JPH0555765B2 - - Google Patents

Info

Publication number
JPH0555765B2
JPH0555765B2 JP60117988A JP11798885A JPH0555765B2 JP H0555765 B2 JPH0555765 B2 JP H0555765B2 JP 60117988 A JP60117988 A JP 60117988A JP 11798885 A JP11798885 A JP 11798885A JP H0555765 B2 JPH0555765 B2 JP H0555765B2
Authority
JP
Japan
Prior art keywords
oxygen
combustion
concentration
oxygen concentration
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60117988A
Other languages
Japanese (ja)
Other versions
JPS61276624A (en
Inventor
Kazuharu Hanazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP60117988A priority Critical patent/JPS61276624A/en
Publication of JPS61276624A publication Critical patent/JPS61276624A/en
Publication of JPH0555765B2 publication Critical patent/JPH0555765B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は燃焼制御技術に関し、特に製鉄所等に
おける余剰酸素を利用する加熱炉などの燃焼装置
の燃焼制御技術に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to combustion control technology, and particularly to combustion control technology for combustion devices such as heating furnaces that utilize surplus oxygen in steel plants and the like.

(従来の技術) 一般に製鉄所は、溶鉄を鋼とするための精錬用
酸素を製造する設備を有している。該設備は元
来、製鋼規模に対しある程度の余力を残すよう設
計されている上、近年における鉄鋼生産量の減
少、これに伴う技術革新による鉄鋼製造時の酸素
原単位の向上の結果、大量の余剰酸素を発生し得
るようになつた。またアルゴン、ネオン等の酸素
製造に伴う副生希ガス類の回収とこれらに対する
需要の増加は製鉄所内にさらに豊富な余剰酸素を
生み出している。
(Prior Art) Generally, a steelworks has equipment for producing oxygen for refining to convert molten iron into steel. This equipment was originally designed to leave a certain amount of surplus capacity for the scale of steel production, and as a result of the decrease in steel production in recent years and the improvement in the oxygen consumption rate during steel production due to technological innovations associated with this, a large amount of Now able to generate surplus oxygen. In addition, the recovery of by-product rare gases associated with oxygen production, such as argon and neon, and the increased demand for these gases are creating an even greater abundance of surplus oxygen within steelworks.

この結果、この余剰酸素を加熱炉等の燃焼装置
における燃焼用空気に混入し燃焼効率を上げる試
みがなされている。これは従来高価な燃料ガスを
必要とした設備において低廉な燃料の使用を可能
にするものである。
As a result, attempts have been made to increase combustion efficiency by mixing this surplus oxygen into combustion air in combustion devices such as heating furnaces. This makes it possible to use inexpensive fuel in equipment that conventionally required expensive fuel gas.

例えば特開昭59−157420号は、酸素富化燃焼の
制御において、燃料発熱量の関係から一定の燃焼
温度を得る方法を提案し、また特開昭59−131821
号は、酸素富化に伴う余剰高圧を回収する手段を
提示している。
For example, JP-A No. 59-157420 proposes a method of obtaining a constant combustion temperature from the relationship of fuel calorific value in controlling oxygen-enriched combustion, and JP-A No. 59-131821
No. 2 presents a means to recover excess high pressure associated with oxygen enrichment.

これはいづれも燃焼用空気中における酸素を富
化して燃焼温度を上げ、これにより燃焼効率を向
上させる技術を開示したものである。
All of these disclose techniques for enriching oxygen in combustion air to raise combustion temperature, thereby improving combustion efficiency.

さらにまた特開昭60−4724号は、酸素富化燃焼
の制御において、予め酸素を混入富化した燃焼用
空気中の酸素濃度を測定し、該測定値に基づいて
適正空燃比となるように燃焼用空気の量を制御す
る方法を示したものである。
Furthermore, JP-A No. 60-4724 discloses that in controlling oxygen-enriched combustion, the oxygen concentration in combustion air enriched with oxygen is measured in advance, and an appropriate air-fuel ratio is achieved based on the measured value. This figure shows how to control the amount of combustion air.

(発明が解決しようとする問題点) 従来の酸素富化燃焼技術ではいづれも、燃焼温
度の上昇に伴う窒素酸化物の増加に対する対策が
不充分である。特に公害問題の結果、排気ガス中
の窒素酸化物の濃度が厳しく規制されるようにな
つた現今では、このことが酸素富化燃焼法の採用
を制限する原因となつている。
(Problems to be Solved by the Invention) In all conventional oxygen-enriched combustion technologies, countermeasures against an increase in nitrogen oxides accompanying an increase in combustion temperature are insufficient. This is a limiting factor in the adoption of oxygen-enriched combustion methods, especially now that the concentration of nitrogen oxides in exhaust gases has become strictly regulated as a result of pollution problems.

この点、従来技術として先に例示した特開昭60
−4724号の燃焼制御方法も例外とは言えない。こ
の方法は、用いられる測定器の信頼性や流量調節
弁等の制御機器の精度から便宜的に採用されたも
のと考えられるが、予め定められた空燃比表によ
る制御を利用するこの方法では、燃料組成、各流
体圧力等の条件の変化に対応できない。また酸素
富化空気中の酸素濃度が35%以下では排気中の窒
素酸化物濃度の増加は無視できると述べている
が、排気中の窒素酸化物の規制濃度等により一概
にそうは言えないと考えられる。
In this respect, the Japanese Patent Application Laid-Open No. 1989-1997, which was previously exemplified as a prior art,
-4724's combustion control method is no exception. This method is thought to have been adopted for convenience due to the reliability of the measuring instruments used and the accuracy of control equipment such as flow control valves, but this method, which uses control based on a predetermined air-fuel ratio table, Unable to respond to changes in conditions such as fuel composition and fluid pressure. It is also stated that the increase in the concentration of nitrogen oxides in exhaust gas can be ignored when the oxygen concentration in oxygen-enriched air is 35% or less, but this cannot be said with certainty due to the regulatory concentration of nitrogen oxides in exhaust gas, etc. Conceivable.

(問題点を解決するための手段および作用) 本発明は上述の従来技術の有する問題を解決
し、純酸素用バーナ等の改造を必要とせずに公害
規制値内での酸素富化燃焼を可能とする制御技術
を確立するためになされたものである。
(Means and effects for solving the problems) The present invention solves the problems of the above-mentioned conventional technology, and enables oxygen-enriched combustion within pollution regulation values without requiring modification of pure oxygen burners, etc. This was done to establish a control technology that would

ここに、本発明は、燃焼装置内における燃料と
酸素富化空気の燃焼を制御する方法において、該
燃焼の排気中の窒素酸化物濃度に基づいて前記酸
素富化空気中の酸素濃度を制御し、さらに該燃焼
の排気中の酸素濃度および前記酸素富化空気中の
酸素濃度に基づき前記燃料と前記酸素富化空気と
の混合比を制御するとともに燃焼排気中の前記窒
素酸化物濃度を複数の値域に区分し、各値域毎に
相異なる方式に従い酸素富化空気中の前記酸素濃
度を制御することを特徴とする酸素富化燃焼制御
方法である。
Here, the present invention provides a method for controlling combustion of fuel and oxygen-enriched air in a combustion device, including controlling the oxygen concentration in the oxygen-enriched air based on the nitrogen oxide concentration in the exhaust gas of the combustion. , further controlling the mixing ratio of the fuel and the oxygen-enriched air based on the oxygen concentration in the combustion exhaust and the oxygen concentration in the oxygen-enriched air, and controlling the nitrogen oxide concentration in the combustion exhaust at a plurality of levels. This oxygen-enriched combustion control method is characterized in that the oxygen concentration in the oxygen-enriched air is divided into value ranges and the oxygen concentration in the oxygen-enriched air is controlled according to a different method for each value range.

さらに、別の面からは、本発明は、燃焼装置内
における燃料と酸素富化空気の燃焼の制御装置に
おいて、該燃焼の排気中の窒素酸化物濃度を測定
する窒素酸化物濃度計と、該排気中の酸素濃度を
測定する酸素濃度計と、前記窒素酸化物濃度計の
測定値に基づき酸素富化空気中の酸素濃度目標値
を演算する演算器と、該演算器の演算した酸素濃
度目標値に酸素富化空気中の酸素濃度を制御する
酸素濃度制御器と、前記酸素濃度計の測定した前
記排気中の酸素濃度の測定値と前記演算器の演算
した酸素濃度目標値に基づき前記燃料と酸素富化
空気の混合比を制御する空燃比制御器とを備え、
前記演算器は、窒素酸化物濃度測定値の値域区分
に従い演算方式を切り換える手段を備えることを
特徴とする燃焼制御装置である。
Furthermore, from another aspect, the present invention provides a nitrogen oxide concentration meter that measures the nitrogen oxide concentration in the exhaust gas of the combustion in a control device for combustion of fuel and oxygen-enriched air in a combustion device; an oxygen concentration meter that measures the oxygen concentration in the exhaust gas; a computing device that computes a target oxygen concentration value in oxygen-enriched air based on the measured value of the nitrogen oxide concentration meter; and an oxygen concentration target computed by the computing device. an oxygen concentration controller that controls the oxygen concentration in the oxygen-enriched air; and an air-fuel ratio controller that controls the mixing ratio of oxygen-enriched air,
The combustion control device is characterized in that the computing unit includes means for switching the computing method according to the range classification of the measured value of nitrogen oxide concentration.

したがつて、本発明によれば、酸素富化燃焼制
御において、排気中の窒素酸化物濃度を測定し、
この測定濃度に基づいて燃焼用酸素富化空気中の
酸素濃度を決定、制御する。排気中の窒素酸化物
の濃度は燃焼温度に依存し、燃焼温度は燃焼空気
の酸素濃度に直接関係しているためである。さら
にこのように決定された燃焼用空気中の酸素濃度
と、別に測定された排気中の酸素濃度に基づいて
酸素富化燃焼用空気と燃料の混合比を制御し、常
に適正な空燃比を維持する。
Therefore, according to the present invention, in oxygen-enriched combustion control, the concentration of nitrogen oxides in the exhaust gas is measured,
Based on this measured concentration, the oxygen concentration in the oxygen-enriched air for combustion is determined and controlled. This is because the concentration of nitrogen oxides in the exhaust gas depends on the combustion temperature, and the combustion temperature is directly related to the oxygen concentration of the combustion air. Furthermore, the mixture ratio of oxygen-enriched combustion air and fuel is controlled based on the oxygen concentration in the combustion air determined in this way and the oxygen concentration in the exhaust gas measured separately, and an appropriate air-fuel ratio is always maintained. do.

(作用) 次に添付図面を参照しながら本発明についてさ
らに詳細に説明する。
(Operation) Next, the present invention will be described in further detail with reference to the accompanying drawings.

第1図は、本発明を燃焼装置としての鋼片加熱
炉の燃焼制御に応用した場合のブロツク図であ
る。
FIG. 1 is a block diagram when the present invention is applied to combustion control of a steel billet heating furnace as a combustion device.

加熱炉1内の鋼片1aは、燃料ガス源を構成す
るコークス炉2から導かれるコークス炉ガスをバ
ーナ1bにおいて燃焼させることにより加熱され
る。この際コークス炉ガスはエアポンプ3から送
られる空気、および酸素プラント4で発生する酸
素ガスと予め混合されてバーナ1bに導かれる。
酸素プラント4は通常、製鉄所における溶銑精錬
用の酸素を発生する設備であり、該設備の発生す
る余剰酸素を加熱炉1で利用する。
The steel billet 1a in the heating furnace 1 is heated by burning coke oven gas led from a coke oven 2 constituting a fuel gas source in a burner 1b. At this time, the coke oven gas is mixed in advance with air sent from the air pump 3 and oxygen gas generated in the oxygen plant 4, and then guided to the burner 1b.
The oxygen plant 4 is normally a facility that generates oxygen for hot metal refining in a steelworks, and the heating furnace 1 utilizes surplus oxygen generated by the facility.

上述の如く、バーナ1bにはコークス炉2から
のコークス炉ガス、エアポンプ3からの大気空
気、酸素プラント4からの純酸素の3種の流体が
送られて燃焼している。したがつて、バーナ1b
における燃焼の制御はこれら3種の流体の供給量
および混合比を適正値に制御することにより行わ
れる。この制御は加熱炉1内の温度を所定値に維
持し、空燃比を適正に保持するのみでなく、さら
に排気中の窒素酸化物の濃度を所定の範囲内に抑
えながら燃焼効率を可及的に向上させることを目
的に行うものである。
As mentioned above, three types of fluids, namely coke oven gas from the coke oven 2, atmospheric air from the air pump 3, and pure oxygen from the oxygen plant 4, are sent to the burner 1b for combustion. Therefore, burner 1b
Combustion is controlled by controlling the supply amount and mixing ratio of these three types of fluids to appropriate values. This control not only maintains the temperature inside the heating furnace 1 at a predetermined value and maintains an appropriate air-fuel ratio, but also suppresses the concentration of nitrogen oxides in the exhaust gas within a predetermined range while increasing combustion efficiency as much as possible. This is done with the aim of improving the performance of the students.

以下、この制御系について説明する。 This control system will be explained below.

燃料ガス流量制御器5は炉内温度検知器1cの
検知する炉内温度に基づいてコークス炉ガス流量
を制御する。即ち、温度検知器1cは加熱炉1内
の温度を検知し、その検知値を燃料ガス流量制御
器5に出力する。また燃料ガス流量計2aは、コ
ークス炉2からバーナ1bに送られるコークス炉
ガス流量を測定し、その測定値を制御器5に出力
する。制御器5はこれらの検知値および測定値に
基づき、加熱炉1内の温度を適正値に保持するの
に必要なコークス炉ガスの供給量を演算し、その
演算値に従いバルブ2bを制御してバーナ1bへ
のコークス炉ガス流量を調節する。
The fuel gas flow rate controller 5 controls the coke oven gas flow rate based on the furnace temperature detected by the furnace temperature detector 1c. That is, the temperature sensor 1 c detects the temperature inside the heating furnace 1 and outputs the detected value to the fuel gas flow rate controller 5 . Further, the fuel gas flow meter 2a measures the coke oven gas flow rate sent from the coke oven 2 to the burner 1b, and outputs the measured value to the controller 5. Based on these detected values and measured values, the controller 5 calculates the supply amount of coke oven gas necessary to maintain the temperature inside the heating furnace 1 at an appropriate value, and controls the valve 2b according to the calculated value. Adjust the coke oven gas flow rate to burner 1b.

一方、バーナ1bに送られる酸素富化燃焼用空
気中の酸素濃度は、以下のように排気中の窒素酸
化物濃度に基づき制御される。排気に含まれる
NO、NO2等の窒素酸化物の濃度は窒素酸化物濃
度計(以下NOx計と略称する)1dにより検知さ
れ、酸素濃度制御系6内の演算器7に送られる。
演算器7はNOx計1dの検知した窒素酸化物濃度
に基づき燃焼用空気中の酸素濃度目標値を演算
し、これを酸素濃度制御器8および空燃比制御器
9に出力する。これは、排気中の窒素酸化物濃度
が燃焼用空気中の酸素濃度に直接的に依存するも
のであることを考慮し、窒素酸化物濃度に基づき
酸素濃度目標値を演算し、この目標値に燃焼用空
気中の酸素濃度を制御するものである。演算器7
の動作の詳細については後述する。
On the other hand, the oxygen concentration in the oxygen-enriched combustion air sent to the burner 1b is controlled based on the nitrogen oxide concentration in the exhaust gas as follows. included in exhaust
The concentration of nitrogen oxides such as NO and NO 2 is detected by a nitrogen oxide concentration meter (hereinafter abbreviated as NOx meter) 1d and sent to a computing unit 7 in the oxygen concentration control system 6.
The computing unit 7 computes a target oxygen concentration value in the combustion air based on the nitrogen oxide concentration detected by the NOx meter 1d, and outputs this to the oxygen concentration controller 8 and the air-fuel ratio controller 9. This takes into account that the nitrogen oxide concentration in the exhaust gas is directly dependent on the oxygen concentration in the combustion air, and calculates the oxygen concentration target value based on the nitrogen oxide concentration. It controls the oxygen concentration in the combustion air. Arithmetic unit 7
The details of the operation will be described later.

次に上記目標値に基づく酸素濃度の制御につい
て述べる。酸素プラント4から送られる酸素流量
は酸素流量計4aにより測定される。またエアポ
ンプ3からの大気空気および酸素プラント4から
の酸素を混合して得られる酸素富化燃焼用空気中
の酸素濃度は、酸素濃度計3aにより検知され
る。酸素濃度制御器8はこれら両者の値に基づ
き、酸素富化燃焼用空気中の酸素濃度を演算器7
の演算した目標値に維持するよう、バルブ4bを
制御して酸素プラント4からの酸素供給量を調節
する。なお、酸素濃度制御系6の主要部分は単一
のマイクロコンピユータにより構成されてもよ
い。
Next, control of the oxygen concentration based on the above target value will be described. The oxygen flow rate sent from the oxygen plant 4 is measured by an oxygen flow meter 4a. Further, the oxygen concentration in the oxygen-enriched combustion air obtained by mixing atmospheric air from the air pump 3 and oxygen from the oxygen plant 4 is detected by an oxygen concentration meter 3a. Based on these two values, the oxygen concentration controller 8 calculates the oxygen concentration in the oxygen-enriched combustion air using the calculator 7.
The valve 4b is controlled to adjust the amount of oxygen supplied from the oxygen plant 4 so as to maintain the calculated target value. Note that the main part of the oxygen concentration control system 6 may be configured by a single microcomputer.

一方、空燃比制御器9は燃焼用空気の供給量を
調節して空燃比を適正な値に保持する。すなわ
ち、排気酸素濃度計1eにより検知された排気中
の酸素濃度、演算器7の出力する燃焼空気中の酸
素濃度、燃料ガス流量制御器5から出力されるコ
ークスガス供給量に基づき、流量計3bおよびバ
ルブ3cを介して燃焼用空気量を制御する。この
際排気中の酸素濃度を一定値に維持することによ
り適正空燃比を実現する。
On the other hand, the air-fuel ratio controller 9 adjusts the amount of combustion air supplied to maintain the air-fuel ratio at an appropriate value. That is, based on the oxygen concentration in the exhaust gas detected by the exhaust oxygen concentration meter 1e, the oxygen concentration in the combustion air output from the computing unit 7, and the coke gas supply amount output from the fuel gas flow rate controller 5, the flow meter 3b The amount of combustion air is controlled via the valve 3c. At this time, an appropriate air-fuel ratio is achieved by maintaining the oxygen concentration in the exhaust gas at a constant value.

次に酸素濃度制御系6の演算器7の構成および
動作について、第2図を参照しながらさらに詳し
く説明する。
Next, the configuration and operation of the computing unit 7 of the oxygen concentration control system 6 will be explained in more detail with reference to FIG.

すなわち、第2図において、NOx計1dから出
力された検知値信号はフイルタ7aに送られ、雑
音成分が除去され、演算方式切換制御器7bおよ
び計算器7cに送られる。計算器7cは通常、比
例積分動作(PI動作)を行い、フイルタ7aか
ら送られる窒素酸化物検知値に基づき燃焼用空気
中の酸素濃度目標値を演算する。この際、計算器
7cは、切換制御器7bから出力される切換信号
により比例積分動作における比例感度および積分
時間を変更し、また比例積分動作から他の動作に
制御方式を変更するものである。このようにして
計算器7cから出力された演算値は、比較演算器
7dに送られ予め設定された空気中酸素濃度の上
限値および下限値と比較され、これら両者の値の
範囲内であればそのまま酸素濃度目標値として比
較演算器7dから制御器8,9にそれぞれ出力さ
れる。計算器7cの出力する演算値が上下限値を
越える場合には、上限値をこえるか下限値を下回
るかに従い、上限値または下限値が目標値として
制御器8,9に出力される。上記下限値としては
大気の酸素濃度より高い任意の値が選択できる
が、本発明の場合、例えば23%としてもよい。ま
た上限値はバーナ1bの火炎燃焼温度により決定
されるべきものであるが、これを直接測定するこ
とは困難であるので、コークス炉ガスおよび燃焼
用空気供給量に基づいて決定する。
That is, in FIG. 2, the detected value signal output from the NOx meter 1d is sent to a filter 7a, noise components are removed, and the signal is sent to an arithmetic method switching controller 7b and a calculator 7c. The calculator 7c normally performs a proportional-integral operation (PI operation) and calculates a target oxygen concentration value in the combustion air based on the nitrogen oxide detection value sent from the filter 7a. At this time, the calculator 7c changes the proportional sensitivity and integration time in the proportional-integral operation based on the switching signal output from the switching controller 7b, and changes the control method from the proportional-integral operation to another operation. The calculated value outputted from the calculator 7c in this way is sent to the comparator 7d and compared with the preset upper and lower limits of the air oxygen concentration, and if it is within the range of these two values, then The oxygen concentration target value is directly output from the comparator 7d to the controllers 8 and 9, respectively. When the calculated value output by the calculator 7c exceeds the upper and lower limits, the upper limit or the lower limit is output as a target value to the controllers 8 and 9, depending on whether it exceeds the upper limit or falls below the lower limit. Any value higher than the atmospheric oxygen concentration can be selected as the lower limit, but in the case of the present invention, it may be set to 23%, for example. Further, the upper limit value should be determined by the flame combustion temperature of the burner 1b, but since it is difficult to directly measure this, it is determined based on the coke oven gas and the amount of combustion air supplied.

次に切換制御器7bおよび計算器7cによる演
算方式の切換について具体的に説明する。
Next, switching of the calculation method by the switching controller 7b and the calculator 7c will be specifically explained.

排気中の窒素酸化物の濃度は公害を抑制するた
め、その上限として法定規制値が定められてい
る。本発明の好適態様ではこれを考慮し、窒素酸
化物濃度を三制御域に区分する。即ち、該濃度
を、法定規制値よりわずかに低く設定された上限
値を越える緊急制御域、予め設定された通常下方
値から上限値までの通常制御域、および前記通常
下方値以下の制御域の三制御域に区分し、検知さ
れた窒素酸化物濃度がどの制御区域に属するかに
より演算方式を切り換える。よつて、切換制御器
7bはフイルタ7aから入力された検知値を上記
上限値および通常下方値と比較し、該検知値が上
記三制御域のいづれに属するか判断する。この判
断の結果を入力された計算器7cはその結果に従
い演算方式を切り換えるのである。
In order to suppress pollution, the concentration of nitrogen oxides in exhaust gas has been set at a legal limit as its upper limit. In a preferred embodiment of the present invention, taking this into consideration, the nitrogen oxide concentration is divided into three control ranges. That is, the concentration is set in an emergency control range exceeding the upper limit set slightly lower than the legal regulation value, a normal control range from a preset normal lower value to the upper limit, and a control range below the normal lower value. It is divided into three control areas, and the calculation method is switched depending on which control area the detected nitrogen oxide concentration belongs to. Therefore, the switching controller 7b compares the detected value inputted from the filter 7a with the above-mentioned upper limit value and the normal lower value, and determines to which of the above-mentioned three control ranges the detected value belongs. The calculator 7c, which receives the result of this judgment, switches the calculation method according to the result.

切換制御器7bにより検知値が通常下方値を下
回ると判断された場合、計算器7cは、比例積分
動作における比例感度を小さな値に、積分時間を
大きな値に設定し、応答性よりも安定性を重視し
ながら、燃焼空気中の酸素濃度を徐々に増加し
て、燃焼を安全に制御する。一方、窒素酸化物検
知値が上記通常制御域内にある場合は、比例積分
動作における比例感度を大きく積分時間を小さく
設定することにより安定性よりも応答性を重視す
る制御を行い、排気中の窒素酸化物濃度を常にこ
の範囲に収めることを目標とする。さらにまた検
知値が上限値を上回り緊急制御域に入つた場合に
は、計算器7cは比例積分動作によらず、酸素濃
度計3aの検知する酸素濃度現在値から、例え
ば、上述の酸素濃度下限値(23%)と現在値の差
の1/2を差し引いた値を計算し出力する。即ち、
酸素濃度現在値が下限値を越える部分の50%をカ
ツトし、これにより急速に窒素酸化物濃度を減少
させる。一定時間経過後、窒素酸化物濃度の検知
値がなお上限値を越えている場合はこの50%カツ
トをさらに繰り返す。
When the switching controller 7b determines that the detected value is lower than the normal lower value, the calculator 7c sets the proportional sensitivity in the proportional-integral operation to a small value and the integration time to a large value, so that stability is preferred over responsiveness. Control combustion safely by gradually increasing the oxygen concentration in the combustion air while focusing on On the other hand, if the nitrogen oxide detection value is within the above normal control range, control is performed that emphasizes responsiveness rather than stability by increasing the proportional sensitivity in the proportional-integral operation and setting the integral time to be small. The goal is to always keep the oxide concentration within this range. Furthermore, when the detected value exceeds the upper limit and enters the emergency control region, the calculator 7c calculates the oxygen concentration from the current oxygen concentration detected by the oxygen concentration meter 3a, for example, the oxygen concentration lower limit, without using the proportional integral operation. Calculate and output the value by subtracting 1/2 of the difference between the value (23%) and the current value. That is,
Cuts off 50% of the portion where the current oxygen concentration exceeds the lower limit, thereby rapidly reducing the nitrogen oxide concentration. After a certain period of time has passed, if the detected value of nitrogen oxide concentration still exceeds the upper limit, this 50% cut is repeated.

上述のように計算器7cは、NOx計1dの検知
する検知値の値によりその演算方式を切換え、こ
れにより排気中の窒素酸化物濃度を抑制しながら
燃焼効率を向上せしめるのである。
As described above, the calculator 7c switches its calculation method depending on the detected value detected by the NOx meter 1d, thereby improving the combustion efficiency while suppressing the concentration of nitrogen oxides in the exhaust gas.

(実施例) 第1図および第2図に示した方式を使い、本発
明にしたがつて、圧延工場内の毎時300トンの処
理能力を有する鋼片連続加熱炉において酸素富化
燃焼制御の試験を行つた。
(Example) Using the method shown in Figures 1 and 2, a test of oxygen-enriched combustion control was carried out in a continuous steel slab heating furnace in a rolling mill with a processing capacity of 300 tons per hour, in accordance with the present invention. I went there.

従来、窒素酸化物法定規制値160ppmに対し最
高時でもその75%程度の排出量であつたが、本発
明に従い酸素富化燃焼制御を行つた結果、燃焼空
気中の酸素濃度を換算値平均で24%高めることが
できた。排気中の窒素酸化物濃度の最高値は
150ppmであつた。この結果、燃料原単位、即ち
1トンの鋼片を加熱するのに要する投入燃料熱量
を5%減少させることに成功した。
Conventionally, the maximum emissions of nitrogen oxides were about 75% of the legal regulation value of 160 ppm, but as a result of oxygen-enriched combustion control according to the present invention, the oxygen concentration in the combustion air has been reduced to the average converted value. We were able to increase it by 24%. The maximum concentration of nitrogen oxides in exhaust gas is
It was 150ppm. As a result, we succeeded in reducing the fuel consumption rate, that is, the input fuel heat required to heat one ton of steel billet, by 5%.

(発明の効果) 以上詳述したように、本発明に従う酸素富化燃
焼制御方式によれば、排気中の窒素酸化物の濃度
を所定値以下に抑制しながら燃焼効率を向上させ
ることができ、公害規制下における経済的な加熱
炉の制御が可能となり、その経済的効果には大き
なものがある。
(Effects of the Invention) As detailed above, according to the oxygen-enriched combustion control method according to the present invention, combustion efficiency can be improved while suppressing the concentration of nitrogen oxides in exhaust gas to a predetermined value or less, It has become possible to economically control heating furnaces under pollution regulations, and the economic effects are significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明を鋼片加熱炉に応用した場合
の酸素富化燃焼制御装置のブロツク図;および第
2図は、第1図の装置の酸素濃度演算器の構造を
示すブロツク図である。 1:加熱炉、2:コークス炉、3:エアポン
プ、4:酸素プラント、5:燃料ガス流量制御
器、7:演算器、8:酸素濃度制御器、9:空燃
比制御器。
FIG. 1 is a block diagram of an oxygen-enriched combustion control device when the present invention is applied to a billet heating furnace; and FIG. 2 is a block diagram showing the structure of an oxygen concentration calculator of the device shown in FIG. be. 1: Heating furnace, 2: Coke oven, 3: Air pump, 4: Oxygen plant, 5: Fuel gas flow rate controller, 7: Arithmetic unit, 8: Oxygen concentration controller, 9: Air-fuel ratio controller.

Claims (1)

【特許請求の範囲】 1 燃焼装置内における燃料と酸素富化空気の燃
焼を制御する方法において、該燃焼の排気中の窒
素酸化物濃度に基づいて前記酸素富化空気中の酸
素濃度を制御し、さらに該燃焼の排気中の酸素濃
度および前記酸素富化空気中の酸素濃度に基づき
前記燃料と前記酸素富化空気との混合比を制御す
るとともに燃焼排気中の前記窒素酸化物濃度を複
数の値域に区分し、各値域毎に相異なる方式に従
い酸素富化空気中の前記酸素濃度を制御すること
を特徴とする酸素富化燃焼制御方法。 2 前記燃料の供給量は前記燃焼装置内の温度に
より制御されることを特徴とする特許請求の範囲
第1項記載の酸素富化燃焼制御方法。 3 燃焼装置内における燃料と酸素富化空気の燃
焼の制御装置において、該燃焼の排気中の窒素酸
化物濃度を測定する窒素酸化物濃度計と、該排気
中の酸素濃度を測定する酸素濃度計と、前記窒素
酸化物濃度計の測定値に基づき酸素富化空気中の
酸素濃度目標値を演算する演算器と、該演算器の
演算した酸素濃度目標値に酸素富化空気中の酸素
濃度を制御する酸素濃度制御器と、前記酸素濃度
計の測定した前記排気中の酸素濃度の測定値と前
記演算器の演算した酸素濃度目標値に基づき前記
燃料と酸素富化空気の混合比を制御する空燃比制
御器とを備え、 前記演算器は、窒素酸化物濃度測定値の値域区
分に従い演算方式を切り換える手段を備えること
を特徴とする燃焼制御装置。 4 前記演算器および酸素濃度制御器はマイクロ
コンピユータにより構成されることを特徴とする
特許請求の範囲第3項記載の燃焼制御装置。 5 前記燃焼装置内の温度を測定する温度計と、
該温度計の測定値に基づき燃料供給量を制御する
燃料量制御器を備えることを特徴とする特許請求
の範囲第3項または第4項に記載の燃焼制御装
置。
[Claims] 1. A method for controlling combustion of fuel and oxygen-enriched air in a combustion device, comprising controlling the oxygen concentration in the oxygen-enriched air based on the concentration of nitrogen oxides in the exhaust gas of the combustion. , further controlling the mixing ratio of the fuel and the oxygen-enriched air based on the oxygen concentration in the combustion exhaust and the oxygen concentration in the oxygen-enriched air, and controlling the nitrogen oxide concentration in the combustion exhaust at a plurality of levels. A method for controlling oxygen-enriched combustion, characterized in that the oxygen concentration in oxygen-enriched air is divided into value ranges and the oxygen concentration in oxygen-enriched air is controlled according to a different method for each value range. 2. The oxygen-enriched combustion control method according to claim 1, wherein the amount of fuel supplied is controlled by the temperature within the combustion device. 3. In a control device for combustion of fuel and oxygen-enriched air in a combustion device, a nitrogen oxide concentration meter that measures the nitrogen oxide concentration in the exhaust gas from the combustion, and an oxygen concentration meter that measures the oxygen concentration in the exhaust gas. a computing unit that computes a target oxygen concentration value in the oxygen-enriched air based on the measured value of the nitrogen oxide concentration meter; A mixing ratio of the fuel and oxygen-enriched air is controlled based on an oxygen concentration controller to be controlled, a measured value of the oxygen concentration in the exhaust gas measured by the oxygen concentration meter, and a target oxygen concentration value calculated by the calculator. An air-fuel ratio controller, wherein the computing unit includes means for switching a computing method according to a range classification of a measured value of nitrogen oxide concentration. 4. The combustion control device according to claim 3, wherein the arithmetic unit and the oxygen concentration controller are constituted by a microcomputer. 5 a thermometer that measures the temperature inside the combustion device;
5. The combustion control device according to claim 3, further comprising a fuel amount controller that controls the amount of fuel supplied based on the measured value of the thermometer.
JP60117988A 1985-05-31 1985-05-31 Method for controlling oxygen-enriched combustion and controlling device thereof Granted JPS61276624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60117988A JPS61276624A (en) 1985-05-31 1985-05-31 Method for controlling oxygen-enriched combustion and controlling device thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60117988A JPS61276624A (en) 1985-05-31 1985-05-31 Method for controlling oxygen-enriched combustion and controlling device thereof

Publications (2)

Publication Number Publication Date
JPS61276624A JPS61276624A (en) 1986-12-06
JPH0555765B2 true JPH0555765B2 (en) 1993-08-17

Family

ID=14725240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60117988A Granted JPS61276624A (en) 1985-05-31 1985-05-31 Method for controlling oxygen-enriched combustion and controlling device thereof

Country Status (1)

Country Link
JP (1) JPS61276624A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2637529B2 (en) * 1988-12-29 1997-08-06 三菱重工業株式会社 Furnace temperature and NOx control device
FR2781039B1 (en) * 1998-07-08 2000-09-22 Air Liquide PROCESS FOR COMBUSTING FUEL WITH OXYGEN-RICH FUEL
JP2002357386A (en) * 2001-06-01 2002-12-13 Iwatani Internatl Corp Method of melting aluminum
CN104791838A (en) * 2015-03-19 2015-07-22 中国石油化工股份有限公司 Oxygen-enriched combustion evaluation method

Also Published As

Publication number Publication date
JPS61276624A (en) 1986-12-06

Similar Documents

Publication Publication Date Title
US6247416B1 (en) Method of operating a furnace and device for implementing the method
CN106766883B (en) Optimal combustion control system and method for regenerative heating furnace
EP0322132B1 (en) Fuel burner apparatus and a method of control
CN101876449A (en) Method of controlling oxygen air-flowing environment in heating furnace
CN108444297A (en) Method for adjusting atmosphere in steel rolling heating furnace
JP2019060588A (en) Method for controlling combustion air flow rate and continuous multiband-type heating furnace
JPH0555765B2 (en)
CN112556441A (en) Steel rolling heating furnace and dynamic control method for asymmetric characteristics of flue gas pipe network thereof
JPS60251265A (en) Apparatus for controlling heat-treatment in atmosphere
RU2027110C1 (en) Method of automatic combustion control in thermal units
JP2637529B2 (en) Furnace temperature and NOx control device
JPS60259823A (en) Optimum burning control of induction type radiant tube burner furnace
JPH028213B2 (en)
SU932181A1 (en) System for automatic control of ferromanganese production process in ore smelting furnace
KR920008683B1 (en) System for controlling the atmosphere of the heat treatment furnace
SU1211573A1 (en) Method of automatic control of ignition process of sinter burden
SU1339383A1 (en) Method of controlling combustion of fuel in multizone continuous furnace
JPS604724A (en) Combustion method by oxygen-enriched air for combustion
CN111425884B (en) Method for reducing emission concentration of sulfur dioxide in flue gas of full-combustion gas boiler
JPS6051606B2 (en) Air-fuel ratio control device for heating furnace for exhaust gas denitrification
SU933756A1 (en) Method for automatically controlling fuel combustion in multizone through-type furnace
SU924492A1 (en) Method of automatic control of clinker firing process in rotary furnace
KR20030035576A (en) Combustion control method for hot stove of blast furnace
JP2947677B2 (en) Exhaust gas concentration control device
CN102681560B (en) The computational methods of air and oxygen demand in a kind of smelting system