JPH0558052B2 - - Google Patents

Info

Publication number
JPH0558052B2
JPH0558052B2 JP61154782A JP15478286A JPH0558052B2 JP H0558052 B2 JPH0558052 B2 JP H0558052B2 JP 61154782 A JP61154782 A JP 61154782A JP 15478286 A JP15478286 A JP 15478286A JP H0558052 B2 JPH0558052 B2 JP H0558052B2
Authority
JP
Japan
Prior art keywords
steel
less
80kgf
amount
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61154782A
Other languages
Japanese (ja)
Other versions
JPS6311652A (en
Inventor
Haruo Kaji
Kazuhiko Yano
Shigeo Okano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15478286A priority Critical patent/JPS6311652A/en
Publication of JPS6311652A publication Critical patent/JPS6311652A/en
Publication of JPH0558052B2 publication Critical patent/JPH0558052B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、低炭素型調質Cr−Mo系80Kgf/mm2
級鋼板に関し、詳しくは、溶接性を格段に改善し
た都市ガスタンクやLPGタンク等のための板厚
40mm以下の調質80Kgf/mm2級高張力鋼板に関す
る。 (従来の技術) 近年、都市ガスタンクやLPGタンク等の大型
化傾向と共に、その軽量化要求が強くなり、80Kg
f/mm2級高張力鋼板の使用が増大している。これ
らの鋼板は、溶接低温割れ感受性が高いので、溶
接施工時には、通常、100〜150℃程度の予熱が施
されている。しかし、特に近年、かかる予熱のた
めの施工費の低減要求が高まり、予熱なしにても
低温割れが発生しない80Kgf/mm2級鋼板が強く要
望されるに至つている。 低温割れ感受性を低めて、溶接性を改善するた
めには、鋼におけるC量を低減して、溶接部の硬
化を抑制することが有効であることは既によく知
られており、既に、Bの焼入れ性向上効果を利用
して、予熱を不必要とした60Kgf/mm2級鋼板が実
用化されている。しかしながら、鋼におけるC量
の低減は強度の低下を招くので、保証強度が高い
80Kgf/mm2級鋼板においては、Bの焼入れ性向上
効果を利用しても、単に、C量を低減することに
よつては、所要の強度と予熱を必要としないすぐ
れた溶接性を同時に有せしめることは困難であ
る。 かかる問題を解決するために、例えば、特開昭
51−103018号、特開昭53−28017号、特開昭53−
29218号、特開昭54−38216号公報等に記載されて
いるように、鋼板における化学成分や製造条件を
種々に制御することによつて、溶接割れ防止のた
めの予熱温度を50℃程度に抑えた80Kgf/mm2級鋼
板が提案されている。これらはいずれも、C量の
低減に伴う強度の低下をCu、Ni、Cr、Mn等の
合金元素の添加によつて補うものである。 しかし、反面、上記鋼板は、例えば、Niを用
いる場合は高価であり、更に、硫化物応力腐食割
れ感受性が高く、タンク材料としては不適当であ
る。また、Mn量が比較的多い場合には、焼戻し
脆化やSR(応力除去焼なまし)脆化が大きい等の
問題を有する。 発明が解決しようとする問題点 そこで、本発明者らは、硫化物応力腐食割れ感
受性やSR脆化に対して抵抗の強い80Kgf/mm2
鋼板を得るべく鋭意研究した結果、Cr−Mo系80
Kgf/mm2級鋼板において、C量を0.10%未満と
し、且つ、Mn/C比を所定の範囲とすることに
よつて、従来の知見から予測される焼入れ性より
も遥かに大きい焼入れ性を得ることができること
を見出し、かくして、低炭素型であつて、且つ、
80Kgf/mm2級の強度を有する調質Cr−Mo系鋼板
を得ることができることを見出して、本発明に至
つたものである。 即ち、本発明は、すぐれた耐溶接割れ性を有
し、溶接施工時に予熱なしにて溶接が可能である
高強度高靭性低炭素型調質Cr−Mo系80Kgf/mm2
級鋼板を提供することを目的とする。 問題点を解決するための手段 本発明による低炭素型Cr−Mo系80Kgf/mm2
鋼板の第1は、重量%で C 0.05%から0.10%未満、 Si 0.05〜0.50%、 Mn 0.75〜1.40%、 Cr 0.50〜1.40%、 Mo 0.20〜0.80%、 V 0.01〜0.10%、 B 0.0003〜0.0018%、 残部鉄及び不可避的不純物よりなり、 Mn/C≧10 を満足すると共に、 PCM=C+Si/30+Mn+Cu+Cr/20+Mo/15+V/10+5
B (%) で定義されるPCMが0.20%以下である板厚40mm以
下の低炭素型調質Cr−Mo系80Kgf/mm2級鋼板で
あることを特徴とする。 本発明による低炭素型Cr−Mo系80Kgf/mm2
鋼板の第2は、鋼板が上記元素に加えて、Cuを
0.05〜0.50%の範囲で含有することを特徴とす
る。 以下に本発明について詳細に説明する。 Cr−Mo系80Kgf/mm2級鋼板におけるC量低減
の可能性を探る目的で、第1表に示すように、
0.75Cr−0.20Mo−0.040V−0.0010B系鋼を基本鋼
とし、 Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4
+V/14 (%) を0.52%(一定)としつつ、C量とMn量とを
種々に変えた成分系の鋼を溶製し、圧延まま材か
ら採取した試験片を用いて、ジヨミニー端焼入れ
試験を行なつた。 第1図にこれら鋼のジヨミニ曲線を示すよう
に、C量が低いほど、焼入れ端部の硬さは低下す
るが、他方、ジヨミニ曲線が水平に近くなる傾向
が認められる。この傾向を定量的に評価するため
に、化学成分から計算される理想臨界直径DI(caL)
と、第1図のジヨミニ曲線から得られる実際の理
想臨界直径DI(pbs)との比較を行なつた。結果を第
2表に示すように、C量が0.14%である鋼Aで
は、DI(pbs)はDI(caL)と殆ど変わらないが、C量が
0.12%以下である鋼B〜Eでは、DI(pbs)がDI(caL)
約1.4倍であることが認められる。尚、
Industrial application field The present invention is a low carbon tempered Cr-Mo system 80Kgf/mm 2
Regarding grade steel plates, for details, please refer to the plate thickness for city gas tanks, LPG tanks, etc., which have significantly improved weldability.
Concerning heat-treated 80Kgf/mm class 2 high tensile strength steel plate of 40mm or less. (Conventional technology) In recent years, along with the trend toward larger city gas tanks and LPG tanks, there has been a strong demand for lighter weight.
f/mm The use of grade 2 high tensile strength steel plates is increasing. These steel plates are highly susceptible to cold cracking during welding, so they are usually preheated to about 100 to 150°C during welding. However, particularly in recent years, there has been an increasing demand for reductions in construction costs for such preheating, and there has been a strong demand for 80 kgf/mm class 2 steel plates that do not cause cold cracking even without preheating. It is already well known that it is effective to reduce the amount of C in steel and suppress hardening of the weld zone in order to reduce cold cracking susceptibility and improve weldability. Utilizing the effect of improving hardenability, 60Kgf/mm class 2 steel plates that do not require preheating have been put into practical use. However, reducing the amount of C in steel leads to a decrease in strength, so the guaranteed strength is high.
In 80Kgf/mm class 2 steel plate, even if the hardenability improvement effect of B is utilized, simply reducing the amount of C will not simultaneously provide the required strength and excellent weldability that does not require preheating. It is difficult to force them to do so. In order to solve this problem, for example,
No. 51-103018, JP-A-53-28017, JP-A-53-
As described in No. 29218 and Japanese Unexamined Patent Publication No. 54-38216, the preheating temperature for preventing weld cracking has been reduced to around 50°C by variously controlling the chemical composition and manufacturing conditions of the steel plate. A lower 80Kgf/mm 2nd class steel plate has been proposed. In all of these, the decrease in strength due to the decrease in the amount of C is compensated for by adding alloying elements such as Cu, Ni, Cr, and Mn. However, on the other hand, the above-mentioned steel plate is expensive when using Ni, for example, and is also highly susceptible to sulfide stress corrosion cracking, making it unsuitable as a tank material. Furthermore, when the amount of Mn is relatively large, there are problems such as large temper embrittlement and SR (stress relief annealing) embrittlement. Problems to be Solved by the Invention The inventors of the present invention have conducted intensive research to obtain an 80Kgf/mm class 2 steel plate that is highly resistant to sulfide stress corrosion cracking and SR embrittlement. 80
Kgf/mm In class 2 steel sheets, by setting the C content to less than 0.10% and the Mn/C ratio within the specified range, the hardenability is much greater than that predicted from conventional knowledge. It has been found that it is possible to obtain a low carbon type and
The present invention was achieved by discovering that it is possible to obtain a tempered Cr-Mo steel sheet having a strength of 80 Kgf/mm 2 class. That is, the present invention provides a high-strength, high-toughness, low-carbon heat-treated Cr-Mo system of 80 kgf/mm 2 that has excellent weld cracking resistance and can be welded without preheating during welding work.
The purpose is to provide grade steel plates. Means for Solving the Problems The first low carbon type Cr-Mo 80Kgf/mm grade 2 steel sheet according to the present invention has, in weight percent, C 0.05% to less than 0.10%, Si 0.05 to 0.50%, Mn 0.75 to 1.40. %, Cr 0.50~1.40%, Mo 0.20~0.80%, V 0.01~0.10%, B 0.0003~0.0018%, the balance consists of iron and unavoidable impurities, satisfies Mn/C≧10, and P CM = C + Si/ 30+Mn+Cu+Cr/20+Mo/15+V/10+5
It is characterized by being a low carbon tempered Cr-Mo 80Kgf/mm 2nd class steel plate with a thickness of 40mm or less and a PCM defined as B (%) of 0.20% or less. The second low carbon type Cr-Mo type 80Kgf/mm grade 2 steel plate according to the present invention has a steel plate that contains Cu in addition to the above elements.
It is characterized by containing in the range of 0.05 to 0.50%. The present invention will be explained in detail below. In order to explore the possibility of reducing the amount of C in Cr-Mo 80Kgf/mm class 2 steel sheets, as shown in Table 1,
0.75Cr−0.20Mo−0.040V−0.0010B steel is the basic steel, Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4
+V/14 (%) was set at 0.52% (constant), and steels with various C and Mn contents were melted and subjected to geominy edge quenching using test pieces taken from as-rolled materials. I conducted a test. As shown in FIG. 1, the Jiomini curves of these steels show that the lower the C content, the lower the hardness of the quenched end, but on the other hand, there is a tendency for the Jiomini curves to become more horizontal. In order to quantitatively evaluate this tendency, the ideal critical diameter D I (caL) calculated from the chemical composition
and the actual ideal critical diameter D I (pbs) obtained from the Giyomini curve in Figure 1. As shown in Table 2, for steel A with a C content of 0.14%, D I (pbs) is almost the same as D I (caL) , but the C content is
It is observed that in steels B to E where the content is 0.12% or less, D I (pbs) is approximately 1.4 times greater than D I (caL) . still,

【表】【table】

【表】 DI(caL)及びDI(pbs)の求め方は、第2表の脚注に
示す。 次に、横軸を各鋼のMn/C比、縦軸を
DI(pbs)/DI(caL)とするグラフを第2図に示すよう
に、Mn/C比が10以上であるとき、特に、
DI(pbs)がDI(caL)に比べて大きいことが理解される。 タンク用鋼板の板厚は殆どの場合、板厚40mm以
下であるが、板厚40mm材の中心部と等しい冷却速
度にて冷却されるジヨミニ曲線の位置は、焼入れ
端から約13mmの位置である。この位置における硬
さは、第1表に示す鋼においてすべてHv300以上
であり、80Kgf/mm2級鋼板の焼入れまま硬さとし
てはほぼ十分である。従つて、第1表の成分系よ
りも更にC量や合金元素を低減することができる
こととなる。 かかる知見に基づいて、PCMが0.20%以下の
種々の鋼を溶製し、ジヨミニ試験を行なつた。結
果の一例を第3図に示すように、0.07C−0.96Mn
−0.73Cr−0.35Mo−0.040V−0.0009B−0.48%
Ceq−0.19%PCMの成分系にて、焼入れ端から13
mmの位置において、焼入れまま硬さHv315程度を
得ることができ、板厚40mmの予熱不必要の80Kg
f/mm2級鋼板を得ることができることが理解され
る。 次に、本発明によるCr−Mo鋼板における化学
成分の限定理由について説明する。 Cは、一般に、その添加量が少ないほど、溶接
性がすぐれる。予熱を不必要とするためには、
0.10%未満とすることが必要である。しかし、余
りに少ないときは、80Kgf/mm2級鋼板としての所
要の強度を得ることができないので、Cの添加量
の下限は0.05%とする。 Siは、鋼の脱酸及び強度の確保のために必要で
あるが、過多に添加するときは、溶接性を劣化さ
せるので、添加量は0.05〜0.50%の範囲とする。 Mnは、鋼の焼入れ性を高めるのに必要であつ
て、本発明においては0.75%以上を添加すること
が必要であるが、しかし、過多に添加すると、溶
接性を損ない、また、焼戻し脆化感受性やSR脆
化感受性を高めるので、添加量の上限は、1.40%
とする。 更に、本発明においては、鋼が十分な焼入れ性
を有するためには、Mn及びCは、 Mn/C≧10 の関係を満足する必要がある。 Crは、鋼の焼入れ性を高めると共に、耐食性
を増すために、少なくとも0.50%を添加すること
が必要である。しかし、過度に添加すると溶接性
が劣化するので、添加量の上限は1.40%とする。 Moも、鋼の焼入れ性を増し、焼戻し軟化抵抗
を高め、また、焼戻し脆化感受性を低めるのに効
果を有する。これらの効果を有効に得るために
は、0.20%以上を添加することが必要であるが、
過多に添加するときは、溶接性を損ない、また、
高価な元素でもあるので、その添加量の上限は
0.80%とする。 Vも、鋼の焼入れ性を増し、また、焼戻し軟化
抵抗を高めるのに効果を有する。これらの効果を
有効に得るためには、0.01%以上を添加すること
が必要であるが、過多に添加するときは、溶接性
及び靭性を劣化させるので、添加量の上限は0.10
%とする。 Bは、微量の添加によつて、焼入れ性を高め
て、強度上昇に有効である。この効果を有効に得
るためには、0.0003%以上を添加することが必要
である。しかし、0.0018%を越えて過剰に添加す
るときは、B化合物を生成し、焼入れ性を低下さ
せると同時に靭性の劣化を伴う。 本発明によるCr−Mo系鋼板は、上記した元素
に加えて、Cuを0.05〜0.50%の範囲で添加するこ
とができる。 Cuは、溶接低温割れに対する悪影響が比較的
小さい反面、固溶強化及び析出強化によつて強度
上昇に有効であり、この効果を有効に得るため
に、少なくとも0.05%添加することが必要であ
る。しかし、過多に添加するときは、熱間加工性
を劣化させるので、添加量は0.50%以下とする。 更に、本発明においては、 PCM=C+Si/30+Mn+Cu+Cr/20+Mo/15+V/10+5
B (%) で定義されるPCMが0.20%以下であることが必要
である。PCMは、よく知られているように、溶接
時の低温割れ感受性を示す指標であり、溶接施工
時に予熱なしにて割れを生じることなく溶接を可
能とするために、本発明Cr−Mo鋼板において
は、PCMを0.20%以下とする。 本発明によるCr−Mo系鋼板は、板厚40mm以下
の場合に好適である。タンク用鋼板の板厚は殆ど
が40mm以下であるうえに、40mmを越える板厚の鋼
板の場合は、質量効果による中心部の不完全焼入
れを避けるためには、C量や合金元素量を増す必
要があり、結果として、高い温度での予熱が必要
となるからである。 本発明によるCr−Mo鋼板は、常法に従つて前
記所定の化学成分を有する鋼塊又は鋼片を熱間圧
延し、その後、直接焼入れ焼戻しし、又は再加熱
後、焼入れ焼戻しを行なうことによつて製造する
ことができる。 発明の効果 以上のように、本発明によれば、Cr−Mo系80
Kgf/mm2級鋼板において、C量を0.10%未満と
し、且つ、Mn/C比を10以上とすることによつ
て、従来の知見から予測される焼入れ性よりも遥
かに大きい約入れ性を得ることができ、かくし
て、低炭素型であつて、しかも、多量の合金元素
を用いることなしに、PCMを0.20%以下とし得た
80Kgf/mm2級調質Cr−Mo系鋼板を得ることがで
きる 実施例 以下に実施例を挙げて本発明を説明するが、本
発明はこれら実施例により何ら限定されるもので
はない。 実施例 第3表に示す化学成分を有するCr−Mo系鋼板
を焼入れ焼戻し法又は直接焼入れ焼戻し法にて製
造した。鋼板F〜Kは本発明鋼板、鋼板L〜Oは
比較鋼板である。また、第3表にはこれら鋼板に
おけるPCM及びMn/Si比を示す。第4表にはこ
れら鋼板の母材特性及び斜めY形溶接割れ試験結
果を示す。
[Table] How to calculate D I (caL) and D I (pbs) is shown in the footnotes of Table 2. Next, the horizontal axis is the Mn/C ratio of each steel, and the vertical axis is
As shown in the graph of D I (pbs) / D I (caL) in Figure 2, especially when the Mn/C ratio is 10 or more,
It is understood that D I(pbs) is larger than D I(caL) . In most cases, the thickness of steel plates for tanks is 40 mm or less, but the position of the Jyomini curve, which cools at the same cooling rate as the center of a 40 mm thick plate, is approximately 13 mm from the quenched edge. . The hardness at this position is Hv300 or higher for all of the steels shown in Table 1, which is almost sufficient for the as-quenched hardness of an 80Kgf/mm 2 class steel plate. Therefore, the amount of C and alloying elements can be further reduced than in the component system shown in Table 1. Based on this knowledge, various steels with P CM of 0.20% or less were produced and subjected to the Jiomini test. An example of the results is shown in Figure 3, 0.07C−0.96Mn
−0.73Cr−0.35Mo−0.040V−0.0009B−0.48%
In the composition system of Ceq−0.19%P CM , 13 from the quenched end
At the mm position, it is possible to obtain as-quenched hardness of about Hv315, and the plate thickness is 80Kg without preheating of 40mm.
It is understood that f/mm 2 grade steel plate can be obtained. Next, the reason for limiting the chemical composition in the Cr-Mo steel sheet according to the present invention will be explained. In general, the smaller the amount of C added, the better the weldability. To eliminate the need for preheating,
It is necessary to keep it below 0.10%. However, if it is too small, it will not be possible to obtain the required strength as an 80Kgf/mm 2nd class steel plate, so the lower limit of the amount of C added is set at 0.05%. Si is necessary for deoxidizing steel and ensuring strength, but when added in excess, it deteriorates weldability, so the amount added is in the range of 0.05 to 0.50%. Mn is necessary to improve the hardenability of steel, and in the present invention it is necessary to add 0.75% or more, but if added in excess, it impairs weldability and may cause tempering embrittlement. The upper limit of the amount added is 1.40% as it increases sensitivity and SR embrittlement susceptibility.
shall be. Furthermore, in the present invention, in order for the steel to have sufficient hardenability, Mn and C must satisfy the relationship of Mn/C≧10. Cr needs to be added in an amount of at least 0.50% in order to improve the hardenability of the steel and increase its corrosion resistance. However, if excessively added, weldability deteriorates, so the upper limit of the amount added is set at 1.40%. Mo is also effective in increasing the hardenability of steel, increasing its resistance to temper softening, and reducing its susceptibility to temper embrittlement. In order to effectively obtain these effects, it is necessary to add 0.20% or more, but
When added in excess, it impairs weldability, and
Since it is an expensive element, the upper limit of its addition amount is
It shall be 0.80%. V also has the effect of increasing the hardenability of steel and increasing the resistance to temper softening. In order to effectively obtain these effects, it is necessary to add 0.01% or more, but when adding too much, weldability and toughness deteriorate, so the upper limit of the amount added is 0.10% or more.
%. When added in a small amount, B is effective in improving hardenability and increasing strength. In order to effectively obtain this effect, it is necessary to add 0.0003% or more. However, when added in excess of more than 0.0018%, a B compound is produced, which lowers hardenability and at the same time causes deterioration of toughness. In addition to the above-described elements, the Cr-Mo steel sheet according to the present invention may contain Cu in a range of 0.05 to 0.50%. Although Cu has a relatively small negative effect on cold weld cracking, it is effective in increasing strength through solid solution strengthening and precipitation strengthening, and in order to effectively obtain this effect, it is necessary to add at least 0.05%. However, when added in excess, hot workability deteriorates, so the amount added should be 0.50% or less. Furthermore, in the present invention, P CM =C+Si/30+Mn+Cu+Cr/20+Mo/15+V/10+5
It is necessary that P CM defined as B (%) is 0.20% or less. As is well known, P CM is an index indicating the susceptibility to cold cracking during welding, and in order to enable welding without cracking without preheating during welding, we developed the Cr-Mo steel sheet of the present invention. In this case, P CM shall be 0.20% or less. The Cr-Mo steel sheet according to the present invention is suitable for a sheet thickness of 40 mm or less. The thickness of most steel plates for tanks is 40 mm or less, and in the case of steel plates with a thickness exceeding 40 mm, the amount of C and alloying elements must be increased to avoid incomplete quenching in the center due to the mass effect. This is because, as a result, preheating at a high temperature is required. The Cr-Mo steel sheet according to the present invention can be produced by hot rolling a steel ingot or billet having the above-mentioned predetermined chemical composition according to a conventional method, and then directly quenching and tempering, or quenching and tempering after reheating. Therefore, it can be manufactured. Effects of the Invention As described above, according to the present invention, Cr-Mo 80
Kgf/mm In class 2 steel sheets, by setting the C content to less than 0.10% and the Mn/C ratio to 10 or more, the hardenability is much greater than that predicted from conventional knowledge. Thus, it was possible to obtain a low carbon type material with a P CM of 0.20% or less without using a large amount of alloying elements.
Example that can obtain a 80Kgf/mm 2nd class tempered Cr-Mo steel sheet The present invention will be described below with reference to Examples, but the present invention is not limited to these Examples in any way. Example A Cr-Mo steel sheet having the chemical components shown in Table 3 was manufactured by a quenching and tempering method or a direct quenching and tempering method. Steel plates F to K are steel plates of the present invention, and steel plates L to O are comparison steel plates. Table 3 also shows the P CM and Mn/Si ratios of these steel plates. Table 4 shows the base material properties of these steel plates and the results of the diagonal Y-shaped weld cracking test.

【表】【table】

【表】【table】

【表】【table】

【表】 本発明鋼板は、いずれも降伏強さが70Kgf/mm2
以上、引張強さが80Kgf/mm2以上、vTrsが−70
℃以下であり、しかも、PCMは0.20%以下である。
また、斜めY形溶接割れ試験において、常温で割
れを発生しない。 これに対して、比較鋼板によれば、PCMは0.20
%以下であるが、いずれもMn/Si比が10よりも
小さいために、引張強さが80Kgf/mm2に満たない
か、又は引張強さは80Kgf/mm2以上であつても、
vTrsは−10℃以上であつて、タンク材としては
不適当である。
[Table] The steel plates of the present invention all have a yield strength of 70Kgf/mm 2
Above, tensile strength is above 80Kgf/ mm2 , vTrs is -70
℃ or less, and P CM is 0.20% or less.
In addition, no cracking occurs at room temperature in the diagonal Y-shaped weld cracking test. On the other hand, according to the comparative steel sheet, P CM is 0.20
% or less, but because the Mn/Si ratio is less than 10, the tensile strength is less than 80 Kgf/mm 2 , or even if the tensile strength is 80 Kgf/mm 2 or more,
vTrs has a temperature of -10°C or higher, making it unsuitable as a tank material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、0.75Cr−0.20Mo−0.040V−0.0010B
系鋼を基本鋼とし、Ceqをを0.52%(一定)とし
つつ、C量とMn量とを変えた種々の成分系の鋼
の圧延まま材から採取した試験片についてのジヨ
ミニ曲線、第2図は、第1表に示す化学成分を有
する鋼板について、第1図のジヨミニ曲線から得
られる実際の理想臨界直径DI(pbs)とその化学成分
から計算される理想臨界直径DI(caL)との比に対す
るMn/C比の影響を示すグラフ、第3図は、
0.07C−0.96Mn−0.73Cr−0.35Mo−0.040V−
0.0009B−0.48%Ceq−0.19%PCMの成分系鋼につ
いてのジヨミニ試験結果を示すグラフである。
Figure 1 shows 0.75Cr−0.20Mo−0.040V−0.0010B
Figure 2 shows Giyomini curves for test specimens taken from as-rolled steels of various composition systems in which the base steel is the base steel, Ceq is 0.52% (constant), and the C content and Mn content are varied. For a steel plate having the chemical composition shown in Table 1, the actual ideal critical diameter D I (pbs) obtained from the Giyomini curve in Figure 1 and the ideal critical diameter D I (caL) calculated from the chemical composition are A graph showing the influence of the Mn/C ratio on the ratio of
0.07C−0.96Mn−0.73Cr−0.35Mo−0.040V−
It is a graph showing the results of the Jiomini test for steel with a composition of 0.0009B-0.48%Ceq-0.19%P CM .

Claims (1)

【特許請求の範囲】 1 重量%で C 0.05%から0.10%未満、 Si 0.05〜0.50%、 Mn 0.75〜1.40%、 Cr 0.50〜1.40%、 Mo 0.20〜0.80%、 V 0.01〜0.10%、 B 0.0003〜0.0018%、 残部鉄及び不可避的不純物よりなり、 Mn/C≧10 を満足すると共に、 PCM=C+Si/30+Mn+Cu+Cr/20+Mo/15+V/10+5
B (%) で定義されるPCMが0.20%以下である板厚40mm以
下の低炭素型調質Cr−Mo系80Kgf/mm2級鋼板。 2 重量%で C 0.05%から0.10%未満、 Si 0.05〜0.50%、 Mn 0.75〜1.40%、 Cr 0.50〜1.40%、 Mo 0.20〜0.80%、 V 0.01〜0.10%、 Cu 0.05〜0.50%、 B 0.0003〜0.0018%、 残部鉄及び不可避的不純物よりなり、 Mn/C≧10 を満足すると共に、 PCM=C+Si/30+Mn+Cu+Cr/20+Mo/15+V/10+5
B (%) で定義されるPCMが0.20%以下である板厚40mm以
下の低炭素型調質Cr−Mo系80Kgf/mm2級鋼板。
[Claims] 1% by weight: C 0.05% to less than 0.10%, Si 0.05 to 0.50%, Mn 0.75 to 1.40%, Cr 0.50 to 1.40%, Mo 0.20 to 0.80%, V 0.01 to 0.10%, B 0.0003 ~0.0018%, the balance consists of iron and unavoidable impurities, satisfies Mn/C≧10, and P CM = C + Si / 30 + Mn + Cu + Cr / 20 + Mo / 15 + V / 10 + 5
A low carbon tempered Cr-Mo 80Kgf/mm grade 2 steel plate with a thickness of 40mm or less and a PCM defined by B (%) of 0.20% or less. 2% by weight: C 0.05% to less than 0.10%, Si 0.05% to 0.50%, Mn 0.75% to 1.40%, Cr 0.50% to 1.40%, Mo 0.20% to 0.80%, V 0.01% to 0.10%, Cu 0.05% to 0.50%, B 0.0003 ~0.0018%, the balance consists of iron and unavoidable impurities, satisfies Mn/C≧10, and P CM = C + Si / 30 + Mn + Cu + Cr / 20 + Mo / 15 + V / 10 + 5
A low carbon tempered Cr-Mo 80Kgf/mm grade 2 steel plate with a thickness of 40mm or less and a PCM defined by B (%) of 0.20% or less.
JP15478286A 1986-06-30 1986-06-30 80kgf/mm2 class low-carbon cr-mo steel plate Granted JPS6311652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15478286A JPS6311652A (en) 1986-06-30 1986-06-30 80kgf/mm2 class low-carbon cr-mo steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15478286A JPS6311652A (en) 1986-06-30 1986-06-30 80kgf/mm2 class low-carbon cr-mo steel plate

Publications (2)

Publication Number Publication Date
JPS6311652A JPS6311652A (en) 1988-01-19
JPH0558052B2 true JPH0558052B2 (en) 1993-08-25

Family

ID=15591781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15478286A Granted JPS6311652A (en) 1986-06-30 1986-06-30 80kgf/mm2 class low-carbon cr-mo steel plate

Country Status (1)

Country Link
JP (1) JPS6311652A (en)

Also Published As

Publication number Publication date
JPS6311652A (en) 1988-01-19

Similar Documents

Publication Publication Date Title
JPS60215719A (en) Manufacture of electric welded steel pipe for front fork of bicycle
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
WO2009123195A1 (en) Process for production of thick high-tensile-strength steel plates
JPS6352090B2 (en)
JP4655372B2 (en) Method for producing high-tensile steel with high yield point
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
JP3126181B2 (en) Manufacturing method of steel for offshore structures with excellent fire resistance
JP2743765B2 (en) Cr-Mo steel plate for pressure vessel and method for producing the same
JPH0558052B2 (en)
JP4592173B2 (en) Martensitic stainless steel welded structure with excellent fire resistance
JP3877028B2 (en) Manufacturing method of thick steel plate with excellent strength, toughness and weldability
JPH10204584A (en) Heat treated type earthquake-proof steel product excellent in hot-dip galvanizing crack resistance
JP3336875B2 (en) Tempered high-strength steel excellent in hot-dip galvanizing crack resistance and method for producing the same
JPH05339637A (en) Production of steel pipe or square pipe having low yield ratio and excellent weatherability
JP3568710B2 (en) 590 N / mm2 grade steel sheet for welded structure having excellent HAZ toughness during large heat input welding and yield ratio of 80% or less and method for producing the same
JP3793294B2 (en) Method for producing 780 MPa class high-tensile steel with excellent galvanization resistance
JPH0737649B2 (en) Manufacturing method of fireproof steel plate for building with low yield ratio
JPH0693371A (en) Quenched and tempered high tension steel for large heat input welding excellent in site weldability and jig mark cracking resistance and its production
JPH06172917A (en) Production of high tensile strength steel for large heat input welding, excellent in toughness at low temperature
JPS58107476A (en) High tensile steel excellent sulfide stress corrosion cracking resistance
JPH10102193A (en) Heat treated high tensile strength steel excellent in weldability and resistance to hot dip galvanizing crack, and its production
JPS61257456A (en) High toughness and high phosphorus type weather resistant steel having superior weldability and giving welded joint of superior performance
JPH05339638A (en) Production of steel tube or square tube reduced in yield ratio and excellent in atmospheric corrosion resistance
JPH09176781A (en) Refined 60 kilo class steel excellent in weldability and galvanizing crack resistance and its production
JPH04103717A (en) Production of hot rolled soft steel plate excellent in longitudinal cracking property

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term