JPH0558253B2 - - Google Patents

Info

Publication number
JPH0558253B2
JPH0558253B2 JP59043418A JP4341884A JPH0558253B2 JP H0558253 B2 JPH0558253 B2 JP H0558253B2 JP 59043418 A JP59043418 A JP 59043418A JP 4341884 A JP4341884 A JP 4341884A JP H0558253 B2 JPH0558253 B2 JP H0558253B2
Authority
JP
Japan
Prior art keywords
surface area
activated carbon
carbon fiber
active carbon
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59043418A
Other languages
Japanese (ja)
Other versions
JPS60189162A (en
Inventor
Akihiko Yoshida
Atsushi Nishino
Ichiro Tanahashi
Yasuhiro Takeuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59043418A priority Critical patent/JPS60189162A/en
Publication of JPS60189162A publication Critical patent/JPS60189162A/en
Publication of JPH0558253B2 publication Critical patent/JPH0558253B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/44Raw materials therefor, e.g. resins or coal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To obtain an active carbon fiber electrode with a high surface area utilization rate by thermally treating carbon fiber or active carbon fiber in an atmosphere of an inactive gas, an oxidizing atmosphere or a reducing atmosphere. CONSTITUTION:It is possible to increase the specific surface area and the fine hole volume of a raw material fiber by thermally treating carbon fiber or active carbon fiber under various conditions. It is also possible to reduce the number of surface functional groups by reduction or evacuation and to increase the fine hole volume of the raw material fiber by sintering its fine holes by thermal treatment with an inactive gas. As a result, a homogeneous electric double layer can be formed on the surfaces of active carbon particles having a large specific surface area, thereby greatly improving the utilization rate of the active carbon surfaces and producing a capacitor with a great capacity per unit volume. This capacitor can serve as a battery electrode exhibiting high performance.

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、電気二重層キヤパシタの分極性電極
として用いる炭素繊維または活性炭繊維電極の製
造方法に関する。 従来例の構成とその問題点 活性炭を分極性電極として用いる電気二重層キ
ヤパシタは種々の構成のものが考案されている。
第1図はキヤパシタの例であり、分極性電極とし
て活性炭繊維布1を2枚用い、セパレータ2、ガ
スケツト3、アルミニウム集電体4、ケース5,
6から構成され、活性炭繊維布1には電解液が含
浸されている。 このような、活性炭繊維、炭素繊維を分極性電
極として用いるキヤパシタはエネルギー密度が高
く、小型化できること、製造工程の簡易化が可能
なこと、無公害など、数多くの特徴を有する。 ところが、従来2000〜2500m2/gの比表面積を
有する活性炭繊維を用いても、実際は全表面積の
高々3割しか有効に利用していない。この点につ
いて電気二重層キヤパシタを例にあげて以下に説
明する。電気二重層キヤパシタは、活性炭と電解
液との界面に形成される電気二重層に蓄えられた
電荷を利用するFarad単位の大容量キヤパシタで
あり、蓄積される容量は次式に示すよう Q=S・ε/4d・Ψ に活性炭の比表面積S、電解液の誘電率εに比例
し、電気二重層の厚さに反比例する。Ψは印加さ
れた電界である。これらの因子のうち電気二重層
容量に一番大きく寄与するものは比表面積Sであ
る。水銀を分極性電極として用いた時得られる電
気二重層容量Cは約20〜40μF/cm2である。現在
用いられている活性炭繊維(比表面積2000cm2
g)で織られた布を15mm直径に打ぬいた重量30mg
のものを電極にしたキヤパシタは高々2Fしか得
られない。この値は、前述の水銀の値から計算さ
れる6〜12F/cellの1/3以下であり、換言する
と、活性炭の比表面積の7割以上が有効に利用さ
れていないことになる。すなわち、活性炭を何ら
かの方法で処理するか、表面状態を変化させるこ
とによつて現行容量の3倍以上の容量値が同一容
積で得られる可能性がある。 そこで次に、活性炭表面が、電気二重層キヤパ
シタ電極として利用効率の悪くなる原因を考え
る。第2図は、電気二重層キヤパシタの電極界面
の模式図を示すものであり、活性炭電極20と、
電解液21との界面に電気二重層22が形成され
る。23は外部電源である。このような電気二重
層形成に大きな影響する因子として、(1)活性炭の
細孔径、(2)活性炭表面の官能基の2つが考えられ
る。 まず活性炭の細孔径であるが、電気二重層のイ
オン間距離は3〜5Åであり、さらに電解液によ
る溶媒和も考慮すると10Å近い値になる。このこ
とから、電気二重層が形成されるためには、少な
くとも細孔径が20Å以上必要であり、これ以下の
径の細孔では電気二重層が形成されない。 第3図は2種類の活性炭繊維の細孔分布を示す
もので、20Å以上の径の細孔が多い試料aの方が
20Å以上の径の細孔が少ない試料bよりも単位重
量当たりで大きな容量が得られる。従来は、細孔
が大孔径側に分布し、かつ比表面積の大きな活性
炭繊維を得ることは難しく、結局、既述のごとく
活性炭の利用効率が悪くなつていた。 次に活性炭表面の官能基について述べる。一般
に活性炭の表面には、 −OH,−COOH,
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing carbon fiber or activated carbon fiber electrodes used as polarizable electrodes of electric double layer capacitors. Conventional configurations and their problems Electric double layer capacitors using activated carbon as a polarizable electrode have been devised in various configurations.
Figure 1 shows an example of a capacitor, in which two sheets of activated carbon fiber cloth 1 are used as polarizable electrodes, a separator 2, a gasket 3, an aluminum current collector 4, a case 5,
6, and the activated carbon fiber cloth 1 is impregnated with an electrolyte. Capacitors using activated carbon fibers or carbon fibers as polarizable electrodes have many features such as high energy density, miniaturization, simplification of the manufacturing process, and non-pollution. However, even if activated carbon fibers having a specific surface area of 2,000 to 2,500 m 2 /g are conventionally used, in reality only at most 30% of the total surface area is effectively utilized. This point will be explained below using an electric double layer capacitor as an example. An electric double layer capacitor is a large capacity capacitor in Farad units that utilizes the electric charge stored in the electric double layer formed at the interface between activated carbon and electrolyte, and the accumulated capacity is as shown in the following equation: Q=S・ε/ 4d・Ψ is proportional to the specific surface area S of activated carbon, the dielectric constant ε of the electrolytic solution, and inversely proportional to the thickness of the electric double layer. Ψ is the applied electric field. Among these factors, the one that contributes most to the electric double layer capacity is the specific surface area S. The electric double layer capacitance C obtained when mercury is used as a polarizable electrode is about 20 to 40 μF/cm 2 . Currently used activated carbon fiber (specific surface area 2000cm 2 /
The weight of 15 mm diameter punched cloth woven in g) is 30 mg.
A capacitor using this as an electrode can only obtain 2F at most. This value is less than 1/3 of 6 to 12 F/cell calculated from the above-mentioned mercury value, and in other words, more than 70% of the specific surface area of activated carbon is not effectively utilized. That is, by treating the activated carbon in some way or changing its surface condition, it is possible to obtain a capacity value three times or more of the current capacity with the same volume. Next, we will consider the reason why the activated carbon surface is inefficiently used as an electric double layer capacitor electrode. FIG. 2 shows a schematic diagram of the electrode interface of an electric double layer capacitor, and shows an activated carbon electrode 20,
An electric double layer 22 is formed at the interface with the electrolytic solution 21. 23 is an external power source. There are two factors that can be considered to have a large effect on the formation of such an electric double layer: (1) the pore diameter of the activated carbon, and (2) the functional groups on the surface of the activated carbon. First, regarding the pore diameter of activated carbon, the distance between ions in an electric double layer is 3 to 5 Å, and if solvation by the electrolyte is also taken into account, the value is close to 10 Å. From this, in order to form an electric double layer, the pore diameter must be at least 20 Å or more, and an electric double layer will not be formed with pores having a diameter smaller than this. Figure 3 shows the pore distribution of two types of activated carbon fibers. Sample a has more pores with a diameter of 20 Å or more.
A larger capacity per unit weight can be obtained than sample b, which has fewer pores with a diameter of 20 Å or more. Conventionally, it has been difficult to obtain activated carbon fibers in which the pores are distributed on the large pore diameter side and have a large specific surface area, resulting in poor utilization efficiency of activated carbon as described above. Next, the functional groups on the activated carbon surface will be described. Generally, the surface of activated carbon contains −OH, −COOH,

【式】>C=O などの官能基が存在する。前述のように、電気二
重層は、活性炭表面と電解液イオンとの物理吸着
により形成される。活性炭表面に上のような−
OH基をはじめとする有極性の活性な基が存在す
ると、電解質がこの部分に特異吸着し、極端な場
合は化学吸着さえ起きてしまう。第4図はこの様
子を示したものであるが、aのように特異吸着点
30が存在すると、電解液イオンは、この部分に
集中して吸着したり、充放電の可逆性がそこなわ
れたりして蓄電電荷量が小さくなる。同図bのよ
うに、活性な基を有さない活性炭では物理吸着が
均一におこり、活性炭表面積が有効に利用される
ことになる。 発明の目的 本発明は、単位容積あたりの蓄積電荷量や、エ
ネルギー密度の大きな電気二重層キヤパシタを与
える表面積利用率の大きな活性炭繊維電極の製造
法を提供することを目的とする。 発明の構成 本発明は、炭素繊維または活性炭繊維を真空
中、不活性ガス雰囲気、酸化雰囲気または還元雰
囲気のいずれかで熱処理することを特徴とするキ
ヤパシタ用分極性電極の製造方法である。 本発明によれば、比表面積の大きな活性炭繊維
の熱処理により、その比表面積を大きく変化させ
ることなく、細孔の径を拡大させる。また−OH
基をはじめとする電気二重層形成に不利な有極性
活性基を非活性化し、活性炭表面組織を均一にす
る。このような活性炭繊維を電気二重層キヤパシ
タ電極として用いると、活性炭表面全体に均一に
電気二重層が形成され、細孔にも電解液イオンが
浸入するため、表面積の利用率が大きく改善さ
れ、従来のキヤパシタより大容量のキヤパシタが
得られる。 なお、不活性ガスとしては、窒素、アルゴンな
ど、還元ガスとしては、水素、一酸化炭素、アン
モニアガスなどが用いられる。 実施例の説明 本発明は、炭素繊維、活性炭繊維を種々の雰囲
気中で熱処理することにより、その改質を行なお
うとするものである。そこで具体的な実施例を述
べる前に、種々の熱処理が炭素繊維、活性炭繊維
の特性に及ぼす影響について説明する。 第1表は、比表面積2000m2/gのフエノール系
活性炭繊維の各種処理による比表面積、細孔容
積、細孔径分布、処理前の繊維からの重量変化を
示すものである。
Functional groups such as [Formula]>C=O are present. As mentioned above, the electric double layer is formed by physical adsorption between the surface of activated carbon and electrolyte ions. On the activated carbon surface -
If polar active groups such as OH groups are present, electrolytes will be specifically adsorbed to these parts, and in extreme cases, even chemisorption will occur. Figure 4 shows this situation, and if there is a specific adsorption point 30 as shown in a, the electrolyte ions will be concentrated and adsorbed at this part, and the reversibility of charging and discharging will be impaired. As a result, the amount of stored charge becomes smaller. As shown in FIG. 5B, in activated carbon that does not have active groups, physical adsorption occurs uniformly, and the surface area of the activated carbon is effectively utilized. OBJECTS OF THE INVENTION An object of the present invention is to provide a method for manufacturing an activated carbon fiber electrode that has a large surface area utilization rate that provides an electric double layer capacitor with a large amount of accumulated charge per unit volume and a large energy density. Structure of the Invention The present invention is a method for producing a polarizable electrode for a capacitor, which is characterized in that carbon fibers or activated carbon fibers are heat-treated in a vacuum, an inert gas atmosphere, an oxidizing atmosphere, or a reducing atmosphere. According to the present invention, by heat treating activated carbon fibers having a large specific surface area, the diameter of the pores is expanded without significantly changing the specific surface area. Also -OH
This method deactivates polar active groups that are unfavorable to electric double layer formation, such as groups, and makes the surface structure of activated carbon uniform. When such activated carbon fibers are used as electric double layer capacitor electrodes, an electric double layer is formed uniformly on the entire surface of the activated carbon, and electrolyte ions also penetrate into the pores, greatly improving the surface area utilization. A capacitor with a larger capacity can be obtained than the capacitor of . Note that nitrogen, argon, etc. are used as the inert gas, and hydrogen, carbon monoxide, ammonia gas, etc. are used as the reducing gas. Description of Examples The present invention attempts to modify carbon fibers and activated carbon fibers by heat treating them in various atmospheres. Therefore, before describing specific examples, the effects of various heat treatments on the characteristics of carbon fibers and activated carbon fibers will be explained. Table 1 shows the specific surface area, pore volume, pore size distribution, and weight change from the fiber before treatment after various treatments of phenolic activated carbon fibers with a specific surface area of 2000 m 2 /g.

【表】 この表から水素雰囲気中で還元処理することに
よつて重量減少し、比表面積、細孔容積が増加し
ていることが判かる。これは原料繊維中の酸素化
合物や残存有機質が水素と反応して新たな細孔が
形成させるためであると思われる。 原料繊維を酸素ガス雰囲気中で熱処理すると、
熱処理温度が上昇するに従つて重量増加する。こ
れは、300℃の温度範囲までは、繊維に酸素が吸
着し、さらには新たな官能基が生成するためであ
ると思われる。しかしながら、比表面積は必ずし
も熱処理温度と相関を示さず、未処理繊維とほと
んど比表面積が変わらない。これは温度の差によ
り酸素の化学吸脱着の変化による表面構造が変化
したためであろうと思われる。 減圧処理により繊維の特性は、第1表のNo.7,
8,9に示すように、いずれも原料繊維より比表
面積、細孔容積が増加している。特に酸化処理品
を減圧処理したものは、原料No.1を減圧処理した
ものよりも高比表面積を示す。 窒素雰囲気下で繊維を熱処理したものは、
9001200℃の間で比表面積のピークを有する。 原料繊維の酸素化合物サイトは、全表面積の約
10%を占めており、主に水酸基の形で存在する。
これを水素還元処理すると、これら水酸基が還元
脱離されて新たに細孔が生成する。また、原料繊
維を酸化処理すると、表面化合物は無水カルボン
酸、ラクトン、キノン、カルボニル化合物などと
して固定される。この繊維を再度減圧処理、還元
処理、不活性ガス処理などを行なうと、これらの
活性化合物が脱離除去され、新たな有効な細孔が
生成する。この細孔生成度合は、未処理繊維を減
圧、還元または不活性ガス雰囲気で処理するより
優れる。 窒素雰囲気での熱処理によると、第5図に示す
ように、aにおいてあらかじめ存在した径の小さ
な細孔100に熱処理による高温のためbに10
1で示すように徐々に内壁が拡大していつたり、
第6図において隣接する細孔同志102,103
がつながつたりしてbのように新たに径の大きな
細孔104が生成し、比表面積と、細孔容積が大
きくなる。しかしながらこの場合、あまり熱処理
温度を高くすると、細孔径が大きくなり過ぎて、
比表面積は小さくなつていく。 次に本発明の具体的な実施例について述べる。 実施例 1 900℃で炭化・賦活して得られたフエノール系
活性炭繊維布を次のグループに分けそれぞれ熱処
理をした。 1 400torr.H2雰囲気、1000℃で1時間処理、 2 150torr.O2雰囲気、300℃で1時間処理後、
1と同じ還元処理、 3 150torr.O2雰囲気、300℃で1時間処理後、
10-3torr.1000℃で1時間減圧処理、 4 150torr.O2雰囲気、300℃で1時間処理後、
N2雰囲気、1000℃で1時間処理、 5 N2雰囲気、900℃で1時間処理、 6 N2雰囲気1000℃で1時間処理、 7 未処理。 以上の7種類の活性炭繊維布の片面にプラズマ
溶射法によりAl層(0.3mm厚さ)を形成し、直径
15mmの円型電極に打抜いた。第1図に示す構成の
キヤパシタを、この電極を用いて試作した。電解
液は、プロピレンカーボネート、γ−ブチロラク
トン、テトラエチルアンモニウムパークロレート
の混合液を用いた。第2表に本実施例で得られた
キヤパシタの特性を示す。
[Table] It can be seen from this table that weight decreases and specific surface area and pore volume increase by reduction treatment in a hydrogen atmosphere. This seems to be because oxygen compounds and residual organic substances in the raw material fibers react with hydrogen to form new pores. When raw fiber is heat-treated in an oxygen gas atmosphere,
As the heat treatment temperature increases, the weight increases. This seems to be because oxygen is adsorbed to the fibers and new functional groups are generated up to a temperature range of 300°C. However, the specific surface area does not necessarily show a correlation with the heat treatment temperature, and the specific surface area is almost the same as that of untreated fibers. This is probably because the surface structure changes due to changes in chemical adsorption and desorption of oxygen due to temperature differences. The properties of the fibers after the reduced pressure treatment are as shown in Table 1, No. 7.
As shown in Figures 8 and 9, the specific surface area and pore volume of both fibers are larger than that of the raw material fibers. In particular, the oxidized product treated under reduced pressure has a higher specific surface area than the raw material No. 1 treated under reduced pressure. Fibers heat-treated in a nitrogen atmosphere are
It has a specific surface area peak between 900 and 200℃. The oxygen compound sites in the raw fiber account for approximately
It accounts for 10% and exists mainly in the form of hydroxyl groups.
When this is subjected to hydrogen reduction treatment, these hydroxyl groups are removed by reduction and new pores are generated. Further, when the raw material fiber is oxidized, surface compounds are fixed as carboxylic anhydride, lactone, quinone, carbonyl compound, etc. When this fiber is again subjected to vacuum treatment, reduction treatment, inert gas treatment, etc., these active compounds are desorbed and removed, and new effective pores are generated. This degree of pore formation is superior to treating untreated fibers under reduced pressure, reducing or inert gas atmosphere. As a result of the heat treatment in a nitrogen atmosphere, as shown in FIG.
As shown in 1, the inner wall gradually expands,
Adjacent pores 102, 103 in FIG.
As a result, pores 104 with a larger diameter are newly generated as shown in b, and the specific surface area and pore volume become larger. However, in this case, if the heat treatment temperature is too high, the pore diameter will become too large.
The specific surface area becomes smaller. Next, specific examples of the present invention will be described. Example 1 The phenolic activated carbon fiber cloth obtained by carbonization and activation at 900°C was divided into the following groups and heat-treated. 1 400torr.H 2 atmosphere, 1 hour treatment at 1000℃, 2 150torr.O 2 atmosphere, 300℃ treatment for 1 hour,
Same reduction treatment as 1, 3 150torr.O2 atmosphere, 1 hour treatment at 300℃,
10 -3 torr.1000℃ for 1 hour under reduced pressure, 4 150torr.O2 atmosphere, 300℃ for 1 hour,
Treated for 1 hour at 1000°C in N2 atmosphere, 5 Treated for 1 hour at 900°C in N2 atmosphere, 6 Treated for 1 hour at 1000°C in N2 atmosphere, 7 Not treated. An Al layer (0.3 mm thick) was formed on one side of the above seven types of activated carbon fiber cloth by plasma spraying, and the diameter
It was punched into a 15 mm circular electrode. A capacitor having the configuration shown in FIG. 1 was prototyped using this electrode. As the electrolytic solution, a mixed solution of propylene carbonate, γ-butyrolactone, and tetraethylammonium perchlorate was used. Table 2 shows the characteristics of the capacitor obtained in this example.

【表】【table】

【表】 発明の効果 以上のように、本発明によれば、炭素繊維また
は活性炭繊維を種々の条件で熱処理することによ
つて、原料繊維の比表面積、細孔容積を大きくす
ることができ、かつ、還元処理、減圧処理などに
よつて表面官能基の数を減らしたり、不活性ガス
熱処理によつて細孔の焼結化を進行させることに
より細孔容積を大きくすることが可能になる。こ
の結果、比表面積の大きな活性炭表面に、均一な
電気二重層を形成できるようになり、従来よりも
活性炭表面の利用効率が大巾に改善され、単位体
積あたりの容量の大きなキヤパシタができる。
[Table] Effects of the Invention As described above, according to the present invention, by heat-treating carbon fibers or activated carbon fibers under various conditions, the specific surface area and pore volume of raw material fibers can be increased. In addition, the pore volume can be increased by reducing the number of surface functional groups by reduction treatment, reduced pressure treatment, etc., or by promoting sintering of the pores by inert gas heat treatment. As a result, a uniform electric double layer can be formed on the activated carbon surface, which has a large specific surface area, and the utilization efficiency of the activated carbon surface is greatly improved compared to the conventional method, creating a capacitor with a large capacity per unit volume.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電極を用いた電気二重層キヤパ
シタの構成例を示す縦断面図、第2図は電気二重
層キヤパシタの模式図、第3図は2種の活性炭の
細孔径分布を示す図、第4図は活性炭の表面官能
基と電気二重層形成との関係を示す模式図、第5
図と第6図は不活性ガス雰囲気中で熱処理した時
の活性炭細孔の変化を示す模式図である。
Figure 1 is a longitudinal cross-sectional view showing an example of the structure of an electric double layer capacitor using the electrode of the present invention, Figure 2 is a schematic diagram of an electric double layer capacitor, and Figure 3 is a diagram showing the pore size distribution of two types of activated carbon. , Figure 4 is a schematic diagram showing the relationship between surface functional groups of activated carbon and electric double layer formation, Figure 5
This figure and FIG. 6 are schematic diagrams showing changes in activated carbon pores when heat treated in an inert gas atmosphere.

Claims (1)

【特許請求の範囲】 1 炭素繊維または活性炭繊維を真空中、不活性
ガス中、または還元ガス雰囲気中のいずれかで熱
処理することを特徴とする分極性電極の製造法。 2 前記熱処理温度が繊維の炭化・賦活温度と同
じかもしくはこの温度以上である特許請求の範囲
第1項記載の分極性電極の製造法。 3 前記熱処理が900℃〜1500℃の温度範囲で行
なわれる特許請求の範囲第2項記載の分極性電極
の製造法。 4 前記熱処理が、まず酸化性ガス雰囲気で行な
われ、続いて真空中、不活性ガス中、還元ガス中
のいずれかひとつ以上の雰囲気で行なわれる特許
請求の範囲第1項記載の分極性電極の製造法。
[Claims] 1. A method for producing a polarizable electrode, which comprises heat-treating carbon fibers or activated carbon fibers in a vacuum, an inert gas, or a reducing gas atmosphere. 2. The method for producing a polarizable electrode according to claim 1, wherein the heat treatment temperature is the same as or higher than the carbonization/activation temperature of the fiber. 3. The method for manufacturing a polarizable electrode according to claim 2, wherein the heat treatment is performed at a temperature range of 900°C to 1500°C. 4. The polarizable electrode according to claim 1, wherein the heat treatment is first performed in an oxidizing gas atmosphere, and then in one or more of vacuum, inert gas, and reducing gas atmosphere. Manufacturing method.
JP59043418A 1984-03-07 1984-03-07 Manufacture of polarization electrode Granted JPS60189162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59043418A JPS60189162A (en) 1984-03-07 1984-03-07 Manufacture of polarization electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59043418A JPS60189162A (en) 1984-03-07 1984-03-07 Manufacture of polarization electrode

Publications (2)

Publication Number Publication Date
JPS60189162A JPS60189162A (en) 1985-09-26
JPH0558253B2 true JPH0558253B2 (en) 1993-08-26

Family

ID=12663159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59043418A Granted JPS60189162A (en) 1984-03-07 1984-03-07 Manufacture of polarization electrode

Country Status (1)

Country Link
JP (1) JPS60189162A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0656827B2 (en) * 1985-11-18 1994-07-27 松下電器産業株式会社 Polarizable electrode and manufacturing method thereof
JP2548547B2 (en) * 1986-09-22 1996-10-30 旭硝子株式会社 Electric double layer capacitor
JP2548546B2 (en) * 1986-09-22 1996-10-30 旭硝子株式会社 Electric double layer capacitor
JP2666848B2 (en) * 1988-06-22 1997-10-22 日本電気株式会社 Carbon paste electrode
JP2620596B2 (en) * 1989-08-22 1997-06-18 いすゞ自動車 株式会社 Electric double-layer capacitor and method for manufacturing polarizable electrode thereof
JPH05101980A (en) * 1991-10-08 1993-04-23 Fuji Elelctrochem Co Ltd Manufacture of electric double layer capacitor
JP2816039B2 (en) * 1991-10-11 1998-10-27 富士電気化学株式会社 Manufacturing method of electric double layer capacitor
JP5335211B2 (en) * 2007-08-29 2013-11-06 株式会社 永光 catalyst
JP2015151324A (en) * 2014-02-18 2015-08-24 住友電気工業株式会社 Activated carbon and method for producing the same
WO2015146459A1 (en) * 2014-03-27 2015-10-01 Jx日鉱日石エネルギー株式会社 Activated carbon, method for producing activated carbon and method for treating activated carbon
DE112016004121T5 (en) * 2015-09-10 2018-05-24 Cataler Corporation Lithium-ion capacitor and carbon material for a positive electrode active material
JP2019079861A (en) * 2017-10-20 2019-05-23 Tpr株式会社 Capacitor and method of manufacturing withstand voltage active material for capacitor electrode
JP6597754B2 (en) * 2017-11-10 2019-10-30 住友電気工業株式会社 Method for producing activated carbon

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121739A (en) * 1975-04-18 1976-10-25 Otani Sugio Carbon fiber aqueous solution type secondary battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51121739A (en) * 1975-04-18 1976-10-25 Otani Sugio Carbon fiber aqueous solution type secondary battery

Also Published As

Publication number Publication date
JPS60189162A (en) 1985-09-26

Similar Documents

Publication Publication Date Title
JP2014530502A (en) High voltage electrochemical double layer capacitor
US20020096661A1 (en) Process for producing a carbon material for an electric double layer capacitor electrode, and processes for producing an electric double layer capacitor electrode and an electric double layer capacitor employing it
JPH0558253B2 (en)
US10211001B2 (en) Ultracapacitor with improved aging performance
JPH0963905A (en) Electric double-layer capacitor and manufacture thereof
US9607775B2 (en) High-voltage and high-capacitance activated carbon and carbon-based electrodes
US9318273B2 (en) High voltage EDLC electrodes containing CO2 activated coconut char
US20160104584A1 (en) Electrical double-layer capacitor for high-voltage operation at high-temperatures
JP4527821B2 (en) Electrochemical capacitor
JP2005525700A (en) Capacitor with high energy density
JPH0666228B2 (en) Energy storage device
JP3812098B2 (en) Electric double layer capacitor
KR100733580B1 (en) Electrode composition containing active carbon particles in which carbon nano fibers are growed, and method for manufacturing the same
KR20180016668A (en) p-PHENYLENEDIAMINE-REDUCED GRAPHENE OXIDE COMPOSITE, SUPERCAPACITOR INCLUDING THE SAME AND METHOD OF PREPARING THE SAME
JP2000299259A (en) Electric double layer capacitor and manufacture thereof
JPH11121285A (en) Electric double-layer capacitor
JP2005093779A (en) Electric double layer capacitor
JPH011221A (en) Method for manufacturing polarizable electrodes
JPH10144570A (en) Electric double layer capacitor
JP2003297695A (en) Electric double layer capacitor
JP3792528B2 (en) Manufacturing method of electric double layer capacitor
JPH0436445B2 (en)
JP2012049389A (en) Method of producing active carbon for capacitor and active carbon
JP2010192502A (en) Capacitor, and method of manufacturing capacitor
JP2022086445A (en) Non-aqueous alkali metal storage element

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term