JP2003297695A - Electric double layer capacitor - Google Patents
Electric double layer capacitorInfo
- Publication number
- JP2003297695A JP2003297695A JP2002095712A JP2002095712A JP2003297695A JP 2003297695 A JP2003297695 A JP 2003297695A JP 2002095712 A JP2002095712 A JP 2002095712A JP 2002095712 A JP2002095712 A JP 2002095712A JP 2003297695 A JP2003297695 A JP 2003297695A
- Authority
- JP
- Japan
- Prior art keywords
- double layer
- electric double
- layer capacitor
- surface area
- ketjenblack
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、電気二重層キャパ
シタの分極性電極に用いられる炭素質導電性材料に関す
るものである。TECHNICAL FIELD The present invention relates to a carbonaceous conductive material used for a polarizable electrode of an electric double layer capacitor.
【0002】[0002]
【従来の技術】電気二重層キャパシタは、一対の分極性
電極と電解液から構成され、分極性電極と電解液との界
面電気二重層を、電気二重層容量として利用した大容量
コンデンサーである。そのため、分極性電極は、従来、
フェノール樹脂を出発原料とした、大表面積を有する活
性炭繊維や粒状活性炭が主に使用されている。2. Description of the Related Art An electric double layer capacitor is a large-capacity capacitor composed of a pair of polarizable electrodes and an electrolytic solution, and an interface electric double layer between the polarizable electrode and the electrolytic solution is used as an electric double layer capacity. Therefore, the polarizable electrode is conventionally
Activated carbon fibers and granular activated carbon having a large surface area, which are made from a phenol resin as a starting material, are mainly used.
【0003】そして、電解液は2種類使用されている。
一方は、たとえば硫酸水溶液のような水溶液系電解液で
あり、他方は、たとえばプロピレンカーボネートのよう
な有機溶媒に、テトラエチルアンモニウムパークロレー
トのような電解質を溶解した有機溶液系電解液である。Two types of electrolytes are used.
One is an aqueous solution electrolyte such as an aqueous sulfuric acid solution, and the other is an organic solution electrolyte in which an electrolyte such as tetraethylammonium perchlorate is dissolved in an organic solvent such as propylene carbonate.
【0004】図3は、水溶液系電解液を用いた、一般的
なコイン型の電気二重層キャパシタの断面を示した図で
ある。この電気二重層キャパシタの構造は、セパレータ
31を介して、活性炭からなる正極側の分極性電極32
と負極側の分極性電極34が対向して配置され、その外
側に配置された電気抵抗の小さな正極側の集電体33、
負極側の集電体35、二つの集電体の間に配置された絶
縁ゴム36よりなる。分極性電極32、34は、活性炭
粉末を濃硫酸水溶液でペレット状に成形したものを用い
る。この際、硫酸水溶液はバインダとして用いられる。FIG. 3 is a view showing a cross section of a general coin type electric double layer capacitor using an aqueous electrolyte solution. This electric double layer capacitor has a structure in which a polarizable electrode 32 made of activated carbon on the positive electrode side is interposed via a separator 31.
And the polarizable electrode 34 on the negative electrode side are arranged so as to face each other, and the positive electrode side current collector 33 having a small electric resistance is arranged on the outside thereof.
The current collector 35 on the negative electrode side and the insulating rubber 36 arranged between the two current collectors. As the polarizable electrodes 32 and 34, activated carbon powder formed into pellets with a concentrated sulfuric acid aqueous solution is used. At this time, the sulfuric acid aqueous solution is used as a binder.
【0005】一方、有機溶液系電気二重層キャパシタの
分極性電極の構造は、主にシート状である。図4は、一
般的な巻回型の電気二重層キャパシタにおける、分極性
電極、集電体、セパレータの積層体を巻き回した巻回素
子40の構成を示す斜視図である。On the other hand, the structure of the polarizable electrode of the organic solution type electric double layer capacitor is mainly sheet-like. FIG. 4 is a perspective view showing a structure of a winding element 40 in which a laminate of a polarizable electrode, a current collector and a separator is wound in a general winding type electric double layer capacitor.
【0006】図4において、41はセパレータ、42は
正極側の分極性電極、43は正極側の集電体、44は負
極側の分極性電極、45は負極側の集電体を示す。ま
た、46は正極側、負極側のそれぞれに接続された電極
リードで、アルミニウムで構成されることが多い。In FIG. 4, 41 is a separator, 42 is a polarizable electrode on the positive electrode side, 43 is a collector on the positive electrode side, 44 is a polarizable electrode on the negative electrode side, and 45 is a collector on the negative electrode side. Further, 46 is an electrode lead connected to each of the positive electrode side and the negative electrode side, and is often made of aluminum.
【0007】そして、分極性電極は、活性炭粉末、アセ
チレンブラックやファーネスブラックなどの導電材及び
バインダをメタノールや水などに分散させスラリーと
し、アルミニウムエッチング箔からなる集電体に塗布
し、その後乾燥させることにより得られる。For the polarizable electrode, activated carbon powder, a conductive material such as acetylene black or furnace black, and a binder are dispersed in methanol or water to form a slurry, which is applied to a current collector made of an aluminum etching foil and then dried. It is obtained by
【0008】図5は、巻回型の電気二重層キャパシタの
内部構成を示す図である。図5において、51は巻回素
子、52は電極リード、53はケース、54はキャップ
を示す。巻回素子51には、前記の電解液が含浸されて
いる。FIG. 5 is a diagram showing the internal structure of a wound type electric double layer capacitor. In FIG. 5, 51 is a winding element, 52 is an electrode lead, 53 is a case, and 54 is a cap. The winding element 51 is impregnated with the electrolytic solution.
【0009】これら2種類の電解液を用いた電気二重層
キャパシタには、それぞれ次のような長所・短所があ
る。水溶液系電解液の長所は、高い静電容量を有するこ
とである。また、電解液の電気抵抗が低いため、キャパ
シタとしての内部抵抗が低く、大電流負荷放電に適して
いる。短所は電解液の分解電位(耐電圧)が1.2Vと
低いことである。そのため、エネルギー密度が小さくな
り、高エネルギー使用時には多くのキャパシタの直列接
続が余儀なくされ、長期使用信頼性の点で問題がある。The electric double layer capacitors using these two types of electrolytic solutions have the following advantages and disadvantages. The advantage of the aqueous electrolytic solution is that it has a high capacitance. Further, since the electrolytic solution has a low electric resistance, the internal resistance as a capacitor is low, and it is suitable for large-current load discharge. The disadvantage is that the decomposition potential (withstand voltage) of the electrolyte is as low as 1.2V. Therefore, the energy density becomes small, and many capacitors are forced to be connected in series when high energy is used, and there is a problem in terms of long-term use reliability.
【0010】一方、有機溶液系電解液の長所は、電解液
の耐電圧が水溶液系電解液の3倍と高いため、高エネル
ギー領域での使用に適している。短所は、キャパシタの
内部抵抗が、水溶液系電解液の5〜10倍と高いので大
電流負荷には適さないことである。また、同一の分極性
電極を用いても、静電容量が水溶液系電解液の3分の1
と小さくなる。電気二重層に蓄積される静電容量は、一
般的に数1で表される。On the other hand, the advantage of the organic solution type electrolytic solution is that it is suitable for use in a high energy region since the withstand voltage of the electrolytic solution is as high as three times that of the aqueous solution type electrolytic solution. The disadvantage is that the internal resistance of the capacitor is as high as 5 to 10 times that of the aqueous electrolyte solution, so that it is not suitable for a large current load. Even if the same polarizable electrode is used, the capacitance is one third of that of the aqueous electrolyte.
Becomes smaller. The capacitance accumulated in the electric double layer is generally represented by the formula 1.
【0011】[0011]
【数1】 [Equation 1]
【0012】数1から、比表面積が大きな電極を用いる
と大容量の電気二重層キャパシタを得ることができ、静
電容量は比表面積に依存することが分かる。1500m
2/g程度の比表面積の活性炭を使用すれば、300F
/gもの容量を持つ分極性電極ができるという計算が成
り立つ。しかしながら、水溶液系電気二重層キャパシタ
と有機溶液系電気二重層キャパシタでは静電容量が異な
り、有機系電解液キャパシタの方が小さい。From Equation 1, it can be seen that a large capacity electric double layer capacitor can be obtained by using an electrode having a large specific surface area, and the electrostatic capacity depends on the specific surface area. 1500m
If you use activated carbon with a specific surface area of about 2 / g, 300F
The calculation holds that a polarizable electrode having a capacity of / g is formed. However, the electrostatic capacity of the aqueous solution type electric double layer capacitor is different from that of the organic solution type electric double layer capacitor, and the organic type electrolytic solution capacitor is smaller.
【0013】この原因は細孔径の分布にある。電気二重
層キャパシタにおいては、電解液と分極性電極との界面
に溶媒和されたイオンが吸着することで容量が発現す
る。しかし、吸着のしやすさは溶媒和されたイオンサイ
ズと細孔径に依存し、溶媒和されたイオンに対し細孔径
が大きすぎても小さすぎても好ましくない。The cause of this is the distribution of pore sizes. In the electric double layer capacitor, capacity is developed by adsorbing solvated ions at the interface between the electrolytic solution and the polarizable electrode. However, the ease of adsorption depends on the size of the solvated ion and the pore size, and it is not preferable if the pore size is too large or too small for the solvated ion.
【0014】溶媒和されたイオンに対して細孔径が大き
すぎると吸着力が弱くなり、大電流では容量が低下して
しまう。また、細孔径が溶媒和されたイオンの大きさに
対して同等あるいは小さければ細孔内での吸着ができ
ず、また電解質の輸率が小さくなるため、容量は発現し
ない。If the pore size is too large for the solvated ions, the adsorptive power will weaken and the capacity will drop at large currents. Further, if the pore size is equal to or smaller than the size of the solvated ions, adsorption in the pores is not possible, and the transport number of the electrolyte is small, so that the capacity does not appear.
【0015】そして、経験的には、細孔径の最適値が吸
着分子の短軸径の2倍程度であることがわかっている。
有機系電解液の溶媒和されたイオンの短軸径は1nm程
度であるため、最適な細孔径は2nmである。図1は、
電気二重層キャパシタに従来使用されている、一般的な
活性炭の細孔径分布を示す。図1から明らかなように、
活性炭の細孔径分布は、1nm付近にピークをもち、こ
れを境に急速な減少を見せる。It has been empirically known that the optimum value of the pore diameter is about twice the minor axis diameter of the adsorbed molecule.
Since the short axis diameter of the solvated ions of the organic electrolyte is about 1 nm, the optimum pore diameter is 2 nm. Figure 1
The pore size distribution of general activated carbon conventionally used for electric double layer capacitors is shown. As is clear from FIG.
The pore size distribution of activated carbon has a peak in the vicinity of 1 nm and shows a rapid decrease at this point.
【0016】従って、最適な細孔径の設計が困難な活性
炭を有機電解液系電気二重層キャパシタに用いた場合、
多くの細孔が機能しない。また、活性炭は一般に電気伝
導性がかなり小さく、活性炭のみでは電極の内部抵抗が
大きくなって大電流を取り出せないという問題がある。Therefore, when activated carbon, which is difficult to design the optimum pore size, is used for the organic electrolyte type electric double layer capacitor,
Many pores do not work. In addition, activated carbon generally has a considerably low electric conductivity, and there is a problem that the activated carbon alone cannot increase a large current because the internal resistance of the electrode increases.
【0017】このため、活性炭粉末を使用して電極を形
成する場合には、通常、分極性電極中にアセチレンブラ
ックやファーネスブラック等の導電材を混合する。しか
し、内部抵抗を低下させる目的で導電材の混合割合を大
きくすると、活性炭の混合割合が小さくなり、電極とし
ての比表面積が低下するため容量が低下する。Therefore, when an electrode is formed by using activated carbon powder, a conductive material such as acetylene black or furnace black is usually mixed in the polarizable electrode. However, when the mixing ratio of the conductive material is increased for the purpose of reducing the internal resistance, the mixing ratio of the activated carbon is decreased and the specific surface area as the electrode is decreased, so that the capacity is decreased.
【0018】[0018]
【発明が解決しようとする課題】つまり、活性炭は分極
性電極に用いる材料としては、なお検討の余地があると
言える。従って、本発明の技術的な課題は、分極性電極
として最適な細孔径分布を有する炭素質の材料を見出
し、大容量で内部抵抗の小さい有機溶液系電解液を用い
た電気二重層キャパシタを得ることにある。In other words, it can be said that activated carbon still has room for investigation as a material used for the polarizable electrode. Therefore, the technical problem of the present invention is to find a carbonaceous material having an optimal pore size distribution as a polarizable electrode, and obtain an electric double layer capacitor using an organic solution electrolyte having a large capacity and a small internal resistance. Especially.
【0019】[0019]
【課題を解決するための手段】本発明は、導電性に優
れ、かつ多孔体であるケッチェンブラックが、分極性電
極として好適な細孔径分布を有することから、分極性電
極に適用することを検討した結果なされたものである。The present invention is applicable to a polarizable electrode because Ketjenblack, which is a porous material having excellent conductivity, has a pore size distribution suitable for a polarizable electrode. It was made as a result of examination.
【0020】即ち、本発明は、電解液を含浸させた一対
の分極性電極を、セパレータを介して配置した電気二重
層キャパシタにおいて、前記分極性電極はケッチェンブ
ラックを含む炭素質導電性材料であることを特徴とする
電気二重層キャパシタである。That is, according to the present invention, in an electric double layer capacitor in which a pair of polarizable electrodes impregnated with an electrolytic solution are arranged via a separator, the polarizable electrodes are made of a carbonaceous conductive material containing Ketjen black. It is an electric double layer capacitor characterized by being present.
【0021】また、本発明は、前記の電気二重層キャパ
シタにおいて、前記炭素質導電性材料におけるケッチェ
ンブラックの含有量が60重量%であることを特徴とす
る電気二重層キャパシタである。The present invention is also the electric double layer capacitor as described above, wherein the content of Ketjen black in the carbonaceous conductive material is 60% by weight.
【0022】また、本発明は、前記の電気二重層キャパ
シタにおいて、前記ケッチェンブラックは、比表面積が
1000m2/g以上であることを特徴とする電気二重
層キャパシタである。Further, the present invention is the electric double layer capacitor, wherein the Ketjen black has a specific surface area of 1000 m 2 / g or more.
【0023】[0023]
【作用】ケッチェンブラックは、殻状の構造で内部に比
較的大きな空孔を有する特異な構造の炭素材料である。
図2は、代表的なケッチェンブラックの細孔径分布を示
したものである。図2から明らかなように、細孔径分布
は、2nm付近に急峻なピークを有する。このため、有
機電解液系電気二重層キャパシタに対して細孔を有効に
利用できる。FUNCTION Ketjenblack is a carbon material having a shell-like structure and a unique structure having relatively large pores inside.
FIG. 2 shows the pore size distribution of typical Ketjen black. As is clear from FIG. 2, the pore size distribution has a steep peak near 2 nm. Therefore, the pores can be effectively used for the organic electrolytic solution type electric double layer capacitor.
【0024】従って、本発明によれば、集電体に担持さ
れた分極性電極として、電気抵抗が低く、多孔質で、か
つ有機溶液系電解液に最適な細孔構造を持つケッチェン
ブラックを用いるため、得られるキャパシタ特性が向上
する。Therefore, according to the present invention, as the polarizable electrode carried on the current collector, Ketjen Black having a low electric resistance, being porous, and having a pore structure most suitable for the organic solution type electrolytic solution is used. Since it is used, the obtained capacitor characteristics are improved.
【0025】[0025]
【実施例】次に、実施例を挙げ、本発明を具体的に説明
する。EXAMPLES Next, the present invention will be specifically described with reference to examples.
【0026】(実施例1)ここでは、巻回型電気二重層
キャパシタに本発明を適用した例について説明する。比
表面積が1300m2/gのケッチェンブラックを90
重量%、カルボキシルメチルセルロース10重量%を秤
量し、まずケッチェンブラックを、水とエタノールの混
合溶液に均一に分散した。別途にカルボキシルメチルセ
ルロースを水に溶解し、両方の液をさらに混合攪拌して
ケッチェンブラックを含むスラリーを作製した。(Embodiment 1) Here, an example in which the present invention is applied to a wound electric double layer capacitor will be described. 90 Ketjenblack with a specific surface area of 1300 m 2 / g
% By weight and 10% by weight of carboxymethyl cellulose were weighed, and first Ketjen black was uniformly dispersed in a mixed solution of water and ethanol. Separately, carboxymethyl cellulose was dissolved in water, and both solutions were further mixed and stirred to prepare a slurry containing Ketjen black.
【0027】次に、化学エッチング法によって粗面化し
た、厚さが25μmのアルミニウム箔を集電体として用
い、前記スラリーを塗布した。スラリー塗布の後、空気
中で10分間乾燥後、110℃で6時間乾燥させ、集電
体箔が変形しない程度に、圧延を行い分極性電極層が7
0μm厚の、分極性電極層と集電体が積層されたシート
を得た。Next, the slurry was applied by using a 25 μm thick aluminum foil roughened by a chemical etching method as a current collector. After applying the slurry, it was dried in air for 10 minutes and then dried at 110 ° C. for 6 hours, and was rolled to such an extent that the current collector foil was not deformed, so that the polarizable electrode layer became 7
A 0 μm thick sheet in which the polarizable electrode layer and the current collector were laminated was obtained.
【0028】得られたシートの集電体に、リード端子を
プレス法による針カシメにて接続し、次いで一対のシー
トの間に、25μm厚のセパレータを配置し、渦巻き状
に所定の径になるまで巻き取ることで巻回素子を作製し
た。この巻回素子は120℃での乾燥後、有底円筒型の
アルミニウムケースに収納し、テトラエチルアンモニウ
ムテトラフルオロボレートを0.7mol/lの濃度で
プロピレンカーボネートに溶解させることによって調製
した電解液を滴下し、ゴムキャップを介して封口して巻
回型電気二重層キャパシタを製作した。この電気二重層
キャパシタについて、静電容量密度と内部抵抗を求め、
表1に示した。A lead terminal is connected to the current collector of the obtained sheet by needle crimping by a pressing method, and then a separator of 25 μm thickness is arranged between a pair of sheets to have a predetermined diameter spirally. A wound element was manufactured by winding up to. This winding element was dried at 120 ° C., then placed in a bottomed cylindrical aluminum case, and an electrolytic solution prepared by dissolving tetraethylammonium tetrafluoroborate in propylene carbonate at a concentration of 0.7 mol / l was dropped. Then, it was sealed via a rubber cap to manufacture a wound type electric double layer capacitor. For this electric double layer capacitor, the capacitance density and internal resistance are calculated,
The results are shown in Table 1.
【0029】[0029]
【表1】 [Table 1]
【0030】(実施例2)ケッチェンブラックの比表面
積が1000m2/gである以外は、実施例1と同様に
して巻回型電気二重層キャパシタを作製した。この電気
二重層キャパシタについても、実施例1と同様に、静電
容量と内部抵抗を測定し、表1に示した。Example 2 A wound electric double layer capacitor was produced in the same manner as in Example 1 except that the specific surface area of Ketjen black was 1000 m 2 / g. For this electric double layer capacitor, the capacitance and the internal resistance were measured in the same manner as in Example 1 and shown in Table 1.
【0031】(実施例3)比表面積が1300m2/g
のケッチェンブラックを70重量%、比表面積が150
0m2/gのフェノール系活性炭を20重量%、カルボ
キシルメチルセルロース10重量%を秤量し、まずケッ
チェンブラックと活性炭を、水とエタノールの混合溶液
に均一に分散した。別途にカルボキシルメチルセルロー
スを水に溶解し、両方の液をさらに混合攪拌してケッチ
ェンブラックを含むスラリーを作製した。その後は、実
施例1と同様にして巻回型電気二重層キャパシタを作製
し、静電容量と内部抵抗を測定して表1に示した。Example 3 Specific surface area of 1300 m 2 / g
70% by weight of Ketjenblack with a specific surface area of 150
20% by weight of 0 m 2 / g of phenol-based activated carbon and 10% by weight of carboxymethyl cellulose were weighed, and first, Ketjen Black and activated carbon were uniformly dispersed in a mixed solution of water and ethanol. Separately, carboxymethyl cellulose was dissolved in water, and both solutions were further mixed and stirred to prepare a slurry containing Ketjen black. After that, a wound-type electric double layer capacitor was prepared in the same manner as in Example 1, and the capacitance and the internal resistance were measured and shown in Table 1.
【0032】(比較例1)次に、使用するケッチェンブ
ラックの比表面積の好適な値を検証するため、比較例1
として、比表面積が800m2/gのケッチェンブラッ
クを用いた例を示す。ここでは、ケッチェンブラックの
比表面積が800m2/gのである以外は、実施例1と
同様にして巻回型電気二重層キャパシタを作製した。こ
の電気二重層キャパシタについても、実施例1と同様
に、静電容量と内部抵抗を測定し、表1に示した。Comparative Example 1 Next, in order to verify a suitable value of the specific surface area of the Ketjenblack used, Comparative Example 1
As an example, Ketjen black having a specific surface area of 800 m 2 / g is used. Here, a wound electric double layer capacitor was produced in the same manner as in Example 1 except that the specific surface area of Ketjen black was 800 m 2 / g. For this electric double layer capacitor, the capacitance and the internal resistance were measured in the same manner as in Example 1 and shown in Table 1.
【0033】(比較例2)また、比較のために、フェノ
ール性活性炭だけを用いた例について説明する。比表面
積が1500m2/gがフェノール系活性炭を80重量
%、カーボンブラックを10重量%、カルボキシルメチ
ルセルロースを10重量%秤量し、その後は実施例1と
同様にして、巻回型電気二重層キャパシタを製作した。
この電気二重層キャパシタについても、実施例1と同様
に、静電容量と内部抵抗を測定し、表1に示した。Comparative Example 2 For comparison, an example using only phenolic activated carbon will be described. 80% by weight of phenol-based activated carbon having a specific surface area of 1500 m 2 / g, 10% by weight of carbon black, and 10% by weight of carboxymethyl cellulose were weighed, and thereafter, in the same manner as in Example 1, a wound electric double layer capacitor was obtained. I made it.
For this electric double layer capacitor, the capacitance and the internal resistance were measured in the same manner as in Example 1 and shown in Table 1.
【0034】表1から明らかなように、実施例1、実施
例2、実施例3の本発明のケッチェンブラックを主とし
た分極性電極を用いた電気二重層キャパシタは、比較例
2の活性炭のみを分極性電極材料として用いた電気二重
層キャパシタと比較して、高容量で内部抵抗の小さい有
機電解液系電気二重層キャパシタである。As is apparent from Table 1, the electric double layer capacitors using polarizable electrodes mainly of the Ketjenblack of the present invention of Examples 1, 2 and 3 are the activated carbons of Comparative Example 2. This is an organic electrolytic solution type electric double layer capacitor having a high capacity and a small internal resistance as compared with the electric double layer capacitor using only as a polarizable electrode material.
【0035】また、比較例1には、比表面積が800m
2/gのケッチェンブラックを用いた例を示したが、こ
の場合は、明らかな静電容量密度の低下が認められ、ケ
ッチェンブラックの比表面積が、1000m2/g必要
であることがわかる。さらに、実施例4においては、実
施例1、実施例2に比較すると、明らかな内部抵抗の増
加が認められ、用いる炭素質導電性材料には、ケッチェ
ンブラックが少なくとも60重量%含まれることが必要
であること分かる。In Comparative Example 1, the specific surface area is 800 m.
An example using 2 / g of Ketjen black was shown, but in this case, a clear decrease in capacitance density was observed, and it was found that the specific surface area of Ketjen black is required to be 1000 m 2 / g. . Furthermore, in Example 4, a clear increase in internal resistance was observed as compared with Examples 1 and 2, and the carbonaceous conductive material used contained at least 60% by weight of Ketjenblack. I know it is necessary.
【0036】[0036]
【発明の効果】以上に説明したように、比表面積が10
00m2/g以上のケッチェンブラックを60重量%以
上含む炭素質導電材料を分極性電極を用いることによ
り、高容量で内部抵抗の低い電気二重層キャパシタを得
ることができる。なお、本発明は、前記のように有機電
解液系の電気二重層キャパシタに用いると、特に有用で
ある。As described above, the specific surface area is 10
An electric double layer capacitor having a high capacity and a low internal resistance can be obtained by using a polarizable electrode made of a carbonaceous conductive material containing 60 wt% or more of Ketjenblack of 00 m 2 / g or more. The present invention is particularly useful when used in an organic electrolyte-based electric double layer capacitor as described above.
【0037】なお、このような結果が得られたのは、前
記のように、プロピレンカーボネートなどのような有機
溶媒に、テトラエチルアンモニウムテトラフルオロボレ
ートなどのような電解質を溶解した溶液の場合では、電
解質に起因するイオンが溶媒和したクラスターの大きさ
と、比表面積が1000m2/gのケッチェンブラック
の細孔径が適合したためと解される。It should be noted that these results were obtained because, in the case of a solution prepared by dissolving an electrolyte such as tetraethylammonium tetrafluoroborate in an organic solvent such as propylene carbonate, as described above, It is considered that the size of the cluster solvated by the ions derived from the above and the pore size of the Ketjen black having a specific surface area of 1000 m 2 / g were matched.
【図1】活性炭の細孔径分布を示す図。FIG. 1 is a diagram showing a pore size distribution of activated carbon.
【図2】ケッチェンブラックの細孔径分布を示す図。FIG. 2 is a view showing a pore size distribution of Ketjen Black.
【図3】一般的なコイン型の電気二重層キャパシタの断
面図。FIG. 3 is a cross-sectional view of a general coin type electric double layer capacitor.
【図4】巻回型の電気二重層キャパシタにおける巻回素
子の構成を示す斜視図。FIG. 4 is a perspective view showing a configuration of a winding element in a winding type electric double layer capacitor.
【図5】巻回型の電気二重層キャパシタの内部構成を示
す図。FIG. 5 is a diagram showing an internal configuration of a wound electric double layer capacitor.
31,41 セパレータ 32,42 (正極側の)分極性電極 33,43 正極側の集電体 34,44 (負極側の)分極性電極 35,45 負極側の集電体 36 絶縁ゴム 40,51 巻回素子 46,52 電極リード 53 ケース 54 キャップ 31,41 separator 32, 42 (Positive side) Polarizable electrode 33,43 Positive electrode side current collector 34,44 Polarizable electrodes (on the negative electrode side) 35, 45 Negative electrode side current collector 36 Insulating rubber 40,51 winding element 46,52 Electrode lead 53 cases 54 cap
Claims (3)
を、セパレータを介して配置した電気二重層キャパシタ
において、前記分極性電極はケッチェンブラックを含む
炭素質導電性材料であることを特徴とする電気二重層キ
ャパシタ。1. An electric double layer capacitor in which a pair of polarizable electrodes impregnated with an electrolytic solution are arranged via a separator, wherein the polarizable electrodes are a carbonaceous conductive material containing Ketjen black. Electric double layer capacitor.
において、前記炭素質導電性材料におけるケッチェンブ
ラックの含有量は60重量%であることを特徴とする電
気二重層キャパシタ。2. The electric double layer capacitor according to claim 1, wherein the content of Ketjen black in the carbonaceous conductive material is 60% by weight.
記載の電気二重層キャパシタにおいて、前記ケッチェン
ブラックは、比表面積が1000m2/g以上であるこ
とを特徴とする電気二重層キャパシタ。3. The electric double layer capacitor according to claim 1 or 2, wherein the Ketjen black has a specific surface area of 1000 m 2 / g or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002095712A JP2003297695A (en) | 2002-03-29 | 2002-03-29 | Electric double layer capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002095712A JP2003297695A (en) | 2002-03-29 | 2002-03-29 | Electric double layer capacitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2003297695A true JP2003297695A (en) | 2003-10-17 |
Family
ID=29387291
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002095712A Pending JP2003297695A (en) | 2002-03-29 | 2002-03-29 | Electric double layer capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2003297695A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008277790A (en) * | 2007-03-30 | 2008-11-13 | Nippon Chemicon Corp | Electric double layer capacitor |
JP2009065131A (en) * | 2007-08-10 | 2009-03-26 | Mitsumi Electric Co Ltd | Polarizing electrode, electric double layer capacitor, and method of manufacturing the both |
JP2009266910A (en) * | 2008-04-23 | 2009-11-12 | Hitachi Powdered Metals Co Ltd | Paste composition for forming electrode of electric double layer capacitor |
JP2012204332A (en) * | 2011-03-28 | 2012-10-22 | Tokyo Univ Of Agriculture & Technology | Positive electrode material for lithium-sulfur battery, lithium-sulfur battery, and composite and method for manufacturing the same |
JP2015005721A (en) * | 2013-02-20 | 2015-01-08 | 日本ケミコン株式会社 | Electrode, electric double layer capacitor using the same, and method for manufacturing electrode |
-
2002
- 2002-03-29 JP JP2002095712A patent/JP2003297695A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008277790A (en) * | 2007-03-30 | 2008-11-13 | Nippon Chemicon Corp | Electric double layer capacitor |
JP2009065131A (en) * | 2007-08-10 | 2009-03-26 | Mitsumi Electric Co Ltd | Polarizing electrode, electric double layer capacitor, and method of manufacturing the both |
JP2009266910A (en) * | 2008-04-23 | 2009-11-12 | Hitachi Powdered Metals Co Ltd | Paste composition for forming electrode of electric double layer capacitor |
JP2012204332A (en) * | 2011-03-28 | 2012-10-22 | Tokyo Univ Of Agriculture & Technology | Positive electrode material for lithium-sulfur battery, lithium-sulfur battery, and composite and method for manufacturing the same |
JP2015005721A (en) * | 2013-02-20 | 2015-01-08 | 日本ケミコン株式会社 | Electrode, electric double layer capacitor using the same, and method for manufacturing electrode |
US9997301B2 (en) | 2013-02-20 | 2018-06-12 | Nippon Chemi-Con Corporation | Electrode, electric double-layer capacitor using the same, and manufacturing method of the electrode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5015146B2 (en) | ELECTRODE FOR ENERGY STORAGE SYSTEM, MANUFACTURING METHOD THEREOF, AND ENERGY STORAGE SYSTEM INCLUDING THE ELECTRODE | |
JP5372318B2 (en) | Method for manufacturing electrochemical capacitor | |
JP4754553B2 (en) | Electrode manufacturing method, obtained electrode, and super capacitor including this electrode | |
JPWO2013073526A1 (en) | Electrode for electricity storage device, electricity storage device, and method for producing electrode for electricity storage device | |
JP2008227481A (en) | Conductive slurry, electrode slurry and electrode for electric double-layer capacitor using the slurry | |
JP2007157811A (en) | Winding electric double-layer capacitor | |
JP2016538715A (en) | Ultracapacitor with improved aging performance | |
KR101635763B1 (en) | Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method | |
JP4802868B2 (en) | Electrochemical capacitor and manufacturing method thereof | |
JP3721642B2 (en) | Manufacturing method of large-capacity electric double layer capacitor | |
JP2003297695A (en) | Electric double layer capacitor | |
JP2000124081A (en) | Electric double-layer capacitor | |
TWI498931B (en) | Energy storage device | |
KR102013173B1 (en) | Composite for ultracapacitor electrode, manufacturing method of ultracapacitor electrode using the composite, and ultracapacitor manufactured by the method | |
WO2021241334A1 (en) | Electrochemical device | |
KR101493976B1 (en) | Manufacturing method of Asymmetrical Super Capacitor with Cylindrical Type | |
KR102188237B1 (en) | Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method | |
KR102188242B1 (en) | Composite for supercapacitor electrode, manufacturing method of supercapacitor electrode using the composite, and supercapacitor manufactured by the method | |
JP2008166309A (en) | Lithium ion capacitor | |
KR20160114390A (en) | Electrode material and capacitor comprising the same | |
KR101936044B1 (en) | Supercapacitor electrode for high temperature, manufactureing method of the electrode, and Supercapacitor for high temperature using the electrode | |
JP2002015959A (en) | Electric double-layer capacitor and method of manufacturing the same | |
JP3792528B2 (en) | Manufacturing method of electric double layer capacitor | |
WO2024189961A1 (en) | Electrochemical device | |
JP2013046053A (en) | Electrode active material, method for preparing the same, and electrochemical capacitor including electrode using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20040618 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060831 |
|
A131 | Notification of reasons for refusal |
Effective date: 20060906 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20070110 |