが可能となるため溶製時間も短縮で
きる。これらのことより、炉体耐火物の損傷を防止する
ことが可能となり、また生産性も著しく向上することが
できる。さらに酸素源として、廉価な鉄鉱石を用いた場
合は、溶製コストを削減できる。
By implementing the present invention, [Cr]
High cleanliness steel of ≤0.1% can be efficiently produced using a furnace in which chromium-containing steel is melted. Conventionally, in the melting of low chromium steel, a large amount of oxygen is blown into the molten steel in order to oxidize and remove chromium. For this reason, the dechromization reaction was hindered by the rise in the molten steel temperature, and it took a long time for the melting. Moreover, the damage to the refractory body of the furnace body was also large due to the rise in molten steel temperature and the long-term melting. On the other hand, in the present invention, by controlling the molten steel temperature to the low temperature side, it becomes possible to efficiently carry out the dechromization reaction, so that the melting time can be shortened. As a result, it is possible to prevent damage to the refractory body of the furnace body and also to significantly improve productivity. Further, when inexpensive iron ore is used as the oxygen source, the smelting cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

図1は溶鋼温度と脱クロム率(Cr)/[Cr]の関係
を示す図、図2はスラグ中T−Feと脱クロム率(C
r)/[Cr]の関係を示す図、である。
FIG. 1 is a diagram showing the relationship between the molten steel temperature and the chromium removal rate (Cr) / [Cr], and FIG. 2 is T-Fe in the slag and the chromium removal rate (C).
It is a figure which shows the relationship of r) / [Cr].

フロントページの続き (72)発明者 柳 勝城 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内 (72)発明者 山田 捨美 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内Front page continuation (72) Inventor Yanagi Katshiro 3434 Shimada, Hikari City, Yamaguchi Prefecture Inside the Nippon Steel Corporation, Nippon Steel Corporation (72) Inventor Sumimi Yamada, 3434 Shimada, Hikari City, Yamaguchi Prefecture Shin Nippon Steel Hikari Steel Works Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】含クロム鋼を溶製した炉を用いて重量パー
セントにして[Cr]≦0.1%の高清浄度鋼を溶製す
る際に、溶鋼中に酸素または酸素を含むガスを吹き込む
ことで鋼中のC,Si,Cr等を酸化除去する酸化工程
において、溶鋼温度を1650℃以下に制御し、かつス
ラグ中のT−Feを30%以上に制御することを特徴と
する高清浄度鋼の溶製方法。
1. When producing a high-cleanliness steel having a weight percentage of [Cr] ≦ 0.1% by using a furnace in which chromium-containing steel is produced, oxygen or a gas containing oxygen is added to the molten steel. In the oxidation step of oxidizing and removing C, Si, Cr, etc. in the steel by blowing, the molten steel temperature is controlled to 1650 ° C. or lower, and the T-Fe in the slag is controlled to 30% or higher. Method of melting cleanliness steel.
【請求項2】請求項1記載の溶製方法において、酸化工
程で酸化鉄を含む固体酸素源を添加することを特徴とす
る高清浄度鋼の溶製方法。
2. The melting method according to claim 1, wherein a solid oxygen source containing iron oxide is added in the oxidation step.
【請求項3】請求項1記載の精錬方法において、酸化工
程の後に、生成したスラグを系外に排出する排滓工程に
続いて溶鋼温度の調整を行うための昇熱期を設けること
を特徴とする高清浄度鋼の溶製方法。
3. The refining method according to claim 1, wherein after the oxidation step, a heating step for adjusting the molten steel temperature is provided subsequent to the slag step for discharging the generated slag out of the system. Method for melting high-cleanliness steel.
JP22168191A 1991-09-02 1991-09-02 High-cleanliness steel melting method Expired - Lifetime JPH0791577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22168191A JPH0791577B2 (en) 1991-09-02 1991-09-02 High-cleanliness steel melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22168191A JPH0791577B2 (en) 1991-09-02 1991-09-02 High-cleanliness steel melting method

Publications (2)

Publication Number Publication Date
JPH0559424A true JPH0559424A (en) 1993-03-09
JPH0791577B2 JPH0791577B2 (en) 1995-10-04

Family

ID=16770613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22168191A Expired - Lifetime JPH0791577B2 (en) 1991-09-02 1991-09-02 High-cleanliness steel melting method

Country Status (1)

Country Link
JP (1) JPH0791577B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1431809A2 (en) 1996-10-31 2004-06-23 Hitachi, Ltd. Liquid crystal projector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163311A (en) * 1988-12-19 1990-06-22 Sumitomo Metal Ind Ltd Method for removing cr in molten iron

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163311A (en) * 1988-12-19 1990-06-22 Sumitomo Metal Ind Ltd Method for removing cr in molten iron

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1431809A2 (en) 1996-10-31 2004-06-23 Hitachi, Ltd. Liquid crystal projector
EP2276263A2 (en) 1996-10-31 2011-01-19 Hitachi Ltd. Liquid crystal projector
EP2290992A2 (en) 1996-10-31 2011-03-02 Hitachi Ltd. Liquid crystal projector

Also Published As

Publication number Publication date
JPH0791577B2 (en) 1995-10-04

Similar Documents

Publication Publication Date Title
JP6410311B2 (en) Stainless steel refining method
JP5205799B2 (en) Method for melting Cr-containing low alloy steel
JPH0559424A (en) Method for producing high cleanliness steel
JPS61166910A (en) Production of chromium-containing alloy
JP4063452B2 (en) Stainless steel desulfurization method
JPS60106912A (en) Manufacture of low carbon-containing steel
JPS6354045B2 (en)
JP4114346B2 (en) Manufacturing method of high Cr molten steel
JP7447878B2 (en) Method for decarburizing molten Cr and method for producing Cr-containing steel
JP2002146429A (en) METHOD FOR PRODUCING AUSTENITIC HIGH Mn STAINLESS STEEL
JP3063537B2 (en) Stainless steel manufacturing method
JP2000044298A (en) Method for preventing powdering of reduction slag
JP3099152B2 (en) Raw material blending method and smelting method for chromium-containing molten steel
Sharma et al. On Increasing Mn Recovery During Production of Mn-Based Stainless Steel
JP3414811B2 (en) Recovery method of residual alloy components in slag after refining when smelting low alloy steel
JP2002285222A (en) Method for producing high chromium steel
JP4207324B2 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP2002322508A (en) METHOD FOR PRODUCING EXTRA LOW Ti STEEL
JP3578515B2 (en) Melting method of chromium-containing steel
JPH093517A (en) Method for decarburization-refining stainless steel by blowing oxygen
JPH07310109A (en) Production of stainless steel
JPH11217246A (en) Prevention of powdering of reduced slag
JP2001032009A (en) Method for refining molten steel containing chromium
JP4655127B2 (en) Method for producing austenitic stainless steel slab
JPH06104843B2 (en) High alloy steel melting method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970624