JPH0557212B2 - - Google Patents

Info

Publication number
JPH0557212B2
JPH0557212B2 JP20981486A JP20981486A JPH0557212B2 JP H0557212 B2 JPH0557212 B2 JP H0557212B2 JP 20981486 A JP20981486 A JP 20981486A JP 20981486 A JP20981486 A JP 20981486A JP H0557212 B2 JPH0557212 B2 JP H0557212B2
Authority
JP
Japan
Prior art keywords
particles
ferric oxide
feooh
oxide particles
hydrated ferric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20981486A
Other languages
Japanese (ja)
Other versions
JPS6364924A (en
Inventor
Tatsuya Nakamura
Harumi Kurokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP20981486A priority Critical patent/JPS6364924A/en
Publication of JPS6364924A publication Critical patent/JPS6364924A/en
Publication of JPH0557212B2 publication Critical patent/JPH0557212B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、棒状を呈したβ−含水酸化第二鉄粒
子粉末の製造法に関するものであり、双晶や樹枝
状粒子が混在しておらず、且つ、針状粒子が集合
してタクトイド化していない棒状を呈したβ−含
水酸化第二鉄粒子粉末を提供することを目的とす
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing rod-shaped β-hydrated ferric oxide particles, which do not contain mixed twins or dendritic particles. First, it is an object of the present invention to provide a β-hydrated ferric oxide particle powder having a rod shape in which needle-like particles are aggregated and not formed into tactoids.

本発明に係る棒状を呈したβ−含水酸化第二鉄
粒子粉末の主な用途は、塗料用黄褐色顔料粉末、
ゴム・プラスチツク用着色剤、磁性粒子粉末用出
発原料等である。
The main uses of the rod-shaped β-hydrated ferric oxide particles of the present invention are yellowish brown pigment powder for paints,
Colorants for rubber and plastics, starting materials for magnetic particle powders, etc.

〔従来の技術〕[Conventional technology]

含水酸化第二鉄粒子粉末は、黄褐色を呈してい
る為、塗料用顔料粉末として広く使用されてお
り、また、ゴム・プラスチツクスの着色剤として
も使用されている。
Hydrous ferric oxide particles have a yellowish-brown color and are widely used as pigment powders for paints, and are also used as coloring agents for rubber and plastics.

更に、含水酸化第二鉄粒子粉末は、磁気記録用
磁性粒子粉末を製造する際の出発原料としても使
用されている。即ち、マグネタイト粒子粉末、マ
グヘマイト粒子粉末等の磁性粒子粉末は、含水酸
化第二鉄粒子粉末を還元するか、又は必要により
更に酸化することにより製造されている。
Furthermore, hydrated ferric oxide particles are also used as a starting material for producing magnetic particles for magnetic recording. That is, magnetic particles such as magnetite particles and maghemite particles are produced by reducing hydrous ferric oxide particles or further oxidizing them if necessary.

上述した通り、含水酸化第二鉄粒子粉末は、
様々の分野で使用されているが、いずれの分野に
おいても共通して要求される特性は、分散性が優
れていることである。
As mentioned above, the hydrated ferric oxide particle powder is
Although they are used in various fields, the characteristic commonly required in all fields is excellent dispersibility.

即ち、塗料の製造においては塗料化に際して、
ゴム・プラスチツクスの着色においては混練に際
して含水酸化第二鉄粒子粉末を均一、且つ、容易
に分散させることが必要である。また、磁気記録
分野においては、高記録密度化の要請が益々強ま
つており、磁気記録媒体の製造においては、ベー
スフイルム上に塗布する磁性塗料の製造に際して
磁性粒子粉末を均一、且つ、容易に分散させるこ
とにより配向性及び充填密度を向上させることが
要求されており、その為には出発原料である含水
酸化第二鉄粒子粉末が均一、且つ、容易に分散す
るものであることが必要である。
In other words, in the production of paint, when turning it into a paint,
When coloring rubber and plastics, it is necessary to uniformly and easily disperse hydrated ferric oxide particles during kneading. Furthermore, in the field of magnetic recording, the demand for higher recording densities is increasing, and in the production of magnetic recording media, it is necessary to uniformly and easily apply magnetic particle powder when producing magnetic paint to be coated on a base film. It is required to improve the orientation and packing density by dispersing, and for this purpose, it is necessary that the starting material, hydrous ferric oxide particle powder, be uniform and easily dispersed. be.

分散性が優れた含水酸化第二鉄粒子粉末である
ためには、双晶や樹枝状粒子が混在しておらず、
且つ、粒子の形状で言えば棒状を呈した粒子であ
らねばならない。
In order for the hydrous ferric oxide particles to have excellent dispersibility, twins and dendritic particles must not be mixed together.
In addition, the particles must have a rod-like shape.

この事実は、例えば、特開昭51−86795号公報
及び特開昭50−115698号公報の記載から明らかで
ある。即ち、特開昭51−86795号公報には、「本発
明は、……側鎖(樹枝状粒子)の少ないα−
FeOOHを作成することを特徴とし、その目的は
……分散性の良い高保磁力のγ−Fe2O3微粒子を
製造することにある。……」と記載されている。
また、特開昭50−115698号公報には、「本発明は、
従来から多量に使用されている黄色酸化鉄顔料の
……粒子形態を改善し……」、「……本発明の処理
を施したものは、比表面積がいずれも1/2〜1/3に
減少している。……このことは図1の電子顕微鏡
写真から明瞭に確認できる。生成物の針状形の幅
が大きくなり、長さが小さくなつている。したが
つて……針状タクトイド粒子が棒状粒子へと変形
していることがわかる。」及び「……比表面積が
約1/3となり、吸油量が著しく減少するから、塗
料に使用した場合、その諸特性が向上する。……
磁性粉は比表面積が小さいから、磁性塗料とした
場合、磁場配向性が優れ、また磁性粉の塗布層へ
の充てん密度を上げることができる。……」なる
記載の通り、針状タクトイド粒子が棒状粒子に変
形し、その結果、比表面積が小さくなると吸油量
が減少し、磁場配向性が優れ、充てん密度が向上
する。換言すれば、分散性が改良されることが示
されている。
This fact is clear from the descriptions in, for example, JP-A-51-86795 and JP-A-50-115698. That is, Japanese Patent Application Laid-Open No. 51-86795 states, ``The present invention...
It is characterized by the creation of FeOOH, and its purpose is to produce γ-Fe 2 O 3 fine particles with good dispersibility and high coercive force. ..." is written.
In addition, Japanese Patent Application Laid-open No. 115698/1983 states that “the present invention
The particle morphology of the yellow iron oxide pigment, which has been used in large amounts in the past, has been improved and the specific surface area of the pigments treated with the present invention has been reduced to 1/2 to 1/3. ...This can be clearly seen from the electron micrograph in Figure 1.The width of the needle-like shape of the product becomes larger and the length becomes smaller.Therefore, ...the needle-like tactoid. It can be seen that the particles are transformed into rod-shaped particles.'' and ``...The specific surface area is reduced to about 1/3, and the oil absorption is significantly reduced, so when used in paints, their various properties are improved. …
Since magnetic powder has a small specific surface area, when used as a magnetic coating, it has excellent magnetic field orientation and can increase the packing density of the magnetic powder in the coating layer. As described in ``...'', needle-like tactoid particles are transformed into rod-like particles, and as a result, when the specific surface area becomes smaller, the oil absorption is reduced, the magnetic field orientation is excellent, and the packing density is improved. In other words, it has been shown that the dispersibility is improved.

含水酸化第二鉄としては、結晶構造の異なるα
−含水酸化第二鉄、β−含水酸化第二鉄及びγ−
含水酸化第二鉄等が知られている。
As hydrous ferric oxide, α with a different crystal structure is used.
- Hydrous ferric oxide, β- Hydrous ferric oxide and γ-
Hydrous ferric oxide and the like are known.

α−含水酸化第二鉄粒子粉末及びγ−含水酸化
第二鉄粒子粉末と比べて、β−含水酸化第二鉄粒
子粉末の場合は、双晶や樹枝状粒子が混在してい
ない粒子が得やすい。
Compared to α-hydrated ferric oxide particle powder and γ-hydrated ferric oxide particle powder, β-hydrated ferric oxide particle powder provides particles that do not contain twins or dendritic particles. Cheap.

従来、β−含水酸化第二鉄粒子の製造法として
は、特公昭47−25959号公報に示されている通り、
大別して二通りの方法が知られている。
Conventionally, as a method for producing β-hydrous ferric oxide particles, as shown in Japanese Patent Publication No. 47-25959,
There are two known methods.

第一の方法は、塩化第二鉄水溶液を加水分解す
る方法であり、第二の方法は、塩化第一鉄水溶液
に酸素含有ガスを通気して酸化反応を行うもので
ある。
The first method is to hydrolyze a ferric chloride aqueous solution, and the second method is to perform an oxidation reaction by passing an oxygen-containing gas through the ferrous chloride aqueous solution.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

双晶や樹枝状粒子が混在しておらず、且つ、棒
状を呈した含水酸化第二鉄粒子、換言すれば分散
性が優れた含水酸化第二鉄粒子は、現在最も要求
されているところである。
Hydrous ferric oxide particles that are free of twins or dendritic particles and have a rod-like shape, in other words, hydrous ferric oxide particles with excellent dispersibility, are currently in greatest demand. .

上述した通り、β−含水酸化第二鉄粒子粉末の
場合は、双晶や樹枝状粒子が混在していない粒子
が比較的得られやすいが、前出第一の方法による
場合には、棒状ではなく紡錘形を呈した粒子が得
られやすく、第二の方法による場合には、針状粒
子が集合したタクトイド粒子が得られやすい。
As mentioned above, in the case of β-hydrated ferric oxide particles, it is relatively easy to obtain particles that do not contain twins or dendritic particles, but in the case of the first method mentioned above, particles that are not rod-shaped are obtained. In the case of the second method, tactoid particles in which acicular particles are aggregated are easily obtained.

この事実は、例えば、前出特公昭47−25959号
公報の「……β−FeOOH沈澱粒子が、弗素、塩
素の如きイオンを含む第2鉄塩水溶液の加水分解
反応によつて製造されることは周知である。とこ
ろがこの方法に依れば、得られるβ−FeOOH沈
澱粒子の形状は紡錘状であり……」なる記載及び
鉄イオン原子に対して少なくとも3個以上の割合
で塩素イオンを含む第1鉄塩の水溶液を50〜70℃
の温度範囲で酸化反応することにより生成した短
軸220〜250Å、長軸0.5〜0.8μ(軸比(長軸/短
軸)=20〜36.3)の針状粒子が集合したタクトイ
ド粒子が示されている第2図の電子顕微鏡写真並
びに当該粒子の比表面積が34m2/gと大きいこと
から明らかである。
This fact is based on, for example, the above-mentioned Japanese Patent Publication No. 47-25959 that states that ``...β-FeOOH precipitated particles are produced by a hydrolysis reaction of an aqueous ferric salt solution containing ions such as fluorine and chlorine. However, according to this method, the shape of the β-FeOOH precipitated particles obtained is spindle-shaped, and the shape is spindle-shaped and contains at least three chloride ions to iron ion atoms. Aqueous solution of ferrous salt at 50-70℃
Tactoid particles, which are aggregates of acicular particles with a short axis of 220 to 250 Å and a long axis of 0.5 to 0.8 μ (axis ratio (major axis/minor axis) = 20 to 36.3), are shown by an oxidation reaction in the temperature range of . This is clear from the electron micrograph of FIG. 2 showing that the particles have a large specific surface area of 34 m 2 /g.

そこで、双晶や樹枝状粒子が混在しておらず、
且つ、棒状を呈したβ−含水酸化第二鉄粒子粉末
を得る為の技術手段の確立が強く要望されてい
る。
Therefore, twins and dendritic particles are not mixed,
In addition, there is a strong demand for the establishment of technical means for obtaining rod-shaped β-hydrated ferric oxide particles.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明者は、双晶や樹枝状粒子が混在しておら
ず、且つ、棒状を呈したβ−含水酸化第二鉄粒子
粉末を得るべく種々検討を重ねた結果、本発明に
到達したのである。
The present inventor has arrived at the present invention as a result of various studies in order to obtain β-hydrated ferric oxide particle powder that is free from twins and dendritic particles and has a rod shape. .

即ち、本発明は、比表面積が150m2/g以上で
ある不定形を呈したβ−含水酸化第二鉄粒子を
0.1mol/以上の濃度で含む酸性懸濁液を100〜
130℃の温度範囲で水熱処理することにより棒状
を呈したβ−含水酸化第二鉄粒子を生成させるこ
とよりなる棒状を呈したβ−含水酸化第二鉄粒子
粉末の製造法である。
That is, the present invention uses β-hydrated ferric oxide particles having an amorphous shape and a specific surface area of 150 m 2 /g or more.
Acidic suspension containing a concentration of 0.1 mol/more than 100~
This is a method for producing rod-shaped β-hydrated ferric oxide particles by producing rod-shaped β-hydrated ferric oxide particles by hydrothermal treatment in a temperature range of 130°C.

〔作用〕[Effect]

先ず、本発明において最も重要な点は、比表面
積が150m2/g以上である不定形を呈したβ−
FeOOH粒子を0.1mol/以上の濃度で含む酸性
懸濁液を100〜130℃の温度範囲で水熱処理した場
合には、棒状を呈したβ−含水酸化第二鉄粒子が
得られる点である。
First, the most important point in the present invention is that β-
When an acidic suspension containing FeOOH particles at a concentration of 0.1 mol/or more is hydrothermally treated in a temperature range of 100 to 130°C, rod-shaped β-hydrated ferric oxide particles can be obtained.

次に、本発明実施にあたつての諸条件について
述べる。
Next, various conditions for implementing the present invention will be described.

本発明における出発原料粒子は、比表面積が
150m2/g以上である不定形を呈したβ−含水酸
化第二鉄粒子である。比表面積が150m2/g未満
である場合には、針状粒子が集合したタクトイド
粒子が生成し、本発明の目的とする棒状を呈した
β−含水酸化第二鉄粒子を生成させることができ
ない。150m2/g以上である不定形を呈したβ−
FeOOH粒子粉末は、塩化第二鉄水溶液を70〜90
℃の温度範囲で加熱処理することにより加水分解
する方法等により得ることができる。
The starting material particles in the present invention have a specific surface area of
The particles are β-hydrated ferric oxide particles having an amorphous shape of 150 m 2 /g or more. If the specific surface area is less than 150 m 2 /g, tactoid particles, which are aggregates of needle-like particles, are produced, and it is not possible to produce β-hydrated ferric oxide particles having a rod shape, which is the object of the present invention. . β- exhibiting an amorphous shape with a size of 150 m 2 /g or more
FeOOH particle powder contains 70~90% ferric chloride aqueous solution
It can be obtained by a method of hydrolysis by heat treatment in the temperature range of .degree.

本発明における不定形を呈したβ−含水酸化第
二鉄粒子を含む懸濁液は、酸性であることが必要
であり、酸性でない場合、針状粒子が集合したタ
クトイド粒子が得られ、本発明の目的とする棒状
を呈したβ−含水酸化第二鉄粒子を得ることがで
きない。
The suspension containing β-hydrous ferric oxide particles exhibiting an amorphous shape in the present invention needs to be acidic; if it is not acidic, tactoid particles in which needle-shaped particles are aggregated are obtained, and the present invention It is not possible to obtain the desired rod-shaped β-hydrated ferric oxide particles.

本発明における不定形を呈したβ−含水酸化第
二鉄粒子を含む酸性懸濁液の濃度は0.1mol/
以上である。0.1mol/未満である場合には、
ヘマタイト粒子が生成し、本発明の目的とする棒
状を呈したβ−含水酸化第二鉄粒子を得ることが
できない。
In the present invention, the concentration of the acidic suspension containing the amorphous β-hydrated ferric oxide particles is 0.1 mol/
That's all. If it is less than 0.1 mol/
Hematite particles are generated, making it impossible to obtain the rod-shaped β-hydrous ferric oxide particles that are the object of the present invention.

本発明における反応温度は、100〜130℃であ
る。100℃未満である場合には、出発原料である
不定形を呈したβ−含水酸化第二鉄粒子がそのま
まの状態で存在し、粒子の成長反応が生起しな
い。130℃を越える場合にもβ−含水酸化第二鉄
粒子を生成するが、高圧容器等特殊な装置を必要
とする為、工業的、経済的ではない。
The reaction temperature in the present invention is 100 to 130°C. When the temperature is less than 100°C, the amorphous β-hydrated ferric oxide particles, which are the starting materials, remain as they are, and no particle growth reaction occurs. Although β-hydrated ferric oxide particles are produced even when the temperature exceeds 130°C, this is not industrially or economically viable because special equipment such as a high-pressure container is required.

〔実施例〕〔Example〕

次に、実施例並びに比較例により本発明を説明
する。
Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、以下の実施例における粒子の平均径は、電
子顕微鏡写真から測定した数値の平均値であり、
比表面積はBET法により測定した値である。
In addition, the average diameter of particles in the following examples is the average value of numerical values measured from electron micrographs,
The specific surface area is a value measured by the BET method.

実施例 1 Fe3+0.2mol/を含むFeCl3水溶液500mlを80
℃で30分間加熱して、黄褐色沈澱粒子を生成させ
た。この時の懸濁液のPHは1.3であつた。反応液
の一部を抜き取り、水洗、過、乾燥して得られ
た黄褐色粒子粉末は、図1に示す電子顕微鏡写真
(×30000)から明らかな通り、不定形粒子であつ
て、X線回折の結果、β−FeOOHであり、比表
面積は、160m2/gであつた。
Example 1 500 ml of FeCl 3 aqueous solution containing 0.2 mol of Fe 3+ was added to 80
Heating at 0C for 30 minutes produced yellow-brown precipitated particles. The pH of the suspension at this time was 1.3. A portion of the reaction solution was extracted, washed with water, filtered, and dried to obtain a yellowish brown particle powder. As is clear from the electron micrograph (×30,000) shown in Figure 1, the yellowish brown particles are amorphous particles and can be detected by X-ray diffraction. The result was β-FeOOH, and the specific surface area was 160 m 2 /g.

上記0.2mol/のβ−FeOOH粒子を含むPH1.3
の酸性懸濁液を密閉容器中に入れ、120℃で15時
間水熱処理して黄褐色沈澱を生成させた。黄褐色
沈澱を水洗、過、乾燥して得られた粒子粉末
は、図2に示すX線回折に示す通り、β−
FeOOHであり、図3に示す電子顕微鏡写真(×
30000)から明らかな通り、長軸0.7μmであつて
軸比(長軸/短軸)が8:1の棒状を呈した粒子
であつた。また、この粒子粉末の比表面積は14.5
m2/gであつた。
PH1.3 containing the above 0.2mol/β-FeOOH particles
The acidic suspension of was placed in a closed container and hydrothermally treated at 120°C for 15 hours to form a yellow brown precipitate. The particles obtained by washing the yellow brown precipitate with water, filtering and drying showed β-
It is FeOOH, and the electron micrograph shown in Figure 3 (×
30000), the particles were rod-shaped with a long axis of 0.7 μm and an axial ratio (long axis/short axis) of 8:1. Also, the specific surface area of this particle powder is 14.5
m 2 /g.

実施例 2 出発原料である不定形β−FeOOHを得る際の
FeCl3濃度を0.15mol/とした以外は実施例1
と同様にして、比表面積が180m2/gの不定形を
呈したβ−FeOOH粒子を生成した。
Example 2 When obtaining amorphous β-FeOOH as a starting material
Example 1 except that the FeCl 3 concentration was 0.15 mol/
In the same manner as above, amorphous β-FeOOH particles with a specific surface area of 180 m 2 /g were produced.

上記0.15mol/の不定形β−FeOOH粒子を
含むPH1.3の酸性懸濁液を密閉容器中に入れ、105
℃で20時間水熱処理して黄褐色沈澱を生成させ
た。黄褐色沈澱を水洗、過、乾燥して得られた
粒子粉末は、X線回折の結果、β−FeOOHであ
り、図4に示す電子顕微鏡写真(×40000)から
明らかな通り、長軸0.3μmであつて、軸比(長
軸/短軸)が7:1の棒状を呈した粒子であつ
た。また、この粒子粉末の比表面積は18.0m2/g
であつた。
The above acidic suspension of PH 1.3 containing 0.15 mol/amorphous β-FeOOH particles was placed in a sealed container,
Hydrothermal treatment at ℃ for 20 hours produced a yellow brown precipitate. The particles obtained by washing the yellow brown precipitate with water, filtering and drying were found to be β-FeOOH by X-ray diffraction, and as is clear from the electron micrograph (×40000) shown in Figure 4, the long axis was 0.3 μm. The particles were rod-shaped with an axial ratio (major axis/minor axis) of 7:1. In addition, the specific surface area of this particle powder is 18.0m 2 /g
It was hot.

比較例 1 実施例1で用いた不定形β−FeOOH粒子を用
い、0.05mol/のβ−FeOOH粒子を含むPH1.4
の酸性懸濁液を実施例1と同様に水熱処理して赤
褐色沈澱を生成させた。赤褐色沈澱を水洗、
過、乾燥して得られた粒子粉末は、図5に示すX
線回折から明らかな通り、ヘマタイト粒子であ
り、図6に示す電子顕微鏡写真(×10000)から
明らかな通り、等方的な形状の粒子であつた。
Comparative Example 1 Using the amorphous β-FeOOH particles used in Example 1, the pH was 1.4 containing 0.05 mol/β-FeOOH particles.
The acidic suspension was hydrothermally treated in the same manner as in Example 1 to produce a reddish brown precipitate. Wash the reddish brown precipitate with water.
The particle powder obtained by filtering and drying is
As is clear from the line diffraction, they are hematite particles, and as is clear from the electron micrograph (×10,000) shown in FIG. 6, they are isotropically shaped particles.

比較例 2 130m2/gのβ−FeOOHを含むPH1.3の酸性懸
濁液を用いた以外は、実施例1と同様に水熱処理
して黄褐色沈澱を生成させた。黄褐色沈澱を水
洗、過、乾燥して得られた粒子粉末は、X線回
折の結果及び電子顕微鏡観察の結果、針状粒子が
集合したタクトイド粒子であつた。また、この粒
子粉末の比表面積は35.0m2/gであつた。
Comparative Example 2 A yellow brown precipitate was produced by hydrothermal treatment in the same manner as in Example 1, except that an acidic suspension of pH 1.3 containing 130 m 2 /g of β-FeOOH was used. The particles obtained by washing the yellowish brown precipitate with water, filtering and drying were found to be tactoid particles consisting of needle-shaped particles as a result of X-ray diffraction and electron microscopic observation. Further, the specific surface area of this particle powder was 35.0 m 2 /g.

比較例 3 水熱処理の温度を95℃とした以外は、実施例1
と同様にして黄褐色沈澱を生成させた。黄褐色沈
澱を水洗、過、乾燥して得られた粒子粉末は、
X線回折の結果及び図7に示す電子顕微鏡写真
(×30000)から明らかな通り、出発原料である不
定形を呈したβ−FeOOH粒子のままであつた。
Comparative Example 3 Same as Example 1 except that the temperature of hydrothermal treatment was 95°C.
A yellow brown precipitate was produced in the same manner as above. The particles obtained by washing the yellow brown precipitate with water, filtering and drying are
As is clear from the results of X-ray diffraction and the electron micrograph (×30,000) shown in FIG. 7, the β-FeOOH particles, which were the starting material, had an amorphous shape.

〔効果〕〔effect〕

本発明におけるβ−含水酸化第二鉄粒子粉末の
製造法によれば、前出実施例に示した通り、双晶
や樹枝状粒子が混在しておらず、且つ、棒状を呈
したβ−含水酸化第二鉄粒子粉末を得ることがで
き、当該粒子粉末は分散性が優れているので、塗
料用黄褐色顔料粉末、ゴム・プラスチツクス用着
色剤、磁性粒子粉末用出発原料等として好適であ
る。
According to the method for producing β-hydrated ferric oxide particles of the present invention, as shown in the previous example, β-hydrated particles are not mixed with twins or dendritic particles and have a rod-like shape. Ferric oxide particles can be obtained, and the particles have excellent dispersibility, so they are suitable as yellow-brown pigment powders for paints, colorants for rubber and plastics, starting materials for magnetic particles, etc. .

【図面の簡単な説明】[Brief explanation of drawings]

図1、図3、図4、図6及び図7はいずれも粒
子粉末の粒子構造を示す電子顕微鏡写真であり、
図1は、実施例1の出発原料粒子であるβ−
FeOOH粒子粉末、図3、図4及び図7はそれぞ
れ実施例1、実施例2及び比較例3で得られたβ
−FeOOH粒子粉末、図6は比較例1で得られた
ヘマタイト粒子粉末である。図2及び図5は、い
ずれもX線回折図であり、図2は、実施例1で得
られたβ−FeOOH粒子粉末、図5は、比較例1
で得られたヘマタイト粒子粉末である。
1, 3, 4, 6 and 7 are electron micrographs showing the particle structure of the particle powder,
FIG. 1 shows the starting material particles of Example 1, β-
FeOOH particle powder, Fig. 3, Fig. 4 and Fig. 7 are β obtained in Example 1, Example 2 and Comparative Example 3, respectively.
-FeOOH particles, FIG. 6 shows hematite particles obtained in Comparative Example 1. 2 and 5 are both X-ray diffraction diagrams, FIG. 2 is the β-FeOOH particle powder obtained in Example 1, and FIG. 5 is Comparative Example 1.
This is hematite particle powder obtained in

Claims (1)

【特許請求の範囲】[Claims] 1 比表面積が150m2/g以上である不定形を呈
したβ−含水酸化第二鉄粒子を0.1mol/以上
の濃度で含む酸性懸濁液を100〜130℃の温度範囲
で水熱処理することにより棒状を呈したβ−含水
酸化第二鉄粒子を生成させることを特徴とする棒
状を呈したβ−含水酸化第二鉄粒子粉末の製造
法。
1. Hydrothermally treating an acidic suspension containing amorphous β-hydrated ferric oxide particles with a specific surface area of 150 m 2 /g or more at a concentration of 0.1 mol or more in a temperature range of 100 to 130°C. A method for producing β-hydrated ferric oxide particles having a rod shape, the method comprising producing β-hydrated ferric oxide particles having a rod shape.
JP20981486A 1986-09-05 1986-09-05 Production of beta-hydrous ferric oxide particle powder showing bar shape Granted JPS6364924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20981486A JPS6364924A (en) 1986-09-05 1986-09-05 Production of beta-hydrous ferric oxide particle powder showing bar shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20981486A JPS6364924A (en) 1986-09-05 1986-09-05 Production of beta-hydrous ferric oxide particle powder showing bar shape

Publications (2)

Publication Number Publication Date
JPS6364924A JPS6364924A (en) 1988-03-23
JPH0557212B2 true JPH0557212B2 (en) 1993-08-23

Family

ID=16579051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20981486A Granted JPS6364924A (en) 1986-09-05 1986-09-05 Production of beta-hydrous ferric oxide particle powder showing bar shape

Country Status (1)

Country Link
JP (1) JPS6364924A (en)

Also Published As

Publication number Publication date
JPS6364924A (en) 1988-03-23

Similar Documents

Publication Publication Date Title
US4323596A (en) Coating iron oxide particles for magnetic recording
JPS6117773B2 (en)
JPH0448732B2 (en)
US4584242A (en) Plate-like barium ferrite particles for magnetic recording and process for producing the same
EP0141558B2 (en) Process of manufacture for barium ferrite particles for magnetic recording media
JP3456665B2 (en) Transparent iron oxide pigment and method for producing the same
EP0145229B1 (en) Production of barium ferrite particles
US4059716A (en) Manufacture of gamma-iron(III) oxide
JP3045207B2 (en) Production method of plate-like iron oxide particles
JPH0557212B2 (en)
JP2727187B2 (en) Method for producing plate-like hematite particle powder
JPH0585487B2 (en)
JPH0623053B2 (en) Method for producing equiaxed magnetic iron oxide pigment
KR100249538B1 (en) Cobalt-contained magnetic oxidized iron and preparing method therefor
EP0583621B1 (en) Process for producing acicular gamma iron (III) oxyhydroxide particles
JP3049698B2 (en) Method for producing plate-like iron oxide fine particle powder
JP2583087B2 (en) Production method of plate-like magnetite particles
JPH0613406B2 (en) Manufacturing method of hematite particle powder
DE2221264C3 (en) Acicular ferrimagnetic iron oxides containing cobalt and silicon oxide
JPH0573698B2 (en)
JPS6251898B2 (en)
JP2704559B2 (en) Plate-like magnetite particle powder and production method thereof
JP2612461B2 (en) Plate-like maghemite particle powder and method for producing the same
JPH06184461A (en) Glossy pigment and its production
JPH0262501B2 (en)