JP3792528B2 - Manufacturing method of electric double layer capacitor - Google Patents

Manufacturing method of electric double layer capacitor Download PDF

Info

Publication number
JP3792528B2
JP3792528B2 JP2001117760A JP2001117760A JP3792528B2 JP 3792528 B2 JP3792528 B2 JP 3792528B2 JP 2001117760 A JP2001117760 A JP 2001117760A JP 2001117760 A JP2001117760 A JP 2001117760A JP 3792528 B2 JP3792528 B2 JP 3792528B2
Authority
JP
Japan
Prior art keywords
activated carbon
electric double
layer capacitor
double layer
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001117760A
Other languages
Japanese (ja)
Other versions
JP2002313686A (en
Inventor
智博 坊垣
裕幸 勝川
永植 中村
守信 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2001117760A priority Critical patent/JP3792528B2/en
Publication of JP2002313686A publication Critical patent/JP2002313686A/en
Application granted granted Critical
Publication of JP3792528B2 publication Critical patent/JP3792528B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the manufacturing method of an electric double-layer capacitor that can realize high capacity density and has stable characteristics. SOLUTION: In the manufacturing method of the electric double-layer capacitor, an electrode body 45 comprising a polarization electrode 42, a separator 44, and a collector 40 that is mainly made of activated carbon in powder or fiber shape as a main constituent is dipped into organic electrolyte 48. In the manufacturing method, apparent volume VAC per 1 g of activated carbon when DC is equal to 2 g/cc is calculated by VAC=VTP+1/DC, where total pore volume per 1 g of activated carbon obtained by nitrogen adsorption, and the true density of carbon are set to VTP and DC. Then, activated carbon is used for the polarization electrode 42, where a characteristic value X calculated by X=VP/VAC while pore volume per 1 g of activated carbon where pore diameter obtained by nitrogen adsorption ranges from 0.8 to 1 nm is set to VP.

Description

【0001】
【発明の属する技術分野】
本発明は、電気二重層コンデンサの製造方法に関する。
【0002】
【従来の技術】
電気二重層コンデンサは、ファラッド級の大容量を有し、充放電サイクル特性にも優れることから、電子機器のバックアップ電源や自動車を始めとした各種輸送機のバッテリーとして用いられている他、エネルギーの有効利用の観点からは、夜間電力の貯蔵といった用途での使用も検討されている。
【0003】
上記電気二重層コンデンサは、例えば、図3に示すように、有機電解液48に、分極性電極42を集電体40に密着させた正極18及び負極19との間に、セパレータ44を介在させた電極体45を、ケース46内で浸漬されてなるものである。
【0004】
このとき、上記分極性電極は、粉末状活性炭又は繊維状活性炭を主成分とするものであり、上記活性炭の特性値として比表面積が知られていた。
【0005】
しかしながら、大きな比表面積の活性炭を適用しても必ずしも高容量密度の電気二重層コンデンサを得ることができないことが知られている(森本,平塚,真田ら,電気化学,63,589(1995))。
従って、高容量密度化を図るために、高比表面積の活性炭を用いても特性が不十分であったり、ばらつきが生じるため、安定した高容量密度の電気二重層コンデンサを得ることが困難であった。
【0006】
【発明が解決しようとする課題】
本発明は、このような従来技術の有する課題を鑑みてなされたものであり、その目的とするところは、高容量密度化が可能で、且つ特性の安定した電気二重層コンデンサの製造方法を提供するものである。
【0007】
【課題を解決するための手段】
即ち、本発明によれば、有機電解液中に、粉末状又は繊維状である活性炭を主成分とする分極性電極、セパレータ及び集電体からなる電極体が浸漬された電気二重層コンデンサの製造方法であって、窒素吸着より求めた活性炭1g当たりの全細孔体積をVTP、炭素の真密度2g/cc時における活性炭1g当たりの見掛け体積VACを、VAC=VTP+1/なる式で算出した後、窒素吸着より求めた細孔直径が0.8〜1nmの範囲にある活性炭1g当たりの細孔体積VPとし、X=VP/VACなる式で算出した特性値Xが、0.3以上である活性炭を分極性電極に用いることを特徴とする電気二重層コンデンサの製造方法が提供される。
【0008】
【発明の実施の形態】
本発明の電気二重層コンデンサの製造方法は、窒素吸着より求めた活性炭1g当たりの全細孔体積をVTP、炭素の真密度2g/cc時における活性炭1g当たりの見掛け体積VACを、VAC=VTP+1/なる式で算出した後、窒素吸着より求めた細孔直径が0.8〜1nmの範囲にある活性炭1g当たりの細孔体積VPとし、X=VP/VACなる式で算出した特性値Xが、0.3以上(より好ましくは、0.35以上)である活性炭を分極性電極に用いることにある。
これにより、従来の比表面積による活性炭の評価方法と比較して、本発明で提案する活性炭の特性値Xが、電気二重層コンデンサの体積静電容量密度との間で比例関係が成立するため、体積静電容量密度を大きな、即ちエネルギー密度が大きく、実用的に好適な電気二重層コンデンサをばらつきなく製造することができる。
【0009】
ここで、本発明で用いる活性炭は、部分的に酸化させた黒鉛類似の微結晶炭素を有する炭素材料であり、その形状が粉体状又は繊維状であることが好ましい。
【0010】
尚、本発明で用いる活性炭について詳細に説明する。
まず、本発明の活性炭の作製にあたっては、先ず、石油コークス、石炭コークス、石油ピッチ(タール)、石炭ピッチ(タール)、フェノール樹脂、メソフェーズカーボン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイミド、ヤシガラ、大鋸屑等の有機材料を、不活性ガス雰囲気中で、約700℃〜1000℃の温度範囲で熱処理し、炭化材料を得る。これらの有機材料は、1種類を単独で用いてもよく、また複数種の混合物として用いてもよい。不活性ガスとしては、窒素ガスやアルゴンガス、ヘリウムガスといった希ガスが好適に用いられる。
【0011】
次に、得られた粉末状又は繊維状の炭化材料を賦活(部分酸化)することにより、本発明で用いる活性炭を得ることができる。ここで、賦活(部分酸化)の方法としては、水蒸気や空気や酸素等の酸化性ガスによる熱処理や、塩化亜鉛等を用いた薬品酸化方法の他、アルカリ金属および酸素元素を含む含酸素アルカリ化合物(以下、「アルカリ金属等」という。)の少なくとも1種と共に、不活性ガス雰囲気中で熱処理する酸化方法を挙げることができる。
【0012】
アルカリ金属元素としては、カリウム、ナトリウム、リチウムが好適に用いられ、これらアルカリ金属の含酸素化合物としては、水酸化カリウム、水酸化ナトリウム等の水酸化物や炭酸カリウム、炭酸ナトリウム等の炭酸塩が好適に用いられる。これらのアルカリ金属等は、複数種を混合して用いてもよい。
【0013】
上記炭化材料は、こうして熱処理された後、必要に応じてメタノールやエタノール等のアルコール系溶媒や水等を用いて、洗浄、濾過、乾燥して単離することにより、本発明で用いる活性炭を得ることができる。
【0014】
尚、本発明で用いる分極性電極は、上記で得られた粉末状又は繊維状の活性炭に、カーボンブラック等の導電材や有機バインダを添加し、混合・混練し、シート状に成形したものである。集電体は、表面をエッチング処理したアルミ箔を好適に用いることができる。電極端子は、電気伝導性と電解液に対する安定性から高純度アルミニウムを好適に用いることができる。セパレータは、コンデンサ用の紙セパレータや、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン製の多孔性樹脂フィルムを用いることができる。
【0015】
また、本発明で用いる電解液は、キャパシタとして耐電圧が高くエネルギー密度を大きくできる有機系電解液が好ましい。有機系電解液の溶媒としては、プロピレンカーボネート、γ−ブチルラクトン、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、スルホランがあり、これらを単独で、あるいは、複数種混合したり、この他の溶媒や界面活性剤等の添加剤を加えた溶媒が好適に用いられる。電解質としては、4級アンモニウム塩、例えば、テトラエチルアンモニウム、テトラブチルアンモニウム、トリエチルメチルアンモニウムの4フッ化ホウ素塩または6フッ化リン酸塩、あるいは、4級ホスホニウムの4フッ化ホウ素塩または6フッ化リン酸塩などを用いることができる。
【0016】
【実施例】
以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1〜6、比較例1〜3)
表1に示す原料の炭化物を、表1に示す特性値Xになるように賦活することにより、活性炭A〜Iを作製した。
尚、特性値Xは、活性炭1g当たりの全細孔体積VTP並びに0.8〜1nmの細孔体積VPは、米国マイクロメリテックス社製ASAP2000を用いて、窒素の等温吸着線を測定し、MP法にて評価したものである。
また、活性炭A〜Iの比表面積は、米国マイクロメリテックス社製DeSorb2300を用い、N2BET法にて測定した。その結果を表1に示す。
【0017】
次に、得られた活性炭A〜Iを用いて、活性炭80重量%、導電剤としてカーボンブラックを10重量%、バインダーとしてポリテトラフルオロエチレンを10重量%混合し、約150μmの厚みの電極シートをそれぞれ作製した。
【0018】
次に、得られた電極シートから打ち抜いた直径20mmのディスク2枚を、正負極の分極性電極とし、厚さ30μmのアルミニウム箔を集電体、厚さ25μmの多孔質ポリエチレンフィルムをセパレータとして組み合わせ電極体とし、これを有機電解液である1Mのテトラエチルアンモニウム・テトラフルオロボレートを溶解したプロピレンカーボネートに含浸させることにより、電気二重層コンデンサをそれぞれ作製した。
【0019】
得られた電気二重層コンデンサの室温での静電容量を、5mA/cm2の電流密度で、0〜2.5Vまでの範囲の充放電にて評価した。その結果を表1に示す。
尚、表1に示す体積静電容量密度は、測定された静電容量を、正負極の電極シート体積の合計で除した値である。
【0020】
【表1】

Figure 0003792528
【0021】
(考察)
本発明では、図1に示すように、電気二重層コンデンサの体積静電容量密度と活性炭の特性値Xとの間に比例関係が成立することを確認した。
これにより、特性値Xを指標として電気二重層コンデンサを製造した場合、電気二重層コンデンサの品質を簡便且つ確実に維持することができる。
また、本発明では、表1の結果から、特性値Xが0.3以上、更に好ましくは0.35以上の活性炭(実施例1〜6)を用いることにより、10F/cc以上の体積静電容量密度を有する、即ちエネルギー密度が大きく、実用的に好適な電気二重層コンデンサを製造することができた。
一方、従来の方法では、図2に示すように、体積静電容量密度と比表面積との相関関係が不十分であるため、比表面積を指標として電気二重層コンデンサを製造した場合、体積静電容量密度が十分でなく、且つばらつきの大きな電気二重層コンデンサしか製造することができなかった。
【0022】
【発明の効果】
以上の通り、本発明に係る電気二重層コンデンサの製造方法は、高容量密度化が可能で、且つ特性の安定した電気二重層コンデンサを得ることができる。
【図面の簡単な説明】
【図1】 電気二重層コンデンサの体積静電容量密度と活性炭の特性値Xとの関係を示すグラフである。
【図2】 電気二重層コンデンサの体積静電容量密度と活性炭の比表面積との関係を示すグラフである。
【図3】 電気二重層コンデンサの一例を示す概要図である。
【符号の説明】
18…正極(正電極)、19…負極(負電極)、40…集電体、42…分極性電極、44…セパレータ、45…電極体、46…ケース、48…有機電解液。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an electric double layer capacitor.
[0002]
[Prior art]
Electric double layer capacitors have a farad-class capacity and excellent charge / discharge cycle characteristics, so they are used as backup power sources for electronic equipment and batteries for various transport equipment including automobiles. From the viewpoint of effective use, use in applications such as nighttime power storage is also being considered.
[0003]
In the electric double layer capacitor, for example, as shown in FIG. 3, a separator 44 is interposed between a positive electrode 18 and a negative electrode 19 in which a polarizable electrode 42 is closely attached to a current collector 40 in an organic electrolyte 48. The electrode body 45 is immersed in a case 46.
[0004]
At this time, the polarizable electrode is mainly composed of powdered activated carbon or fibrous activated carbon, and the specific surface area was known as a characteristic value of the activated carbon.
[0005]
However, it is known that an electric double layer capacitor having a high capacity density cannot always be obtained even when activated carbon having a large specific surface area is applied (Morimoto, Hiratsuka, Sanada et al., Electrochemistry, 63, 589 (1995)). .
Therefore, even if activated carbon with a high specific surface area is used in order to achieve a high capacity density, characteristics are insufficient or variations occur, and it is difficult to obtain a stable electric double layer capacitor with a high capacity density. It was.
[0006]
[Problems to be solved by the invention]
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to provide a method for manufacturing an electric double layer capacitor capable of increasing the capacity density and having stable characteristics. To do.
[0007]
[Means for Solving the Problems]
That is, according to the present invention, an electric double layer capacitor manufactured by immersing an electrode body comprising a polarizable electrode, a separator and a current collector mainly composed of powdered or fibrous activated carbon in an organic electrolyte solution a method, a total pore volume per activated carbon 1g determined from nitrogen adsorption V TP, the apparent volume V AC per activated carbon 1g true density of carbon at 2g / cc, V AC = V TP + 1/2 The characteristic value calculated by the equation X = V P / V AC with the pore volume V P per gram of activated carbon having a pore diameter determined by nitrogen adsorption in the range of 0.8 to 1 nm. There is provided a method for producing an electric double layer capacitor, wherein activated carbon having X of 0.3 or more is used for a polarizable electrode.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Method for producing an electric double layer capacitor of the present invention, the total pore volume per activated carbon 1g determined from nitrogen adsorption V TP, the apparent volume V AC per activated carbon 1g true density of carbon at 2 g / cc, V after calculating with AC = V TP + 1/2 becomes formula, the pore diameter determined from the nitrogen adsorption and a pore volume V P per activated carbon 1g in the range of 0.8~1nm, X = V P / V AC The activated carbon having a characteristic value X calculated by the following formula is 0.3 or more (more preferably 0.35 or more) is used for the polarizable electrode.
Thereby, compared with the evaluation method of activated carbon by the conventional specific surface area, since the characteristic value X of the activated carbon proposed in the present invention is proportional to the volume capacitance density of the electric double layer capacitor, An electric double layer capacitor having a large volume capacitance density, that is, a large energy density and suitable for practical use can be manufactured without variation.
[0009]
Here, the activated carbon used in the present invention is a carbon material having partially oxidized graphite-like microcrystalline carbon, and the shape thereof is preferably powdery or fibrous.
[0010]
The activated carbon used in the present invention will be described in detail.
First, in producing the activated carbon of the present invention, first, petroleum coke, coal coke, petroleum pitch (tar), coal pitch (tar), phenol resin, mesophase carbon, polyvinyl chloride, polyvinylidene chloride, polyimide, coconut husk, large sawdust Is heat-treated in an inert gas atmosphere at a temperature range of about 700 ° C. to 1000 ° C. to obtain a carbonized material. These organic materials may be used alone or as a mixture of a plurality of types. As the inert gas, a rare gas such as nitrogen gas, argon gas, or helium gas is preferably used.
[0011]
Next, activated carbon used in the present invention can be obtained by activating (partial oxidation) the obtained powdered or fibrous carbonized material. Here, the activation (partial oxidation) method includes heat treatment using an oxidizing gas such as water vapor, air and oxygen, and a chemical oxidation method using zinc chloride, as well as an oxygen-containing alkali compound containing an alkali metal and an oxygen element. (Hereinafter, it is referred to as “alkali metal etc.”) and an oxidation method in which heat treatment is performed in an inert gas atmosphere.
[0012]
As the alkali metal element, potassium, sodium and lithium are preferably used, and as the oxygen-containing compound of these alkali metals, hydroxides such as potassium hydroxide and sodium hydroxide and carbonates such as potassium carbonate and sodium carbonate are used. Preferably used. These alkali metals and the like may be used as a mixture of plural kinds.
[0013]
After the carbonized material is heat-treated in this manner, it is washed, filtered, dried and isolated using an alcohol solvent such as methanol or ethanol, water, or the like as necessary, to obtain activated carbon used in the present invention. be able to.
[0014]
The polarizable electrode used in the present invention is obtained by adding a conductive material such as carbon black or an organic binder to the powdered or fibrous activated carbon obtained above, mixing and kneading, and forming into a sheet shape. is there. As the current collector, an aluminum foil whose surface is subjected to etching treatment can be suitably used. As the electrode terminal, high-purity aluminum can be suitably used because of its electrical conductivity and stability to the electrolyte. As the separator, a paper separator for capacitors, or a porous resin film made of polyethylene, polypropylene, or polytetrafluoroethylene can be used.
[0015]
Moreover, the electrolytic solution used in the present invention is preferably an organic electrolytic solution that has a high withstand voltage and a high energy density as a capacitor. Solvents for organic electrolytes include propylene carbonate, γ-butyl lactone, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, and sulfolane. These may be used alone or in combination. A solvent to which an additive such as a solvent or a surfactant is added is preferably used. The electrolyte may be a quaternary ammonium salt, for example, tetraethylammonium, tetrabutylammonium, boron tetrafluoride or hexafluorophosphate, or quaternary phosphonium boron tetrafluoride or hexafluoride. Phosphate and the like can be used.
[0016]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited to these Examples.
(Examples 1-6, Comparative Examples 1-3)
Activated carbons A to I were produced by activating the raw material carbides shown in Table 1 so as to have characteristic values X shown in Table 1.
The characteristic value X is the total pore volume V TP per gram of activated carbon and the pore volume V P of 0.8 to 1 nm is measured by measuring the isothermal adsorption line of nitrogen using ASAP2000 manufactured by US Micromeritex Corporation. , Evaluated by the MP method.
In addition, the specific surface areas of the activated carbons A to I were measured by the N 2 BET method using DeSorb2300 manufactured by Micromerex, USA. The results are shown in Table 1.
[0017]
Next, using the obtained activated carbons A to I, 80% by weight of activated carbon, 10% by weight of carbon black as a conductive agent, and 10% by weight of polytetrafluoroethylene as a binder were mixed to prepare an electrode sheet having a thickness of about 150 μm. Each was produced.
[0018]
Next, two 20 mm diameter disks punched from the obtained electrode sheet were used as positive and negative polarizable electrodes, a 30 μm thick aluminum foil as a current collector, and a 25 μm thick porous polyethylene film as a separator. An electric double layer capacitor was produced by impregnating propylene carbonate in which 1M tetraethylammonium tetrafluoroborate, which is an organic electrolyte solution, was impregnated with an electrode body.
[0019]
The capacitance of the obtained electric double layer capacitor at room temperature was evaluated by charging / discharging in the range of 0 to 2.5 V at a current density of 5 mA / cm 2 . The results are shown in Table 1.
The volume capacitance density shown in Table 1 is a value obtained by dividing the measured capacitance by the total of the positive and negative electrode sheet volumes.
[0020]
[Table 1]
Figure 0003792528
[0021]
(Discussion)
In the present invention, as shown in FIG. 1, it was confirmed that a proportional relationship was established between the volume capacitance density of the electric double layer capacitor and the characteristic value X of the activated carbon.
Thereby, when an electric double layer capacitor is manufactured using the characteristic value X as an index, the quality of the electric double layer capacitor can be easily and reliably maintained.
In the present invention, from the results shown in Table 1, by using activated carbon (Examples 1 to 6) having a characteristic value X of 0.3 or more, more preferably 0.35 or more, a volume electrostatic capacity of 10 F / cc or more is used. An electric double layer capacitor having a capacitance density, that is, a large energy density and suitable for practical use could be manufactured.
On the other hand, in the conventional method, as shown in FIG. 2, since the correlation between the volume capacitance density and the specific surface area is insufficient, when an electric double layer capacitor is manufactured using the specific surface area as an index, Only electric double layer capacitors with insufficient capacitance density and large variations could be produced.
[0022]
【The invention's effect】
As described above, the method for producing an electric double layer capacitor according to the present invention can provide an electric double layer capacitor having a high capacity density and stable characteristics.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the volume capacitance density of an electric double layer capacitor and the characteristic value X of activated carbon.
FIG. 2 is a graph showing the relationship between the volume capacitance density of an electric double layer capacitor and the specific surface area of activated carbon.
FIG. 3 is a schematic diagram showing an example of an electric double layer capacitor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 18 ... Positive electrode (positive electrode), 19 ... Negative electrode (negative electrode), 40 ... Current collector, 42 ... Polarizable electrode, 44 ... Separator, 45 ... Electrode body, 46 ... Case, 48 ... Organic electrolyte solution.

Claims (1)

有機電解液中に、粉末状又は繊維状である活性炭を主成分とする分極性電極、セパレータ及び集電体からなる電極体が浸漬された電気二重層コンデンサの製造方法であって、
窒素吸着より求めた活性炭1g当たりの全細孔体積をVTP、炭素の真密度2g/cc時における活性炭1g当たりの見掛け体積VACを、VAC=VTP+1/なる式で算出した後、窒素吸着より求めた細孔直径が0.8〜1nmの範囲にある活性炭1g当たりの細孔体積VPとし、X=VP/VACなる式で算出した特性値Xが、0.3以上である活性炭を分極性電極に用いることを特徴とする電気二重層コンデンサの製造方法。
A method for producing an electric double layer capacitor in which an electrode body composed of a polarizable electrode mainly composed of powdered or fibrous activated carbon, a separator and a current collector is immersed in an organic electrolyte solution,
The total pore volume per activated carbon 1g determined from nitrogen adsorption V TP, the apparent volume V AC per activated carbon 1g true density of carbon at 2 g / cc, was calculated by V AC = V TP + 1/ 2 becomes formula Thereafter, a pore volume V P per 1 g of activated carbon having a pore diameter determined by nitrogen adsorption in the range of 0.8 to 1 nm is assumed, and the characteristic value X calculated by the formula X = V P / V AC is 0.00. A method for producing an electric double layer capacitor, wherein activated carbon of 3 or more is used for a polarizable electrode.
JP2001117760A 2001-04-17 2001-04-17 Manufacturing method of electric double layer capacitor Expired - Lifetime JP3792528B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001117760A JP3792528B2 (en) 2001-04-17 2001-04-17 Manufacturing method of electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001117760A JP3792528B2 (en) 2001-04-17 2001-04-17 Manufacturing method of electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2002313686A JP2002313686A (en) 2002-10-25
JP3792528B2 true JP3792528B2 (en) 2006-07-05

Family

ID=18968247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001117760A Expired - Lifetime JP3792528B2 (en) 2001-04-17 2001-04-17 Manufacturing method of electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP3792528B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799459B2 (en) 2014-08-08 2017-10-24 Corning Incorporated High pore volume utilization carbon and electric double layer capacitor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006252902A (en) * 2005-03-10 2006-09-21 Kawasaki Heavy Ind Ltd Hybrid battery
CN113959902A (en) * 2021-09-14 2022-01-21 陕西创普斯新能源科技有限公司 Method for measuring true density of lithium iron phosphate powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799459B2 (en) 2014-08-08 2017-10-24 Corning Incorporated High pore volume utilization carbon and electric double layer capacitor

Also Published As

Publication number Publication date
JP2002313686A (en) 2002-10-25

Similar Documents

Publication Publication Date Title
JP3496338B2 (en) Electric double layer capacitor
JP5228531B2 (en) Electricity storage device
CN1941238B (en) Electric double layer capacitor
JP5015146B2 (en) ELECTRODE FOR ENERGY STORAGE SYSTEM, MANUFACTURING METHOD THEREOF, AND ENERGY STORAGE SYSTEM INCLUDING THE ELECTRODE
JP6382981B2 (en) Low resistance ultracapacitor electrode and manufacturing method thereof
US20080003166A1 (en) Methods of forming nanoporous carbon material and electrodes and electrochemical double layer capacitors therefrom
JP5392355B2 (en) Electric double layer capacitor
US20110043968A1 (en) Hybrid super capacitor
JP2014530502A (en) High voltage electrochemical double layer capacitor
JP2006286924A (en) Lithium ion capacitor
JP2016538715A (en) Ultracapacitor with improved aging performance
JP2016531068A (en) High voltage EDLC electrode containing CO2 activated coconut charcoal
JP2005129924A (en) Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
JP2002231585A (en) Electric double-layered capacitor
JP4527821B2 (en) Electrochemical capacitor
EP1296338B1 (en) Process for producing an electric double layer capacitor and positive electrode for an electric double layer capacitor
JP3792528B2 (en) Manufacturing method of electric double layer capacitor
JP4053955B2 (en) Manufacturing method of electric double layer capacitor
JPH11145009A (en) Electric double layer capacitor
JP3800810B2 (en) Electric double layer capacitor
JP2007194614A (en) Electric double layer capacitor
JP2000315630A (en) Electrolyte for electrochemical capacitor and electrochemical capacitor using
JP2001267188A (en) Electrochemical capacitor
KR102361162B1 (en) Manufacturing method of anode active material for hybrid supercapacitor having high output characteristics and hybrid supercapacitor including the same and method of manufacturing thereof
JP2023154302A (en) Carbon material, electrode material for hybrid capacitor, electrode for hybrid capacitor, and hybrid capacitor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060405

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3792528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8