JP3578515B2 - Melting method of chromium-containing steel - Google Patents

Melting method of chromium-containing steel Download PDF

Info

Publication number
JP3578515B2
JP3578515B2 JP12881895A JP12881895A JP3578515B2 JP 3578515 B2 JP3578515 B2 JP 3578515B2 JP 12881895 A JP12881895 A JP 12881895A JP 12881895 A JP12881895 A JP 12881895A JP 3578515 B2 JP3578515 B2 JP 3578515B2
Authority
JP
Japan
Prior art keywords
molten steel
melting
oxygen
mixed gas
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12881895A
Other languages
Japanese (ja)
Other versions
JPH08302417A (en
Inventor
隆二 中尾
博範 高野
哲也 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12881895A priority Critical patent/JP3578515B2/en
Publication of JPH08302417A publication Critical patent/JPH08302417A/en
Application granted granted Critical
Publication of JP3578515B2 publication Critical patent/JP3578515B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【0001】
【産業上の利用分野】
電気炉にて含クロム鋼を溶解する工程において、溶鋼中の[Cr]の酸化を少なくし、溶解時間の短縮をはかり、効率的に装入材料の溶解を図る含クロム鋼の溶解方法に関する。
【0002】
【従来の技術】
ステンレス鋼のごとき11mass%以上のCrを含むような含クロム鋼は、電気炉で素材を溶解し、その後、上底吹き転炉、AODおよびVOD等で精錬されて、製造されている。
含クロム鋼の電気炉での溶解は、スクラップ以外にフェロクロム、フェロニッケル等の合金も溶解材料として、電気炉内に装入し材料に通電することにより、電熱によって溶解が行われる。
【0003】
電気炉で材料溶解中に、酸素ガス(以下、単に酸素という)や空気等の酸化性ガスを溶鋼内に吹込む方法は、Crを含まない普通鋼の分野では広く行われており、この方法により溶解時間の短縮や電力原単位の低減等の効率的な溶解が達成されている。
また、電気炉での含クロム鋼の溶解で、酸素を溶鋼中に吹込む方法は、AODやVODが導入される以前から行われていた。この方法は電気炉に装入した材料が完全に溶解し、溶鋼温度が約1600℃以上になった時点で、溶鋼中の[C]濃度を製品で要求される濃度まで下げるものであり、酸素の吹込みで[C]濃度の低下(脱炭)と同時に、溶鋼中の[Cr]の酸化も進行するために、AODやVODが導入されてからは通常実施されていない。
【0004】
一方、含クロム鋼の電気炉での溶解時に酸素と窒素ガスから成る空気を吹込む方法として、特開昭58−167714号公報が開示されている。この方法は、溶解期、酸化期および還元期で構成される電気炉溶解工程の中で、還元期中にアーク加熱を一時中断し、精錬用ランスから鋼浴中に空気を吹込む方法である。
この方法では還元期の効率的な還元反応の進行は図れるが、溶解期および酸化期での吹込みはなく、かつ還元期の吹込みでもアーク加熱を中断して行うために、溶解時間の短縮や溶鋼中の[Cr]酸化の防止等については十分な効果は得られていない。
【0005】
また、含クロム鋼の電気炉での溶解時に酸化性ガスを吹込む方法としては、特開昭52−95518号公報が開示されている。この方法は、電気炉内の溶鋼に純酸素とともに水蒸気を吹入れて、[C]濃度を0.2〜0.4mass%まで低下させる方法である。
この方法も材料が完全に溶解した後に、ガス吹込みを行う方法であり、[C]濃度の低下によって、精錬工程の負荷は軽減されるが、電気炉での溶解時間の短縮等の効率的な溶解にはつながっていない。
このように、従来の技術では、酸化性ガスの吹込みによって溶解時間の短縮、溶鋼中の[Cr]の酸化の防止に十分な効果は得られておらず、十分に活用されていない状況にあった。
【0006】
【発明が解決しようとする課題】
電気炉にて含クロム鋼を溶解する工程において、溶解の途中より溶鋼中に酸素を含む混合ガスの吹込みを行い、溶鋼中の[Cr]の酸化を極力抑え、溶解時間の短縮をはかる効率的な溶解方法を提供するものである。
【0007】
【課題を解決するための手段】
本発明は上述の課題を有利に解決したものであり、その要旨とするところは電気炉にて[C]濃度が1〜3mass%の含クロム鋼を溶解する工程において、該電気炉内に装入した材料の20%以上が溶けて溶鋼となった後に、酸素を10%以上含む混合ガスを前記溶鋼中に溶鋼トン当り0.01Nm3 /min以上吹込むことを特徴とする含クロム鋼の溶解方法である。また、溶鋼中に吹込むガスが酸素と不活性ガスの混合ガスであることを特徴とし、溶鋼温度の上昇にしたがい、混合ガス中の酸素の比率を最大90%まで増大させることを特徴とする含クロム鋼の溶解方法にある。
なお、溶鋼トン当りの吹込み流量は、電気炉での溶解終了時での溶鋼量を基準とした吹込み量である。
【0008】
【作用】
以下、本発明について詳細に説明する。
本発明の電気炉にて含クロム鋼を溶解する工程において、酸素を含む混合ガスを吹込む方法は、図1に例示するような方法によって行う。図1の(a)は底吹きノズルあるいは底吹き羽口から酸素を含む混合ガスを吹込む方法、(b)は炉口より上吹きランスを挿入してランスから酸素を含む混合ガスを吹込む方法を示した。
図中の1は電気炉炉体、2は電極、3は溶鋼、4は未溶解の材料、5はアーク、6は底吹きノズルあるいは底吹き羽口、7は上吹きランスを示す。
本発明は、図1の(a)および(b)に例示するように、電気炉内に装入した材料が、完全に溶解を完了していない時点より、溶鋼中に酸素を含む混合ガスを吹込む方法である。
【0009】
図2は、SUS304ステンレス鋼を電気炉で溶解した場合、酸素を含む混合ガスの吹込みを開始する時点で、装入した材料の溶解して溶鋼になった比率と、溶鋼中の[Cr]の酸化指数の関係を示す。
なお、[Cr]の酸化指数は、装入した材料が100%溶解した時点より混合ガスの吹込みを行った場合の、溶鋼中の[Cr]の酸化量の平均値を100として、比例概算した値である。
また、混合ガスの吹込み流量は溶鋼トン当りの0.01Nm /minから0.2Nm /minの範囲で行い、混合ガスとしては酸素を10〜30%含む、アルゴンあるいは窒素ガスとの混合ガスを用いた。
図2より、装入した材料の溶解した比率が20%未満では急激に[Cr]の酸化量が増大する。これより、[Cr]の酸化を防止するために、混合ガスの吹込みを開始するのは装入した材料が20%以上溶解した時点より行う必要がある。
【0010】
図3は、SUS304ステンレス鋼の電気炉での溶解で、酸素を含む混合ガスの吹込みを行った場合、溶鋼トン当りの混合ガスの吹込み流量と、溶鋼中の[Cr]の酸化指数の関係を示す。なお、[Cr]の酸化指数は溶鋼トン当りの混合ガスの吹込み流量が、0.01Nm /minの場合の、溶鋼中の[Cr]の酸化量の平均値を100として比例概算した値である。
また、混合ガスの吹込みは、装入した材料の20〜40%が溶解した時点より開始し、混合ガスとしては、酸素を10〜50%含むアルゴンあるいは窒素ガスとの混合ガスを用いた。
図3より、溶鋼トン当りの混合ガスの吹込み流量が、0.01Nm /min未満では急激に[Cr]の酸化量が増大しており、[Cr]の酸化を防止するために混合ガスの吹込み流量は、溶鋼トン当り0.01Nm /min以上にする必要がある。
【0011】
図4は、SUS304ステンレス鋼の電気炉での溶解で、酸素を含む混合ガスの吹込みを行った場合、混合ガス中の酸素の比率と溶解時間の短縮率の関係を示す。
なお、溶解時間の短縮率はガス吹込みのない場合の溶解時間に対する短縮率である。また、混合ガスの吹込み流量は、溶鋼トン当り0.01〜0.05Nm /minの範囲であり、混合ガスの吹込みは装入した材料の20〜40%が溶解した時点より開始した。
図4より、吹込み混合ガスの酸素ガスの比率が10%未満では溶解時間の短縮率は非常に小さく、溶解時間の短縮をはかり、効率的に溶解を行うには混合ガス中の酸素の比率は10%以上にする必要がある。
【0012】
図5は、SUS304ステンレス鋼の電気炉での溶解で、酸素を含む混合ガスを溶鋼トン当り0.01〜0.20Nm /minの流量で吹込みを行った場合、混合ガス中の酸素の比率と溶鋼中の[Cr]の酸化指数の関係を示す。
なお、図には混合ガスの吹込みを開始した時点が、装入した材料の20〜40%が溶解した時点の場合と、80〜100%が溶解した時点の場合を合わせて示した。
また、[Cr]の酸化指数は装入した材料の20〜40%が溶解した時点で、混合ガスの吹込みを行った場合の混合ガス中の酸素の比率が10%での溶鋼中の[Cr]の酸化量を100として比例換算した値である。
【0013】
図5より、混合ガスの吹込みを開始した時点での装入した材料の溶解した比率が高い側、つまり溶鋼温度の高い側の方が吹込みガスの酸素の比率を高くしても[Cr]の酸化が抑えられる。また、装入した材料の溶解比率が高い側でも吹込みガスの酸素の比率が90%を越えると、[Cr]の酸化が急激に増大する。
従って、溶鋼温度の上昇にしたがい、混合ガス中の酸素の比率を最大90%まで増大させることで、[Cr]の酸化を抑え効率的な脱炭が可能であることがわかる。
【0014】
以上より、電気炉にて[C]濃度が1〜3mass%の含クロム鋼を溶解する工程において、電気炉内に装入した材料の20%以上が溶けて溶鋼となった後に、酸素を10%以上含む混合ガスを溶鋼トン当り0.01Nm3 /min以上吹込むことにより、溶鋼中の[Cr]の酸化が少なく、溶解時間が短縮されて効率的な溶解が可能になる。また、前記溶鋼温度が上昇するにしたがい、混合ガス中の酸素ガスの比率を最大90%まで増大させる方法が有効である。
操業においては、装入した材料の溶けて溶鋼になった比率は総電力投入量より把握することが可能であり、総電力量の推移にしたがい、混合ガスの吹込み流量および酸素の比率を調整すればよい。
【0015】
この混合ガスの吹込みによって、溶鋼中の[C]および[Si]の酸化が進行するために、この酸化反応熱によって溶解が促進され、溶解時間の短縮および溶解電力原単位の低減につながる。
なお、溶鋼中の[C]濃度は0.5mass%以下になると[Cr]の酸化が進行しやすくなるために、この値以上に[C]濃度を保持できるように、全酸素の吹込み流量を調整することが好ましい。また、吹込み混合ガス流量の上限は、炉内の攪拌状態に依存し、炉形状によって決まる値であるが、一般的には溶鋼トン当り0.5Nm /min以下が好ましい。
【0016】
含クロム鋼を電気炉で溶解する工程では、溶解材料としてスクラップ以外にフェロクロム、フェロニッケル等の合金が用いられることが一般的である。これらの材料にはCが含まれており、酸素を含むガスの吹込みを行わなかった場合には、溶解終了時点で[C]濃度は1〜3mass%になる。
【0017】
含クロム溶鋼に酸素を含むガスを吹込んだ場合には、下記(1)式に示す脱炭反応が進行すると同時に、下記(3)式に示す溶鋼中の[Cr]の酸化反応が進行する可能性がある。なお、(1)式の反応の平衡定数Kは(2)式で表される。
【0018】
【数1】

Figure 0003578515
【0019】
ここで、PCOは雰囲気中のCOガス分圧(atm)、
,a は溶鋼中の[C]および[O]の活量、
Tは溶鋼温度(K)を夫々示す。
(3)式の[Cr]の酸化反応の進行を抑え、(1)式の脱炭反応を効率的に進行させるには(2)式より、COガス分圧PCOの低下および溶鋼温度Tの上昇が有効である。
【0020】
従来、AODやVOD等の精錬炉では、1650℃以上の高温下でPCOの低下が可能であり、効率的な脱炭が可能であった。
一方、電気炉のような溶解炉では、室温あるいは数百℃レベルより溶解を開始するために、酸素単独の吹込みでは急激な[Cr]の酸化反応が進行し、効率的な脱炭および溶解は達成することが出来なかった。
さらに、電気炉は一般的には底吹きのガス攪拌がなく、溶鋼の攪拌が弱いために、溶解中に雰囲気中に存在する酸素によって、[Cr]の酸化が進行するために、溶解後、酸化した[Cr]を回収するための還元処理が行われてきた。
【0021】
このような状況下で、本発明者らは、酸素とアルゴン、窒素等の不活性ガスの混合ガスを溶鋼中に吹込めば、アルゴン、窒素がPCOの低下に作用することを見い出した。
また、電気炉内に装入した材料の20%以上が溶けて溶鋼となった状態であれば、溶鋼温度が前記(3)式の[Cr]の酸化反応よりも、前記(1)式の脱炭反応が促進される条件が達成され、酸素を10%以上含む混合ガスの吹込みが可能になることを見い出した。
さらに、雰囲気からの[Cr]の酸化を進行させない条件として、溶鋼トン当り0.01Nm /min以上の混合ガスの吹込めばよいことも見い出した。
【0022】
これらの条件によって、[Cr]の酸化を極力少なくして、脱炭反応が進行することになるが、脱炭反応量を増加させるためには溶解比率の増大、つまり溶鋼温度の上昇にしたがい、混合ガス中の酸素の比率を最大90%までを増大させることが特に有効であることを見い出した。
このような条件での混合ガスの吹込みにより、前記(1)式の反応が進行し、生成したCOガスの一部または全部が雰囲気中に存在する酸素と反応して、下記(4)式の二次燃焼反応が進行する。
【0023】
【数2】
Figure 0003578515
【0024】
(1)式および(4)式の反応とも発熱反応であり、溶鋼温度が上昇し、溶解時間の短縮および溶解電力原単位の低減につながる。
なお、(1)式の反応進行により、溶鋼中の[C]濃度が低下する。[C]濃度が約0.5mass%以下になると(3)式の[Cr]の酸化反応が進行しやすくなるために、電気炉での溶解終了時の[C]濃度は、この程度以上にすることが好ましい。
【0025】
【実施例】
SUS304ステンレス鋼(8mass%Ni−18mass%Cr)の電気炉での溶解時に酸素と窒素ガスとの混合ガスを吹込む処理を図1(a)に示す実施態様で実施した。
溶解材料には、スクラップ、フェロクロム、フェロニッケルを用い、酸素を含む酸化性ガスの吹込みのない場合には、溶解後の[C]濃度は1.8〜2.0mass%の範囲になる条件で、溶鋼60tを製造した。
溶解後、溶解中に酸化した[Cr]を還元するためにFe−Siを添加して還元処理を行い、取鍋に出鋼し、その後、AODでの脱炭および脱硫処理等を行った後に、連続鋳造機による鋳造を行い、鋳片を製造した。
【0026】
表1に電気炉での溶解時の酸素を含む混合ガスの吹込み条件の実施例を示す。本発明の実施例は、先に示した条件を満足するように実施し、装入した材料の溶解した比率が増加するにしたがい、混合ガス中の酸素の比率を増大させた。
比較例のNo.6はガスの吹込みのない例、No.7は酸素単独の吹込みを行った例、No.8は吹込み開始時期が本発明の条件外の例、No.9は吹込み混合ガスの量が本発明の条件外の例である。
【0027】
【表1】
Figure 0003578515
【0028】
【表2】
Figure 0003578515
【0029】
実施結果を表2に示す。表中の値は比較例のNo.6の結果を100として、比較換算した値である。
本発明例では、ガス吹込みのない場合に比べ、溶鋼中の[Cr]の酸化はほぼ同等レベル以下であるために、還元用Siの添加量も同等レベル以下であり、電力原単位の低減、溶解時間の短縮、さらには精錬時間の短縮にもなり大幅な製造コストの低減が達成された。
一方、比較例では、ガス吹込みのない場合に比べ、電力原単位の若干の低減および溶解時間の短縮はあるが、溶鋼中の[Cr]の酸化が大きいために、十分な効果は得られなかった。
【0030】
【発明の効果】
本発明法によると、電気炉での含クロム鋼の溶解において、溶鋼中の[Cr]の酸化を抑制した条件で、溶鋼の脱炭が進行するために溶解時間の大幅な短縮、電力原単位の低減が達成され、併せて、その後の工程である精錬時間の短縮も達成されて、製造コストの低減および生産性の大幅な向上が達成される。
【図面の簡単な説明】
【図1】本発明の実施態様例の酸素を含む混合ガスの吹込み方法を示す図
【図2】本発明法における酸素を含む混合ガスの吹込み開始する条件の限定理由を示す図
【図3】本発明法における酸素を含む混合ガスの吹込み流量の限定理由を示す図
【図4】本発明法における吹込み混合ガス中の酸素の比率の限定理由を示す図
【図5】本発明法における吹込む混合ガス中の酸素の比率の変化を説明する図
【符号の説明】
1 電気炉炉体
2 電極
3 溶鋼
4 未溶解材料
5 アーク
6 底吹きノズル
7 上吹きランス[0001]
[Industrial applications]
The present invention relates to a method of melting chromium-containing steel in a process of melting chromium-containing steel in an electric furnace to reduce the oxidation of [Cr] in the molten steel, shorten the melting time, and efficiently melt the charged material.
[0002]
[Prior art]
BACKGROUND ART A chromium-containing steel such as stainless steel containing 11 mass% or more of Cr is manufactured by melting a material in an electric furnace and then refining in an upper and lower blow converter, AOD, VOD and the like.
Melting of chromium-containing steel in an electric furnace is performed by electric heating by charging an alloy such as ferrochrome and ferronickel as a melting material in addition to scrap and charging the material into the electric furnace.
[0003]
A method of blowing an oxidizing gas such as oxygen gas (hereinafter simply referred to as oxygen) or air into molten steel while melting the material in an electric furnace is widely used in the field of ordinary steel not containing Cr. As a result, efficient dissolution such as reduction of dissolution time and reduction of power consumption is achieved.
Also, a method of blowing oxygen into molten steel by melting chromium-containing steel in an electric furnace has been performed before AOD or VOD was introduced. In this method, when the material charged in the electric furnace is completely melted and the temperature of the molten steel reaches about 1600 ° C. or higher, the [C] concentration in the molten steel is reduced to the concentration required for the product. Is not usually carried out after the introduction of AOD or VOD since the oxidation of [Cr] in the molten steel proceeds simultaneously with the decrease of the [C] concentration (decarburization) due to the injection of water.
[0004]
On the other hand, Japanese Patent Application Laid-Open No. 58-167714 discloses a method of blowing air comprising oxygen and nitrogen gas during melting of chromium-containing steel in an electric furnace. This method is a method in which, during an electric furnace melting step composed of a melting period, an oxidation period, and a reduction period, arc heating is temporarily stopped during the reduction period, and air is blown into the steel bath from a lance for refining.
In this method, the reduction reaction can proceed efficiently in the reduction phase, but the melting time is shortened because there is no blowing in the melting and oxidation phases, and the arc heating is interrupted even during the blowing in the reduction phase. Sufficient effects have not been obtained for the prevention of [Cr] oxidation in steel and molten steel.
[0005]
Japanese Patent Application Laid-Open No. 52-95518 discloses a method of blowing an oxidizing gas during melting of a chromium-containing steel in an electric furnace. In this method, steam is blown together with pure oxygen into molten steel in an electric furnace to lower the [C] concentration to 0.2 to 0.4 mass%.
This method is also a method in which the gas is blown after the material is completely melted, and the load of the refining process is reduced by lowering the [C] concentration, but efficient such as shortening the melting time in an electric furnace. Did not lead to any dissolution.
As described above, in the conventional technique, the effect of shortening the melting time and preventing the oxidation of [Cr] in the molten steel is not sufficiently obtained by blowing the oxidizing gas, and the conventional technique is not sufficiently utilized. there were.
[0006]
[Problems to be solved by the invention]
In the process of melting chromium-containing steel in an electric furnace, a mixed gas containing oxygen is blown into the molten steel from the middle of melting to minimize oxidation of [Cr] in the molten steel and shorten the melting time. It provides an effective dissolution method.
[0007]
[Means for Solving the Problems]
The present invention has advantageously solved the above-mentioned problem, and the gist of the present invention is to dispose a chromium-containing steel having a [C] concentration of 1 to 3 mass% in an electric furnace in a step of melting the chromium-containing steel. Chromium-containing steel, characterized in that a mixed gas containing 10% or more of oxygen is blown into the molten steel at a rate of 0.01 Nm 3 / min or more per ton of molten steel after the molten steel is melted by melting at least 20% of the charged material. Is a dissolution method. Further, the gas blown into the molten steel is a mixed gas of oxygen and an inert gas, and the ratio of oxygen in the mixed gas is increased up to 90% as the molten steel temperature increases. Melting method for chromium-containing steel.
The blowing flow rate per ton of molten steel is a blowing amount based on the amount of molten steel at the end of melting in an electric furnace.
[0008]
[Action]
Hereinafter, the present invention will be described in detail.
In the step of melting the chromium-containing steel in the electric furnace of the present invention, a method of blowing a mixed gas containing oxygen is performed by a method as illustrated in FIG. 1A shows a method of blowing a mixed gas containing oxygen from a bottom blowing nozzle or a tuyere, and FIG. 1B shows a method of inserting a mixed gas containing oxygen from a lance by inserting an upper blowing lance from a furnace port. The method was shown.
In the figure, 1 is an electric furnace body, 2 is an electrode, 3 is molten steel, 4 is unmelted material, 5 is an arc, 6 is a bottom blow nozzle or a bottom blow tuyere, and 7 is a top blow lance.
As shown in FIGS. 1 (a) and 1 (b), the present invention uses a mixed gas containing oxygen in molten steel from the time when the material charged in the electric furnace has not completely melted. It is a method of blowing.
[0009]
FIG. 2 shows that when SUS304 stainless steel is melted in an electric furnace, the ratio of the charged material melted to molten steel and the [Cr] 1 shows the relationship between the oxidation indices.
Incidentally, the oxidation index of [Cr] was calculated as a proportional approximation by assuming that the average value of the oxidation amount of [Cr] in the molten steel was 100 when the mixed gas was blown from the time when the charged material was melted to 100%. Value.
Further, blowing flow rate of the mixed gas is carried out in the range of 0.01 Nm 3 / min per ton of the molten steel of 0.2 Nm 3 / min, as the mixed gas includes oxygen 10-30%, mixed with argon or nitrogen gas Gas was used.
From FIG. 2, it can be seen that when the dissolved ratio of the charged materials is less than 20%, the oxidation amount of [Cr] sharply increases. Accordingly, in order to prevent the oxidation of [Cr], it is necessary to start the blowing of the mixed gas after the charged material is dissolved by 20% or more.
[0010]
FIG. 3 shows that when a mixed gas containing oxygen is blown by melting an SUS304 stainless steel in an electric furnace, the flow rate of the mixed gas blown per ton of molten steel and the oxidation index of [Cr] in the molten steel are shown. Show the relationship. In addition, the oxidation index of [Cr] is a value obtained by proportionally calculating the average value of the oxidation amount of [Cr] in the molten steel as 100 when the flow rate of the mixed gas per ton of molten steel is 0.01 Nm 3 / min. It is.
Blowing of the mixed gas was started when 20 to 40% of the charged material was dissolved. As the mixed gas, a mixed gas with argon or nitrogen gas containing 10 to 50% of oxygen was used.
As shown in FIG. 3, when the flow rate of the mixed gas per ton of molten steel is less than 0.01 Nm 3 / min, the amount of [Cr] oxidized sharply increases. Is required to be 0.01 Nm 3 / min or more per ton of molten steel.
[0011]
FIG. 4 shows the relationship between the ratio of oxygen in the mixed gas and the shortening rate of the melting time when a mixed gas containing oxygen is blown in the melting of SUS304 stainless steel in an electric furnace.
In addition, the shortening rate of the melting time is a shortening rate with respect to the melting time when gas is not blown. The flow rate of the mixed gas was in the range of 0.01 to 0.05 Nm 3 / min per ton of molten steel, and the injection of the mixed gas was started when 20 to 40% of the charged material was melted. .
From FIG. 4, it can be seen that when the ratio of the oxygen gas in the blown mixed gas is less than 10%, the shortening rate of the dissolving time is very small. Needs to be 10% or more.
[0012]
FIG. 5 shows the melting of SUS304 stainless steel in an electric furnace, in which a mixed gas containing oxygen is blown at a flow rate of 0.01 to 0.20 Nm 3 / min per ton of molten steel. 4 shows the relationship between the ratio and the oxidation index of [Cr] in molten steel.
In the figure, the case where the injection of the mixed gas is started is the case where 20 to 40% of the charged material is dissolved and the case where 80 to 100% is dissolved.
Further, the oxidation index of [Cr] is such that, when 20 to 40% of the charged material is melted, the ratio of oxygen in the mixed gas when the mixed gas is blown is 10% and the ratio in the molten steel is 10%. This is a value obtained by proportionally converting the amount of oxidation of [Cr] to 100.
[0013]
From FIG. 5, it can be seen that the higher the melting ratio of the charged material at the time of starting the injection of the mixed gas, that is, the higher the molten steel temperature, the higher the ratio of oxygen in the injected gas [Cr ] Is suppressed. Also, even if the dissolution ratio of the charged material is high, if the oxygen ratio of the blown gas exceeds 90%, the oxidation of [Cr] sharply increases.
Therefore, it can be seen that by increasing the ratio of oxygen in the mixed gas up to 90% as the temperature of the molten steel increases, the oxidation of [Cr] can be suppressed and decarburization can be performed efficiently.
[0014]
As described above, in the step of melting a chromium-containing steel having a [C] concentration of 1 to 3 mass% in an electric furnace, oxygen is reduced by 10% after 20% or more of the material charged in the electric furnace is melted to form molten steel. % Or more of the mixed gas containing at least 0.01 Nm 3 / min per ton of molten steel, the oxidation of [Cr] in the molten steel is small, the melting time is shortened, and efficient melting becomes possible. It is also effective to increase the ratio of oxygen gas in the mixed gas up to 90% as the temperature of the molten steel increases.
In operation, the ratio of molten steel to molten steel in the charged materials can be determined from the total power input, and the flow rate of the mixed gas and the oxygen ratio are adjusted according to the transition of the total power. do it.
[0015]
The blowing of the mixed gas promotes the oxidation of [C] and [Si] in the molten steel, so that the heat of the oxidation reaction promotes the melting, thereby shortening the melting time and reducing the unit power of the melting power.
When the [C] concentration in the molten steel is 0.5 mass% or less, the oxidation of [Cr] is apt to progress. Therefore, the flow rate of the total oxygen is increased so that the [C] concentration can be maintained at or above this value. Is preferably adjusted. The upper limit of the flow rate of the blown mixed gas depends on the stirring state in the furnace and is determined by the shape of the furnace. Generally, the upper limit is preferably 0.5 Nm 3 / min or less per ton of molten steel.
[0016]
In the step of melting chromium-containing steel in an electric furnace, an alloy such as ferrochrome or ferronickel is generally used as a melting material in addition to scrap. These materials contain C, and when the gas containing oxygen is not blown, the [C] concentration becomes 1 to 3 mass% at the end of dissolution.
[0017]
When a gas containing oxygen is blown into the chromium-containing molten steel, the decarburization reaction represented by the following formula (1) proceeds, and at the same time, the oxidation reaction of [Cr] in the molten steel represented by the following formula (3) proceeds. there is a possibility. Note that the equilibrium constant K of the reaction of the equation (1) is represented by the equation (2).
[0018]
(Equation 1)
Figure 0003578515
[0019]
Here, P CO is the partial pressure of the CO gas in the atmosphere (atm),
a C and a O are the activities of [C] and [O] in the molten steel,
T indicates the molten steel temperature (K), respectively.
(3) suppressing the progress of oxidation reaction of [Cr] of formula (1) of the advancing the decarburization reaction efficiently than (2), lowered and the molten steel temperature of the CO gas partial pressure P CO T Is effective.
[0020]
Conventionally, in the refining furnace such as AOD or VOD, are possible decrease in P CO at a high temperature of above 1650 ° C., was possible efficient decarburization.
On the other hand, in a melting furnace such as an electric furnace, melting starts at room temperature or at a level of several hundred degrees Celsius, so that when oxygen alone is blown, a rapid oxidation reaction of [Cr] proceeds, resulting in efficient decarburization and melting. Could not be achieved.
Furthermore, electric furnaces generally do not have bottom-blown gas agitation and weak agitation of molten steel. Oxygen present in the atmosphere during melting promotes the oxidation of [Cr]. Reduction treatment for recovering oxidized [Cr] has been performed.
[0021]
Under such circumstances, the present inventors have found that, oxygen and argon, if put blown into the molten steel a mixed gas of an inert gas such as nitrogen, argon, nitrogen is found to act on lowering of the P CO.
In addition, if 20% or more of the material charged in the electric furnace is molten and becomes molten steel, the temperature of the molten steel is higher than the oxidation reaction of [Cr] in the above equation (3). It has been found that the conditions for accelerating the decarburization reaction are achieved, and that a mixed gas containing 10% or more of oxygen can be blown.
Furthermore, it has been found that a condition of preventing the oxidation of [Cr] from the atmosphere from proceeding is to inject a mixed gas of 0.01 Nm 3 / min or more per ton of molten steel.
[0022]
Under these conditions, the oxidation of [Cr] is minimized and the decarburization reaction proceeds, but in order to increase the amount of decarburization reaction, the melting ratio is increased, that is, as the molten steel temperature increases, Increasing the proportion of oxygen in the gas mixture up to 90% has been found to be particularly effective.
By blowing the mixed gas under such conditions, the reaction of the above formula (1) proceeds, and a part or all of the generated CO gas reacts with oxygen present in the atmosphere, and the following formula (4) The secondary combustion reaction proceeds.
[0023]
(Equation 2)
Figure 0003578515
[0024]
Both the reactions of the equations (1) and (4) are exothermic reactions, and the temperature of the molten steel rises, leading to a reduction in the melting time and a reduction in the unit power of the melting power.
Note that the [C] concentration in the molten steel decreases due to the reaction progress of the equation (1). When the [C] concentration is about 0.5 mass% or less, the oxidation reaction of [Cr] in equation (3) is likely to proceed, so that the [C] concentration at the end of melting in an electric furnace is not less than this level. Is preferred.
[0025]
【Example】
The process of blowing a mixed gas of oxygen and nitrogen gas during the melting of SUS304 stainless steel (8 mass% Ni-18 mass% Cr) in an electric furnace was performed in the embodiment shown in FIG.
Scrap, ferrochrome, and ferronickel are used as the dissolving material, and in the case where no oxidizing gas containing oxygen is blown, the [C] concentration after dissolving is in the range of 1.8 to 2.0 mass%. Thus, 60 t of molten steel was manufactured.
After melting, Fe-Si is added to reduce [Cr] oxidized during melting, reduction treatment is performed, and steel is produced in a ladle, and then after decarburization and desulfurization treatment with AOD, and the like. Then, casting by a continuous casting machine was performed to produce a slab.
[0026]
Table 1 shows examples of blowing conditions of the mixed gas containing oxygen during melting in an electric furnace. Embodiments of the present invention were implemented to satisfy the conditions set forth above, and increased the proportion of oxygen in the gas mixture as the dissolved proportion of the charged materials increased.
No. of the comparative example. No. 6 is an example without gas blowing, No. 7 is an example in which oxygen alone was blown. No. 8 is an example in which the blowing start timing is out of the condition of the present invention. 9 is an example in which the amount of the blown mixed gas is out of the condition of the present invention.
[0027]
[Table 1]
Figure 0003578515
[0028]
[Table 2]
Figure 0003578515
[0029]
The results are shown in Table 2. The values in the table are No. of the comparative example. This is a value obtained by comparing and converting the result of No. 6 to 100.
In the example of the present invention, the oxidation of [Cr] in the molten steel is substantially equal to or less than that in the case where no gas is blown. Thus, the melting time was shortened, and the refining time was shortened, so that a significant reduction in production cost was achieved.
On the other hand, in the comparative example, although the power consumption is slightly reduced and the melting time is shortened as compared with the case without gas injection, a sufficient effect can be obtained because the oxidation of [Cr] in the molten steel is large. Did not.
[0030]
【The invention's effect】
According to the method of the present invention, in the melting of chromium-containing steel in an electric furnace, the decarburization of the molten steel proceeds under the condition that the oxidation of [Cr] in the molten steel is suppressed, so that the melting time is greatly reduced, and the power consumption is reduced. Is achieved, and at the same time, the refining time, which is a subsequent step, is shortened, so that the manufacturing cost is reduced and the productivity is significantly improved.
[Brief description of the drawings]
FIG. 1 is a view showing a method of blowing an oxygen-containing mixed gas according to an embodiment of the present invention; FIG. 2 is a view showing reasons for limiting conditions for starting blowing of an oxygen-containing mixed gas in the method of the present invention; 3 shows the reason for limiting the flow rate of the mixed gas containing oxygen in the method of the present invention. FIG. 4 shows the reason for limiting the ratio of oxygen in the blown mixed gas in the method of the present invention. To explain the change in the ratio of oxygen in the gas mixture blown in the method
DESCRIPTION OF SYMBOLS 1 Electric furnace furnace body 2 Electrode 3 Molten steel 4 Unmelted material 5 Arc 6 Bottom blow nozzle 7 Top blow lance

Claims (3)

電気炉にて[C]濃度が1〜3mass%の含クロム鋼を溶解する工程において、該電気炉内に装入した材料の20%以上が溶けて溶鋼となった後に、酸素を10%以上含む混合ガスを前記溶鋼中に溶鋼トン当り0.01Nm3 /min以上吹込むことを特徴とする含クロム鋼の溶解方法。In a step of melting a chromium-containing steel having a [C] concentration of 1 to 3 mass% in an electric furnace, 20% or more of the material charged in the electric furnace is melted to become molten steel, and then oxygen is increased to 10% or more. A method for melting chromium-containing steel, characterized by blowing a mixed gas containing at least 0.01 Nm 3 / min per ton of molten steel into the molten steel. 溶鋼中に吹込むガスが酸素と不活性ガスの混合ガスであることを特徴とする請求項1記載の含クロム鋼の溶解方法。The method for melting chromium-containing steel according to claim 1, wherein the gas blown into the molten steel is a mixed gas of oxygen and an inert gas. 溶鋼温度の上昇にしたがい、混合ガス中の酸素の比率を最大90%まで増大させることを特徴とする請求項1記載の含クロム鋼の溶解方法。2. The method for melting chromium-containing steel according to claim 1, wherein the proportion of oxygen in the mixed gas is increased up to 90% as the temperature of the molten steel increases.
JP12881895A 1995-05-01 1995-05-01 Melting method of chromium-containing steel Expired - Lifetime JP3578515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12881895A JP3578515B2 (en) 1995-05-01 1995-05-01 Melting method of chromium-containing steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12881895A JP3578515B2 (en) 1995-05-01 1995-05-01 Melting method of chromium-containing steel

Publications (2)

Publication Number Publication Date
JPH08302417A JPH08302417A (en) 1996-11-19
JP3578515B2 true JP3578515B2 (en) 2004-10-20

Family

ID=14994182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12881895A Expired - Lifetime JP3578515B2 (en) 1995-05-01 1995-05-01 Melting method of chromium-containing steel

Country Status (1)

Country Link
JP (1) JP3578515B2 (en)

Also Published As

Publication number Publication date
JPH08302417A (en) 1996-11-19

Similar Documents

Publication Publication Date Title
US4474605A (en) Process for refining high-chromium steels
JPH11158526A (en) Production of high p slag
US4001009A (en) Process for the manufacture of steels with a high chromium content
JP3578515B2 (en) Melting method of chromium-containing steel
JPS6014812B2 (en) Method for preventing slopping during subsurface gas injection refining of steel
JPH08302416A (en) Method for melting chromium steel
JPH05148525A (en) Treatment of molten iron
JPH0558050B2 (en)
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
KR100191010B1 (en) Oxygen refining method of low carbon steel
JP3140256B2 (en) Slag reforming method
JP2553204B2 (en) Tuyere protection method for bottom-blown and top-blown converters
JPH07173515A (en) Decarburization refining method of stainless steel
JPH093517A (en) Method for decarburization-refining stainless steel by blowing oxygen
JPH0137450B2 (en)
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JPH07216429A (en) Production of stainless crude molten steel using decarburized slag
JPH0557349B2 (en)
JPH024938A (en) Manufacture of medium-carbon and low-carbon ferromanganese
JPS63266017A (en) Method for refining molten steel while raising temperature in ladle
JP3804143B2 (en) Atmosphere control method during ladle stirring
JPS62120418A (en) Method for refining molten steel in ladle
JP2001032009A (en) Method for refining molten steel containing chromium
JPH1046226A (en) Production of low nitrogen molten steel with arc electric furnace
JPH10152718A (en) Method for melting chromium-containing steel

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040713

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090723

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100723

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110723

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120723

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term