JPH0553854B2 - - Google Patents

Info

Publication number
JPH0553854B2
JPH0553854B2 JP63195600A JP19560088A JPH0553854B2 JP H0553854 B2 JPH0553854 B2 JP H0553854B2 JP 63195600 A JP63195600 A JP 63195600A JP 19560088 A JP19560088 A JP 19560088A JP H0553854 B2 JPH0553854 B2 JP H0553854B2
Authority
JP
Japan
Prior art keywords
steel
resistant
heat
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63195600A
Other languages
Japanese (ja)
Other versions
JPH0285336A (en
Inventor
Kazuo Funato
Yuzuru Yoshida
Hiroshi Tamehiro
Rikio Chijiiwa
Yoshifumi Sakumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19560088A priority Critical patent/JPH0285336A/en
Priority to CA 602362 priority patent/CA1320110C/en
Priority to US07/364,608 priority patent/US4990196A/en
Priority to DE1989628336 priority patent/DE68928336T3/en
Priority to EP19890305942 priority patent/EP0347156B2/en
Publication of JPH0285336A publication Critical patent/JPH0285336A/en
Priority to US07/614,076 priority patent/US5147474A/en
Publication of JPH0553854B2 publication Critical patent/JPH0553854B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)
  • Laminated Bodies (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は土木、建築および海洋構造物などの構
造部材に用いられる形鋼の製造方法に関する。 [従来の技術] 周知のとおり、土木、建築および海洋構造物な
どの構造部材には各種の形鋼が大量に用いられて
いるが、これら形鋼の使用に当たつては、火災時
の安全性を確保するため、充分な耐火被覆を施す
ことが義務付けられており、建築関係諸法令で
は、火災時に鋼材温度が350℃以上にならぬよう
規定している。 前述の耐火被覆としては、鋼材表面にスラグウ
ール、ロツクウール、ガラスウール、アルベスト
などを基材とする吹き付け材やフエルトを展着す
るほか、防火モルタルで包被する手段あるいは前
記耐火被覆をさらに金属薄板即ち薄鋼板やステン
レススチール薄板等で覆う方法を採用し、火災時
において、前記形鋼が熱的損傷により載荷力を失
うことの無いように施工する。 前記施工に当たつて、種々の方法が提案されて
いるが、基本的には、昭和48年3月20日に株式会
社彰国社から刊行された刊行物(鉄骨造と鉄筋コ
ンクリート造の建築)104頁図6.21に示されてい
るとおり、繊維系耐火物や耐火板材で鋼材を覆う
方法が一般的に採用されている。 [発明が解決しようとする課題] 前述のとおり、構造部材として、形鋼は強度が
高く、経済性に優れた素材であるが、耐火性が要
求される用途に対しては割高な耐火被覆が必要な
ため、建設コストが高くなるという課題がある。 そこで、本発明者らは形鋼製造に適した耐火性
に優れた低降伏比耐熱鋼材(以下単に耐熱鋼材と
云う)を開発し、先に出願した。 該耐熱鋼材は、高温での耐力が大きいため、通
常耐火被覆施工の必要が無く、また必要な場合も
極めて薄い耐火被覆で済むが、一般構造用圧延鋼
材に比較すると、価格がやや高くなると云う課題
がある。 本発明は、耐火性の優れた鋼材と一般鋼材を接
合することにより、耐火性と共に経済性に優れた
耐熱形鋼の製造方法を提供することを目的とす
る。 [課題を解決するための手段] 本発明の要旨は次の通りである。 (1) 重量比で、C 0.04〜0.15%、Si 0.6%以下、
Mn 0.5〜1.6%、Nb 0.005〜0.04%、Mo 0.4〜
0.7%、Al 0.1%以下、N 0.001〜0.006%、残
部がFeおよび不可避不純物からなる鋼片を
1100℃〜1300℃の温度域で加熱後熱間塑性加工
を800℃〜1000℃の温度範囲で終了後空冷した
耐熱鋼材を一般構造用鋼材と溶接接合するビル
ドアツプ耐熱形鋼の製造方法。 (2) 重量比で、Ti 0.005〜0.10%、Zr 0.005〜
0.03%、V 0.005〜0.10%、Ni 0.05〜0.5%、
Cu 0.05〜1.0%,Cr 0.05〜1.0%、B 0.0003
〜0.002%、Ca 0.0005〜0.005%、REM 0.001
〜0.02%のうち一種または二種以上を含む前記
1記載のビルドアツプ耐熱形鋼の製造方法。 [作用] 本発明は、あらかじめ圧延あるいは鍛造、熱押
しなど周知の熱間塑性加工もしくはそれらの加工
材を素材とし、さらに圧延による冷間加工や、曲
げ、切断、プレスなどの加工により形鋼の構成部
材として成形した耐熱鋼材および全く同様な手段
で成形した一般構造用鋼材相互を溶接接合してな
る形鋼であるため、熱的荷重の大きい面に耐熱鋼
材を、熱的荷重の小さい面に一般構造用鋼材を指
向せしめる構成とし、耐火被覆を無くすか、もし
くは軽減することが出来るので経済的設計が可能
となる。 また、それに加えて任意の形状と寸法のものが
製造可能なため、力学的に最も有利な設計を採用
し、建造コストを引き下げることが可能になる。 次に、耐熱鋼材として、重量比でC 0.04〜
0.15%、Si 0.6%以下、Mn 0.5〜1.6%、Nb
0.005〜0.04%、Mo 0.4〜0.7%、Al 0.1%以下、
N 0.001〜0.006%を含有し、残部がFeおよび不
可避不純物からなる耐火性の優れた低降伏比鋼を
用いるので、価格が安く、溶接等の作業性も良
く、しかも熱的や力学的強度からも性能の優れた
耐熱形鋼が提供出来る。 さらに、耐熱鋼材として、重量比でC 0.04〜
0.15%、Si 0.6%以下、Mn 0.5〜1.6%、Nb
0.005〜0.04%、Mo 0.4〜0.7%、Al 0.1%以下、
N 0.001〜0.006%に加えてTi 0.005〜0.10%、
Zr 0.005〜0.03%、V 0.005〜0.10%、Ni 0.05
〜0.5%、Cu 0.05〜1.0%、Cr 0.05〜1.0%、B
0.0003〜0.002%、Ca 0.0005〜0.005%、REM
0.001〜0.02%のうち一種または二種以上を含有
し、残部がFeおよび不可避不純物からなる耐火
性の優れた低降伏比鋼を用いた場合は、さらに溶
接加工などの点で作業性も良く、加えて耐火性の
点からも有利な耐熱形鋼を供給出来る。 次に、一般構造用鋼材として、一般構造用圧延
鋼材、溶接構造用圧延鋼材、溶接構造用耐候性熱
間圧延鋼材、高耐候性圧延鋼材のうちの一種を用
いることにより、規格に適合した品質の構成部材
を備え、かつ、価格も安い耐熱形鋼とすることが
出来る。 さて、本発明にかかる耐熱鋼材について、さら
に詳細に説明する。 周知のとおり建築物を例にとると、最近高層化
が進展し、設計技術の向上とその信頼性の高さか
ら、耐火設計について見直しが行なわれ、昭和62
年建築物の新耐火設計法が設定されるに至り、前
述の350℃の温度制限によることなく、鋼材の高
温強度と建物に実際に加わつている荷重により、
耐火被覆の能力を決定できるようになり、場合に
よつては無被覆で鋼材を使用することも可能にな
つた。 しかしながら、固定構造物用として耐火性の優
れた鋼材であつて、しかも経済的価格で市場に供
給出来るような鋼材は現在のところ存在しない。 本発明者らは、火災時における鋼材強度につい
て研究の結果、無被覆使用を目標とした場合、火
災時の最高到達温度が1000℃であることから、鋼
材が該温度で常温耐力の70%以上の耐力を備える
ためには、やはり高価な金属元素を多量に添加せ
ねばならず、経済性を失することを知つた。 つまり、周知の鋼材費とそれに加え耐火被覆を
施工する費用以上に鋼材単価が高くなり、そのよ
うな鋼材は実際的に利用することが出来ない。 そこで、さらに研究を進めた結果、600℃での
高温耐力が常温時の70%以上となる鋼材が最も経
済的であることを突き止め、高価な添加元素の量
を少なくし、かつ耐火被覆を薄くすることが可能
で、火災荷重が小さい場合は無被覆で使用するこ
とが出来る鋼材即ち本発明に用いる耐熱鋼材を開
発した。 しかして、その製造方法の特徴は、重量比でC
0.04〜0.15%、Si 0.6%以下、Mn 0.5〜1.6%、
Nb 0.005〜0.04%、Mo 0.4〜0.7%、Al 0.1%以
下、N 0.001〜0.006%を含有し、残部がFeおよ
び不可避不純物からなる鋼片を1100℃〜1300℃の
温度域で再加熱後、熱間塑性加工を800℃〜1000
℃の温度範囲で終了することに有り、また、他の
方法は重量比でC 0.04〜0.15%、Si 0.6%以下、
Mn 0.5〜1.6%、Nb 0.005〜0.04%、Mo 0.4〜
0.7%、Al 0.1%以下、N 0.001〜0.006%に加え
てTi 0.005〜0.10%、Zr 0.005〜0.03%、V
0.005〜0.10%、Ni 0.05〜0.5%、Cu 0.05〜1.0%、
Cr 0.05〜1.0%、B 0.0003〜0.002%、Ca
0.0005〜0.005%、REM 0.001〜0.02%のうち一種
または二種以上を含有し、残部がFeおよび不可
避不純物からなる鋼片を1100℃〜1300℃の温度域
で再加熱後、熱間塑性加工を800℃〜1000℃の温
度範囲で終了することに特徴を有する。 さて、前述のように、本発明に用いる耐熱鋼材
の特徴は、低C−低Mn鋼に微量Nbと相当量の
Moを複合添加した成分組成の鋼片を、高温で再
加熱したのち、比較的高温で圧延を終了すること
にあり、前記方法によつて製造した鋼および鋼材
(以下単に鋼と云う)は、適当な常温耐力を有す
ると共に高温耐力が高いと云う特性を備えてい
る。 つまり、常温耐力に対し600℃の温度域におけ
る耐力の割合が大きく、この理由はNb,Mo以外
の基本成分が少なく、ミクロ組織が比較的大きな
フエライト主体組織となつているためで、これに
対し、細粒フエライトや焼入、焼戻組織などで
は、600℃の温度領域における耐力に比して常温
耐力が高くなり、温度の規格を満足させることが
出来ない。 本発明にかかる鋼は降伏比が低く、耐震性に優
れているが、これもミクロ組織が比較的大きなフ
エライトからなるためである。 次に、本発明の鋼にかかる特徴的な成分元素と
その添加量について説明する。 Nb,Moは微細な炭窒化物を形成し、さらに、
Moは固溶体強化によつて高温強度を増加させる
が、Moの単独添加では600℃という高温領域に
おいて充分な耐力を得ることは難しい。 本発明者等は研究の結果、該高温領域における
耐力を増加させるにはNbとMoを複合添加させる
ことが極めて有効なことを見出した。しかしなが
らNb,Mo量が高すぎると、溶接性が悪くなり、
さらに溶接熱影響部(HAZ)の靱性が劣化する
ので、Nb,Mo含有量の上限はそれぞれ0.04%、
0.7%とする必要があり、また下限は複合効果が
得られる最小量としてそれぞれ0.005%、0.4%を
含有せしめる。 さて、常温において、溶接構造用圧延鋼材
(JIS G 3106)に規定する性能を満足し、かつ
600℃の高温において高い耐力を維持せしめるた
めには、鋼成分と共に鋼の再加熱および圧延にか
かる条件が重要であつて、前述のNb,Moの複合
添加による高温耐力の増大を図るには、再加熱時
に、これらの元素を充分に溶体化させる必要があ
り、このため再加熱温度の下限を1100℃とする。 また、再加熱温度が高すぎると結晶粒が大きく
なつて低温靱性が劣化するので、その上限は1300
℃にせねばならない。 さらに、圧延終了温度を800℃以上の高温とす
る理由は圧延中にNb,Moの炭窒化物を析出させ
ないためであり、γ域で、これらの元素が析出す
ると、析出物サイズが大きくなり、高温耐力が著
しく低下する。 周知の低温圧延(制御圧延)はラインパイプな
ど低温靱性が必要な鋼材では必須条件であるが、
本発明鋼のように低温靱性について、高い要求が
無く、むしろ常温強度と600℃での高温強度のバ
ランスが重要な場合には、圧延を高温で終了せね
ばならない、これは降伏比の低減条件としても重
要である。 また、本発明において、圧延終了温度の上限を
1000℃としたのは、建築用鋼としての靱性を確保
するためである。 さて、高温強度を上昇せしめるため、Moを利
用することは、従来の耐熱鋼では知られている
が、建築用に用いる耐熱鋼材として微量のMoに
加えて微量のNbを複合添加した鋼は知られてい
ない。 もつとも、NbとMoを複合添加した鋼材として
ラインパイプ用のアシキユラーフエライト鋼が知
られているが、該アシキユラーフエライト鋼は製
造にあたり、その目的を達成するため、強度の制
御圧延を行い、常温耐力および高温耐力をともに
高くしてそり、その比が小さいので、当然のこと
ながら建築用鋼材としての規格に外れたものとな
り、建築に用いることは出来ない。 さらに、つけ加えると、前記アシキユラーフエ
ライト鋼は本発明にかかる鋼に比してMn含有量
が多く、また、Mo含有量は少ない。これは本発
明の鋼とは異なり低温靱性を高めることが重要な
ためで、両者は目的および作用効果の点で顕著な
差異がある。 次に、本発明における前記Nb,Mo以外の成分
限定理由について詳細に説明する。 Cは母材および溶接部の強度確保ならびにNb,
Moの添加効果を発揮させるために必要であり、
0.04%以下では効果が薄れるので下限は0.04%と
する。 さらにC量が多すぎると溶接熱影響部(以下
HAZと云う)の低温靱性に悪影響をおよぼすだ
けでなく、母材靱性、溶接性をも劣化させるの
で、0.15%が上限となる。 Siは脱酸上、鋼に含まれる元素で、Siが多くな
ると溶接性、HAZ靱性が劣化するため、その上
限を0.6%とした。本発明鋼ではAl脱酸で充分で
あり、さらにTi脱酸でも良い。SiについてHAZ
靱性の点からは含有量を0.15%程度とすることが
望ましい。 次に、Mnは強度、靱性を確保する上で不可欠
の元素であり、その下限は0.5%である。 しかしMn量が多すぎると焼入性が増加して溶
接性、HAZ靱性が劣化するだけでなく、目標と
する規格に適合する母材強度を得ることが出来な
い。このためMn量の上限を1.6%とした。 Alは一般に脱酸上鋼に含まれる元素であるが、
SiおよびTiによつても脱酸は行なわれるので、
本発明ではAlについて下限は限定しない。しか
しAl量が多くなると鋼の清浄度が悪くなり、溶
接部の靱性が劣化するので上限を0.1%とした。 Nは一般に不可避的不純物として鋼中に含まれ
るものであるが、Nbと結合した炭窒化物Nb
(CN)を形成して高温強度の向上に効果を発揮
する。このため最少量として0.001%必要である
が、N量が多くなるとHAZ靱性の劣化や連続鋳
造スラブの表面疵の発生などを助長するので、そ
の上限を0.006%とした。 なお、本発明にかかる鋼は、不可避不純物とし
てPおよびSを含有する。P,Sは高温強度に与
える影響は小さいので、その量について特に限定
はしないが、一般に靱性、板厚方向強度などに関
する鋼の特性は、これらP,S元素が少ないほど
向上する。望ましいP,S量はそれぞれ0.02%,
0.005%以下である。 本発明鋼の基本成分は以上のとおりであり、充
分に目的を達成できるが、さらに目的に対し特性
を高めるため、以下に述べる元素即ちTi,Zr,
V,Ni,Cu,Cr,B,Ca,REMを選択的に添
加すると強度、靱性の向上について、さらに好ま
しい結果が得られる。 次に、前記添加元素とその添加量について説明
する。 Tiは前述のNbとほぼ同じ効果を持つ元素であ
り、0.005〜0.02%においてAl量が少ない場合Ti
の酸化物、炭窒化物を形成し、HAZ靱性を向上
させるが、0.005%以下では効果がなく0.1%を超
えると目的に対し溶接性などで悪影響がでて好ま
しくない。 VもNb,Tiとほぼ同じ効果をもつ元素であ
り、高温耐力に対する効果はNb,Tiに比較して
小さいが0.005〜0.10%の範囲においてHAZ靱性
を向上させる。しかし0.005%以下では効果が無
く、0.10%を超えるとHAZ靱性に好ましくない
影響がある。 次に、Niは溶接性、HAZ靱性に悪影響をおよ
ぼすことなく、母材の強度、靱性を向上させる
が、0.05%以下では効果が薄く、0.5%以上の添
加は建築用鋼としての目的に対し極めて高価にな
るため経済性を失うので、上限は0.5%とした。 CuはNiとほぼ同様な効果を持つほか、Cu析出
物による高温強度の増加や耐食性の向上にも効果
を有する。 しかし、Cu量が1.0%を超えると熱間圧延時に
Cu割れが発生し製造が困難になり、また0.05%以
下では効果が無いのでCu量は0.05〜1.0%に限定
する。 Crは母材および溶接部の強度を高める元素で
あるが、1.0%を超えると溶接性やHAZ靱性を劣
化させ、また0.05%以下では効果が薄い。従つて
Cr量は0.05〜1.0%とする。 本発明者等の知見ではCrはMoと同様に高温強
度を増加させる元素であるが、Moと異なり常温
強度の増加の割に比し、600℃での高温強度の増
加効果は少ない。 Bは鋼の焼入性を増大させ強度を大きくする元
素であり、Nと結合したBNはフエライト発生核
として作用し、HAZ組織を微細化する。このよ
うなBの効果を得るためには、最小限0.0003%の
B量が必要で、それ以下では効果が無く、またB
量が多過ぎると粗大なB−constituentがHAZの
粒界に析出して低温靱性を劣化させる。このた
め、B量の上限は0.002%に制限する。 Ca,REMは酸化物(MnS)の形態を制御し、
シヤルピー吸収エネルギーを増加させ低温靱性を
向上させるほか、耐水素有機割れ性の改善にも効
果を発揮する。しかしCa量は0.0005%以下では実
用上効果が無く、また、0.005%を超えるとCaO,
CaSが多量に生成して大形介在物となり鋼の靱性
のみならず清浄度も害し、さらに溶接性にも悪影
響を与えるので、Ca添加量の範囲を0.0005〜
0.005%とする。 また、REMについてもCaと同様な効果があ
り、また添加量を多くするとCaと同様な問題が
生じ、また経済性も悪くなるので、REM量の下
限を0.001%とし上限を0.02%とする。 なお、本発明鋼を製造後、脱水素などの目的で
Ac1変態点以下の温度に再加熱しても、本発明鋼
の特徴は何等損なわれることは無い。 また、本発明では、前述のように鋼片を再加熱
し、ついで熱間塑性加工することにより製品とす
るが、その後さらに所望の鋼材を製造するため、
前記製品を熱間でさらに塑性加工してもよい。 たとえば、ブルーム、ビレツトとしたのち、形
鋼とするほか、前記製品を素材とし、冷間加工し
て所望の鋼材たとえば形鋼や鋼管を製造しても良
い。その際、必要に応じて、熱処理を適宜に実施
する。 [実施例] 周知の転炉、連続鋳造、厚板工程で種々の鋼成
分の鋼板(厚み20〜50mm)を製造し、常温強度、
高温強度などを調査した。 第1表、第2表、第3表に本発明鋼と比較鋼と
の成分比較を示し、続いて第4表〜第8表に加
熱、圧延、冷却条件別に機械的特性を示す。 第4表〜第8表で明らかなように本発明にかか
る鋼が、すべて良好な常温および高温強度を有す
るのに対し、比較鋼はことごとく、常温での強度
が高すぎたり、あるいは高温強度が不足し、さら
に常温強度に対する600℃での強度割合が低く、
耐火建築材として不適である。
[Industrial Field of Application] The present invention relates to a method for manufacturing section steel used for structural members such as civil engineering, architecture, and marine structures. [Prior Art] As is well known, various types of shaped steel are used in large quantities for structural members such as civil engineering, architecture, and marine structures. In order to ensure safety, it is mandatory to apply sufficient fireproof coating, and building-related laws and regulations stipulate that the temperature of steel materials should not exceed 350℃ in the event of a fire. The above-mentioned fire-resistant coating can be applied to the surface of the steel material by spraying a spray material or felt based on slag wool, rock wool, glass wool, albestos, etc. A method of covering with a thin plate, such as a thin steel plate or a thin stainless steel plate, is adopted to prevent the shaped steel from losing its carrying capacity due to thermal damage in the event of a fire. Various methods have been proposed for the above-mentioned construction, but basically they are based on the publication published by Shokokusha Co., Ltd. on March 20, 1971 (steel-framed and reinforced concrete construction). As shown in Figure 6.21 on page 104, the commonly used method is to cover the steel with fibrous refractories or fireproof plates. [Problem to be solved by the invention] As mentioned above, section steel is a material with high strength and excellent economic efficiency as a structural member, but for applications that require fire resistance, it requires relatively expensive fire-resistant coating. Since this is necessary, there is a problem in that construction costs are high. Therefore, the present inventors developed a low yield ratio heat-resistant steel material (hereinafter simply referred to as heat-resistant steel material) with excellent fire resistance suitable for manufacturing shaped steel, and previously filed an application for the same. This heat-resistant steel material has a high yield strength at high temperatures, so there is usually no need for fire-resistant coating, and even if it is necessary, only an extremely thin fire-resistant coating is required, but the price is slightly higher than that of general structural rolled steel materials. There are challenges. An object of the present invention is to provide a method for manufacturing a heat-resistant section steel having excellent fire resistance and economical efficiency by joining steel materials with excellent fire resistance and general steel materials. [Means for Solving the Problems] The gist of the present invention is as follows. (1) In terms of weight ratio, C 0.04 to 0.15%, Si 0.6% or less,
Mn 0.5~1.6%, Nb 0.005~0.04%, Mo 0.4~
A steel billet consisting of 0.7%, Al 0.1% or less, N 0.001 to 0.006%, and the balance Fe and unavoidable impurities.
A method for producing build-up heat-resistant section steel, in which heat-resistant steel material is heated in a temperature range of 1100°C to 1300°C, then subjected to hot plastic working in a temperature range of 800°C to 1000°C, and then air cooled, and then welded and joined to general structural steel material. (2) Weight ratio: Ti 0.005~0.10%, Zr 0.005~
0.03%, V 0.005~0.10%, Ni 0.05~0.5%,
Cu 0.05~1.0%, Cr 0.05~1.0%, B 0.0003
~0.002%, Ca 0.0005~0.005%, REM 0.001
2. The method for producing a build-up heat-resistant section steel according to 1 above, which contains one or more of 0.02% and 0.02%. [Function] The present invention uses well-known hot plastic processing such as rolling, forging, and hot pressing as a raw material, and further processes such as cold working by rolling, bending, cutting, and pressing to form a section steel. Because the steel section is made by welding together heat-resistant steel formed as structural members and general structural steel formed using exactly the same method, the heat-resistant steel is placed on the side with a large thermal load, and the side with a small thermal load is placed on the side. It has a configuration that is oriented toward general structural steel materials, and the fireproof coating can be eliminated or reduced, making it possible to achieve an economical design. In addition, since it can be manufactured in any shape and size, it is possible to adopt the most mechanically advantageous design and reduce construction costs. Next, as a heat-resistant steel material, C 0.04 ~
0.15%, Si 0.6% or less, Mn 0.5-1.6%, Nb
0.005~0.04%, Mo 0.4~0.7%, Al 0.1% or less,
Since we use a low yield ratio steel with excellent fire resistance that contains 0.001 to 0.006% N and the balance is Fe and unavoidable impurities, it is inexpensive, has good workability in welding, etc., and has low thermal and mechanical strength. We can also provide heat-resistant shaped steel with excellent performance. Furthermore, as a heat-resistant steel material, the weight ratio is C 0.04~
0.15%, Si 0.6% or less, Mn 0.5-1.6%, Nb
0.005~0.04%, Mo 0.4~0.7%, Al 0.1% or less,
N 0.001-0.006% plus Ti 0.005-0.10%,
Zr 0.005~0.03%, V 0.005~0.10%, Ni 0.05
~0.5%, Cu 0.05~1.0%, Cr 0.05~1.0%, B
0.0003-0.002%, Ca 0.0005-0.005%, REM
When using a low yield ratio steel with excellent fire resistance that contains one or more of 0.001 to 0.02%, with the remainder consisting of Fe and unavoidable impurities, it also has good workability in terms of welding, etc. In addition, we can supply heat-resistant steel sections that are advantageous in terms of fire resistance. Next, by using one of the following types of general structural steel materials: rolled steel materials for general structures, rolled steel materials for welded structures, weather-resistant hot-rolled steel materials for welded structures, and highly weather-resistant rolled steel materials, quality that meets the standards is achieved. It is possible to produce a heat-resistant section steel that has the following structural members and is also inexpensive. Now, the heat-resistant steel material according to the present invention will be explained in more detail. As is well known, if we take buildings as an example, they have recently become more and more high-rise, and due to improvements in design technology and high reliability, fire-resistant designs have been reviewed.
A new fire-resistant design method for buildings was established in 2017, and instead of being subject to the above-mentioned 350℃ temperature limit, the high-temperature strength of steel and the load actually applied to buildings
It has become possible to determine the capacity of fire-resistant coatings, and in some cases it has become possible to use steel without coatings. However, there is currently no steel material that has excellent fire resistance and can be supplied to the market at an economical price for use in fixed structures. As a result of research on the strength of steel materials in the event of a fire, the present inventors found that when uncoated use is targeted, the maximum temperature reached in the event of a fire is 1000°C, so that the steel material has 70% or more of its room temperature yield strength at that temperature. It was learned that in order to provide a yield strength of 1, a large amount of expensive metal elements must be added, which results in a loss of economic efficiency. In other words, the unit price of the steel material becomes higher than the cost of the well-known steel material and, in addition, the cost of constructing the fireproof coating, and such steel material cannot be practically used. Therefore, as a result of further research, we found that the most economical steel material was one whose high-temperature yield strength at 600°C was 70% or more of that at room temperature, and by reducing the amount of expensive additive elements and thinning the fireproof coating. We have developed a heat-resistant steel material for use in the present invention, that is, a steel material that can be used without coating when the fire load is small. However, the feature of the manufacturing method is that the weight ratio of C
0.04-0.15%, Si 0.6% or less, Mn 0.5-1.6%,
After reheating a steel piece containing 0.005 to 0.04% Nb, 0.4 to 0.7% Mo, 0.1% or less Al, and 0.001 to 0.006% N, with the balance consisting of Fe and unavoidable impurities in a temperature range of 1100°C to 1300°C, Hot plastic working at 800℃~1000℃
Other methods have a weight ratio of C 0.04 to 0.15%, Si 0.6% or less,
Mn 0.5~1.6%, Nb 0.005~0.04%, Mo 0.4~
0.7%, Al 0.1% or less, N 0.001-0.006% plus Ti 0.005-0.10%, Zr 0.005-0.03%, V
0.005~0.10%, Ni 0.05~0.5%, Cu 0.05~1.0%,
Cr 0.05~1.0%, B 0.0003~0.002%, Ca
A steel billet containing one or more of 0.0005 to 0.005% and REM 0.001 to 0.02%, with the balance consisting of Fe and unavoidable impurities, is reheated in a temperature range of 1100°C to 1300°C and then subjected to hot plastic working. It is characterized by finishing in the temperature range of 800℃~1000℃. Now, as mentioned above, the characteristics of the heat-resistant steel used in the present invention are that it contains a trace amount of Nb and a considerable amount of low C-low Mn steel.
The method involves reheating a steel slab with a composite composition containing Mo at a high temperature and then finishing rolling at a relatively high temperature, and the steel and steel materials (hereinafter simply referred to as steel) produced by the above method are It has the characteristics of having appropriate room temperature yield strength and high high temperature yield strength. In other words, the ratio of proof stress in the temperature range of 600℃ to room temperature proof stress is large, and the reason for this is that there are few basic components other than Nb and Mo, and the microstructure is a relatively large ferrite-based structure. In the case of fine-grained ferrite, quenched, and tempered structures, the yield strength at room temperature is higher than the yield strength in the 600°C temperature range, and the temperature specifications cannot be met. The steel according to the present invention has a low yield ratio and excellent earthquake resistance, and this is also because the microstructure is composed of relatively large ferrite. Next, the characteristic constituent elements of the steel of the present invention and their addition amounts will be explained. Nb and Mo form fine carbonitrides, and
Mo increases high-temperature strength through solid solution strengthening, but it is difficult to obtain sufficient yield strength in the high-temperature range of 600°C by adding Mo alone. As a result of research, the present inventors have found that adding Nb and Mo in combination is extremely effective in increasing the yield strength in the high temperature range. However, if the amount of Nb and Mo is too high, weldability will deteriorate,
Furthermore, the toughness of the weld heat affected zone (HAZ) deteriorates, so the upper limit of Nb and Mo content is 0.04% and 0.04%, respectively.
It is necessary to set the content to 0.7%, and the lower limit is 0.005% and 0.4%, respectively, as the minimum amount to obtain a composite effect. Now, at room temperature, it satisfies the performance specified in rolled steel materials for welded structures (JIS G 3106), and
In order to maintain high yield strength at a high temperature of 600℃, the conditions for reheating and rolling the steel as well as the steel components are important. It is necessary to sufficiently dissolve these elements during reheating, and therefore the lower limit of the reheating temperature is set at 1100°C. In addition, if the reheating temperature is too high, the crystal grains will become large and the low temperature toughness will deteriorate, so the upper limit is 1300.
It must be brought to ℃. Furthermore, the reason why the rolling end temperature is set to a high temperature of 800°C or higher is to prevent carbonitrides of Nb and Mo from precipitating during rolling. When these elements precipitate in the γ region, the size of the precipitates becomes large. High-temperature yield strength decreases significantly. The well-known low-temperature rolling (controlled rolling) is an essential condition for steel materials that require low-temperature toughness, such as line pipes.
In cases where there is no high demand for low-temperature toughness, such as in the steel of the present invention, and where the balance between room-temperature strength and high-temperature strength at 600°C is important, rolling must be completed at a high temperature, which is a condition for reducing the yield ratio. It is also important. In addition, in the present invention, the upper limit of the rolling end temperature is
The temperature was set at 1000°C to ensure the toughness of the steel for construction. Now, the use of Mo in order to increase high-temperature strength is known in conventional heat-resistant steel, but steel with a compound addition of a small amount of Mo and a small amount of Nb is known as a heat-resistant steel material used for construction. It has not been done. Of course, axial ferrite steel for line pipes is known as a steel material with a composite addition of Nb and Mo, but in order to achieve its purpose, axial ferrite steel is manufactured by rolling with controlled strength. Since both the room-temperature yield strength and the high-temperature yield strength are high and the ratio is small, the steel material naturally does not meet the standards for construction steel and cannot be used for construction. Furthermore, in addition, the axial ferrite steel has a higher Mn content and a lower Mo content than the steel according to the present invention. This is because, unlike the steel of the present invention, it is important to increase low-temperature toughness, and there are significant differences between the two in terms of purpose and function and effect. Next, the reason for limiting components other than Nb and Mo in the present invention will be explained in detail. C is for ensuring the strength of the base metal and welded part, and Nb,
It is necessary to exhibit the effect of Mo addition,
If it is less than 0.04%, the effect will be weakened, so the lower limit is set at 0.04%. Furthermore, if the amount of C is too large, the weld heat affected zone (hereinafter referred to as
The upper limit is 0.15% because it not only adversely affects the low-temperature toughness of the HAZ but also deteriorates the toughness and weldability of the base metal. Si is an element contained in steel for deoxidation purposes, and as Si increases, weldability and HAZ toughness deteriorate, so the upper limit was set at 0.6%. In the steel of the present invention, Al deoxidation is sufficient, and Ti deoxidation may also be used. About Si HAZ
From the viewpoint of toughness, it is desirable that the content be approximately 0.15%. Next, Mn is an essential element for ensuring strength and toughness, and its lower limit is 0.5%. However, if the amount of Mn is too large, not only will hardenability increase and weldability and HAZ toughness deteriorate, but it will also be impossible to obtain base metal strength that meets the target standards. For this reason, the upper limit of the Mn content was set at 1.6%. Al is an element generally included in deoxidized steel,
Deoxidation is also carried out by Si and Ti, so
In the present invention, there is no lower limit for Al. However, if the amount of Al increases, the cleanliness of the steel will deteriorate and the toughness of the weld will deteriorate, so the upper limit was set at 0.1%. N is generally contained in steel as an unavoidable impurity, but carbonitrides Nb combined with Nb
(CN) and is effective in improving high-temperature strength. For this reason, a minimum amount of 0.001% is required, but since increasing the amount of N promotes deterioration of HAZ toughness and occurrence of surface flaws in continuous casting slabs, the upper limit was set at 0.006%. Note that the steel according to the present invention contains P and S as inevitable impurities. Since P and S have a small effect on high-temperature strength, their amounts are not particularly limited, but generally the properties of steel with respect to toughness, strength in the thickness direction, etc. are improved as the P and S elements are reduced. Desirable amounts of P and S are each 0.02%,
It is 0.005% or less. The basic components of the steel of the present invention are as described above, and the purpose can be fully achieved. However, in order to further improve the characteristics for the purpose, the following elements, namely Ti, Zr,
By selectively adding V, Ni, Cu, Cr, B, Ca, and REM, more favorable results can be obtained in terms of improving strength and toughness. Next, the additive elements and their amounts will be explained. Ti is an element that has almost the same effect as Nb mentioned above, and when the amount of Al is small at 0.005 to 0.02%, Ti
It forms oxides and carbonitrides to improve HAZ toughness, but if it is less than 0.005% it has no effect, and if it exceeds 0.1% it will have an adverse effect on weldability etc., which is not desirable. V is also an element that has almost the same effect as Nb and Ti, and although its effect on high-temperature yield strength is smaller than that of Nb and Ti, it improves HAZ toughness in the range of 0.005 to 0.10%. However, if it is less than 0.005%, it has no effect, and if it exceeds 0.10%, it has an unfavorable effect on HAZ toughness. Next, Ni improves the strength and toughness of the base metal without adversely affecting weldability and HAZ toughness, but if it is less than 0.05%, the effect is weak, and if it is added more than 0.5%, it is not suitable for the purpose of building steel. Since it becomes extremely expensive and loses economic efficiency, the upper limit was set at 0.5%. Cu has almost the same effect as Ni, and also has the effect of increasing high-temperature strength and improving corrosion resistance due to Cu precipitates. However, if the Cu content exceeds 1.0%, the
The amount of Cu is limited to 0.05 to 1.0% because Cu cracks occur, making manufacturing difficult, and there is no effect if it is less than 0.05%. Cr is an element that increases the strength of the base metal and weld zone, but if it exceeds 1.0%, it deteriorates weldability and HAZ toughness, and if it is less than 0.05%, it has little effect. Accordingly
The amount of Cr is 0.05 to 1.0%. According to the knowledge of the present inventors, Cr is an element that increases high temperature strength like Mo, but unlike Mo, the effect of increasing high temperature strength at 600°C is small compared to the increase in room temperature strength. B is an element that increases the hardenability and strength of steel, and BN combined with N acts as a ferrite generation nucleus and refines the HAZ structure. In order to obtain this effect of B, a minimum amount of B of 0.0003% is required; anything less than that has no effect, and B
If the amount is too large, coarse B-constituents will precipitate at the grain boundaries of the HAZ, deteriorating the low-temperature toughness. Therefore, the upper limit of the amount of B is limited to 0.002%. Ca, REM controls the morphology of oxide (MnS),
In addition to increasing Shapey absorption energy and improving low-temperature toughness, it is also effective in improving hydrogen organic cracking resistance. However, if the amount of Ca is less than 0.0005%, it has no practical effect, and if it exceeds 0.005%, CaO,
A large amount of CaS is generated and becomes large inclusions that impair not only the toughness but also the cleanliness of the steel, and also have a negative effect on weldability.
It shall be 0.005%. Further, REM has the same effect as Ca, and if the amount added is increased, the same problems as Ca occur, and the economy is also poor, so the lower limit of the amount of REM is set to 0.001% and the upper limit is set to 0.02%. In addition, after manufacturing the steel of the present invention, it is used for purposes such as dehydrogenation.
Even if the steel is reheated to a temperature below the Ac 1 transformation point, the characteristics of the steel of the present invention are not impaired in any way. In addition, in the present invention, as described above, the steel slab is reheated and then subjected to hot plastic working to produce a product.
The product may be further subjected to hot plastic working. For example, in addition to forming a bloom or billet into a shape steel, the product may be used as a raw material and cold-worked to produce a desired steel material such as a shape steel or a steel pipe. At that time, heat treatment is appropriately performed as necessary. [Example] Steel plates (thickness 20 to 50 mm) with various steel compositions were manufactured using well-known converter, continuous casting, and plate processes.
We investigated high-temperature strength, etc. Tables 1, 2, and 3 show a comparison of the components of the steel of the present invention and comparative steel, and Tables 4 to 8 show the mechanical properties according to heating, rolling, and cooling conditions. As is clear from Tables 4 to 8, all the steels according to the present invention have good strength at room temperature and high temperature, whereas all the comparative steels have too high strength at room temperature or have poor high temperature strength. In addition, the ratio of strength at 600℃ to room temperature strength is low.
Not suitable as a fireproof construction material.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 さて、次に本発明鋼の機械的性質につき理解を
容易ならしめるため周知鋼材と比較してグラフを
用いて説明する。 第9表は本発明鋼とJIS G 3106溶接構造用圧
延鋼材(SM50A)との成分比較を示し、第10図
は両者について火災時の耐力比較を行なつたグラ
フである。
[Table] Next, in order to facilitate understanding of the mechanical properties of the steel of the present invention, the mechanical properties will be explained using graphs in comparison with well-known steel materials. Table 9 shows a compositional comparison between the steel of the present invention and JIS G 3106 rolled steel for welded structures (SM50A), and FIG. 10 is a graph comparing the fire resistance of both.

【表】 第10図は縦軸にYP比、横軸に温度(℃)を
とつたもので、実線で示す折線51が本発明鋼、
破線で示す折線52がSS41、一点鎖線で示す折
線53がSM50Aの変化を示す。 第10図で明らかなように、800℃を超える温
度では、差がなくなるが、本発明鋼は600℃〜700
℃においてSM50Aの2倍の耐力を保持しており、
建築用鋼材として優れた特性を備えていることが
判る。 このことから、本発明鋼はSM50AやS41に比
し、火災荷重が等しい場合、耐火被覆がより薄い
ものでよいことが明白であり、火災荷重が大きく
ないときには、無被覆で済むことも、また明らか
である。 さて、前記耐熱鋼材について、耐火被覆を施工
するほか、耐熱塗料を塗布するなど、さまざまな
実験を行なつた結果、いずれも、周知鋼材に比
し、同一火災荷重に対し、非常に少ない使用量で
済むか、もしくは無被覆でも充分な耐力を備えて
いることが確認出来た。 そこで、本発明者らは、ビルドアツプ形鋼の構
造部材の一部に前記耐熱鋼材を用いることによ
り、設計要求に対し、圧延形鋼のような寸法制限
が無く、寸法裕度が広く柔軟な対応が可能なうえ
に、加えて耐火性能が優れ、経済性に富む本発明
の耐熱鋼材を開発したもので、以下実施例に従つ
て詳細に説明する。 第1図a〜fは、本発明にかかるブルドアツプ
耐熱形鋼の実施例にかかる概略断面図で、 (a) は形鋼1の断面図で、フランジ2は耐熱
鋼、フランジ3a、およびウエブ3bはJIS G
3101にかかる一般構造用圧延鋼材から構成さ
れている。 (b) は溝形鋼4の断面図で、フランジ5は耐熱
鋼、フランジ6a、ウエブ6bはJIS G 3106
にかかる溶接構造用圧延鋼材から構成されてい
る。 (c) は山形鋼7の断面図で、フランジ8は耐熱
鋼、フランジ9は溶接構造用耐候性熱間圧延鋼
材JIS G 3114から構成されている。 (d) は角鋼管10の断面図で、溝形鋼11は耐熱
鋼、溝形鋼12は高耐候性圧延鋼材 JIS G
3125から構成されている。 (e) は柱材13の断面図で、リツプ溝形鋼14は
耐熱鋼、リツプ溝形鋼15は一般構造用鋼材
JIS G 3101から構成されている。 (f) は形鋼16の断面図で、フランジ17a、ウ
エブ17bは耐熱鋼、フランジ18は一般構造
用鋼材 JIS G 3101から構成されている。 さて、第2図は、前記H形鋼16を梁に用い
て、コンクリート床版19を支承した実施例にか
かる部分断面図で、フランジ17a、ウエブ17
bは耐熱鋼で構成され火災荷重が小さい場合は、
耐火被覆を施す必要がないため、耐火断熱層20
の厚さT2は該耐火断熱層20の表面を示す破線
21で示すようにフランジ18を覆うにたる保護
厚さで充分であり、火災荷重の大きい場合でも、
その耐火断熱層の厚さは従来の半分以下で済む。 従来のH形鋼では一点鎖線22で囲われた厚さ
T2の耐火被覆が必要であつたが、本発明の耐熱
形鋼の場合節減出来る耐火被覆量は前述の差とな
るため、その経費節減量は多大である。 次に、第3図は柱材23に外壁コンクリート2
4を取付けた実施例にかかる概略断面図で、25
は内装ボード、26は指示梁を示す。前記柱材2
3は耐熱鋼からなるリツプ溝形鋼27と一般構造
用鋼材 JIS G 3101からなるリツプ溝形鋼28
から構成されている。 従来であれば一点鎖線29で示す耐火被覆厚さ
が必要であるが、前記柱材23の露出表面27a
は耐熱鋼なので、耐火被覆材30は符号T3で示
す如く、最大の厚さでも前記露出表面27aと同
一で済み、火災荷重が大きい場合でも、符号T4
で示すようにやや厚い耐火被覆層でよいため、耐
火被覆材の節減量が多大である。 次に、第4図は下側フランジ31のみが耐熱鋼
からなるH形鋼32を用いて床版33を支承し、
コンクリート充填材34を前記H形鋼32のフラ
ンジ間に充填した部分断面図で、従来はH形鋼全
体をコンクリートで厚く包む必要があつたが、本
発明では、図に示すように簡略化することが可能
になる。 第5図は、H形鋼を建築物の柱材に用いた例に
かかり、内側フランジ35のみが耐熱鋼であるH
形鋼36を用いて外壁材37を支持している部分
断面図で、両フランジ間には第4図と同様にコン
クリートもしくは繊維質耐熱材38の充填を行な
うが、従来のように、H形鋼36を厚く繊維質耐
熱材もしくはコンクリートで包み込む必要は無
い。 第6図は同様に、H形鋼を建築物の柱材に用い
た例にかかり、内側フランジ39のみが耐熱鋼で
あるH形鋼40を用いてブロツク壁材41を支持
している部分断面図で、前記ブロツク壁材41と
内側フランジ39間にコンクリートもしくは繊維
質耐熱材42を充填する。従来では内側フランジ
39を含めて厚くコンクリートで包み込んでいた
が、本発明では図のように、簡単な耐火構造とす
ることが可能である。 勿論、この例でも火災荷重が大きい場合には、
内側フランジ39を露出しないように、耐火被覆
することは当然であるが、その場合も従来に比し
て、大幅に薄くたとえば半分の厚さにしても良
い。 次に、第7図a,bは一般構造用鋼材 JIS G
3101からなるH形鋼43と耐熱鋼からなるH形
鋼44の概略断面図で、それぞれのウエブを鋸歯
状に切断し、第8図に示すようにそれぞれの半截
体43a,44aを互いに溶接45a,45b
し、ハニカムウエブ形鋼46を形成すると、耐力
の優れた有用な梁材が得られる。 前記ハニカムウエブ形鋼46は、従来のものと
異なり、下側が耐熱鋼なので、前述の如く耐火被
覆を軽減もしくは無くすことが可能であり、また
貫通孔47,48,49は配管用として利用度が
高く、したがつて高層建築物用の構造材として空
間容積を大きくすることが出来、前記各種配管の
設備費を低減出来るため経済効率の良い部材とし
て、広い範囲で活用出来る。 第9図は、前記ハニカムウエブ形鋼46を第4
図の例のように梁材として用いる例にかかり、コ
ンクリート50の充填を実施する際には、前記貫
通孔47,48,49があるため、コンクリート
充填作業を非常に高能率に実施することが出来
る。 この場合、前記ハニカムウエブ形鋼46につい
て前述のとおり耐火被覆を軽減もしくは無くすこ
とが可能なので、その経済効果は多大である。 [発明の効果] 本発明のビルトアツプ耐熱形鋼は、耐火被覆費
を大幅に軽減出来るとともに、溶接性に優れ、設
計にあたり所望寸法に対する自由度が大きいた
め、経済的な構造部材として、きわめて有用であ
る。
[Table] In Figure 10, the YP ratio is plotted on the vertical axis and the temperature (°C) is plotted on the horizontal axis.
A broken line 52 shows the change in SS41, and a broken line 53 shows the change in SM50A. As is clear from Fig. 10, the difference disappears at temperatures exceeding 800°C, but the steel of the present invention
It maintains twice the proof strength of SM50A at ℃,
It can be seen that it has excellent properties as a building steel material. From this, it is clear that compared to SM50A and S41, the steel of the present invention requires a thinner fire-resistant coating when the fire load is the same, and when the fire load is not large, it is possible to get away with no coating. it is obvious. Now, as a result of conducting various experiments on the above-mentioned heat-resistant steel materials, such as applying fire-resistant coatings and applying heat-resistant paints, we found that the amount used in both cases was extremely small compared to well-known steel materials for the same fire load. It was confirmed that it can be done without coating, or that it has sufficient strength even without coating. Therefore, the inventors of the present invention have found that by using the heat-resistant steel material for some of the structural members of built-up sections, they can meet design requirements with a wide dimensional tolerance and flexibility, without having the dimensional limitations of rolled sections. The heat-resistant steel material of the present invention has been developed, which is not only capable of oxidation, but also has excellent fire resistance and is highly economical, and will be described in detail below with reference to Examples. 1A to 1F are schematic cross-sectional views of embodiments of the bulldoped heat-resistant steel section according to the present invention, (a) is a cross-sectional view of the section steel 1, the flange 2 is made of heat-resistant steel, the flange 3a, and the web 3b. is JIS G
Constructed from general structural rolled steel according to 3101. (b) is a cross-sectional view of the channel steel 4, the flange 5 is made of heat-resistant steel, the flange 6a and the web 6b are made of JIS G 3106.
It is constructed from rolled steel for welded structures. (c) is a cross-sectional view of the angle iron 7, in which the flange 8 is made of heat-resistant steel, and the flange 9 is made of weather-resistant hot-rolled steel JIS G 3114 for welded structures. (d) is a cross-sectional view of the square steel pipe 10, where the channel steel 11 is made of heat-resistant steel and the channel steel 12 is made of highly weather-resistant rolled steel JIS G
Consists of 3125. (e) is a cross-sectional view of the column 13, where the lip channel steel 14 is heat-resistant steel and the lip channel steel 15 is a general structural steel.
It is composed of JIS G 3101. (f) is a cross-sectional view of the section steel 16, in which the flange 17a and web 17b are made of heat-resistant steel, and the flange 18 is made of general structural steel material JIS G 3101. Now, FIG. 2 is a partial sectional view of an embodiment in which the H-shaped steel 16 is used as a beam to support a concrete slab 19, and shows a flange 17a, a web 17
If b is made of heat-resistant steel and the fire load is small,
Since there is no need to apply a fireproof coating, the fireproof insulation layer 20
The thickness T 2 is sufficient as a protective thickness to cover the flange 18 as shown by the broken line 21 indicating the surface of the fireproof insulation layer 20, and even when the fire load is large,
The thickness of the fireproof insulation layer can be less than half that of the conventional one. For conventional H-beam steel, the thickness is surrounded by the dashed line 22.
Although T2 fire-resistant coating was necessary, the amount of fire-resistant coating that can be saved with the heat-resistant section steel of the present invention is the above-mentioned difference, so the cost savings are significant. Next, in Fig. 3, the outer wall concrete 2 is attached to the pillar material 23.
4 is a schematic cross-sectional view of an embodiment in which 25
26 indicates an interior board, and 26 indicates an instruction beam. The pillar material 2
3 is a lip channel steel 27 made of heat-resistant steel and a lip channel steel 28 made of general structural steel JIS G 3101.
It consists of Conventionally, the thickness of the fireproof coating indicated by the dashed line 29 is required, but the exposed surface 27a of the pillar material 23 is
Since is made of heat-resistant steel, the maximum thickness of the fireproof covering 30 is the same as that of the exposed surface 27a, as shown by the symbol T 3 , and even when the fire load is large, the maximum thickness is the same as that of the exposed surface 27a, as shown by the symbol T 4 .
As shown in Figure 2, since a slightly thicker fireproof coating layer is sufficient, the amount of savings in fireproof coating material is considerable. Next, in FIG. 4, only the lower flange 31 supports the floor slab 33 using H-shaped steel 32 made of heat-resistant steel,
This is a partial cross-sectional view showing concrete filler 34 filled between the flanges of the H-beam 32. Conventionally, it was necessary to wrap the entire H-beam thickly with concrete, but in the present invention, this is simplified as shown in the figure. becomes possible. Figure 5 shows an example in which H-shaped steel is used as a pillar material for a building, and only the inner flange 35 is made of heat-resistant steel.
This is a partial cross-sectional view showing an external wall material 37 supported using a shaped steel 36. The space between both flanges is filled with concrete or a fibrous heat-resistant material 38 in the same way as in FIG. There is no need to encase the steel 36 in thick fibrous heat-resistant material or concrete. Similarly, FIG. 6 shows an example in which H-shaped steel is used as a pillar material for a building, and a partial cross-section is shown in which only the inner flange 39 supports a block wall material 41 using H-shaped steel 40 made of heat-resistant steel. In the figure, concrete or a fibrous heat-resistant material 42 is filled between the block wall material 41 and the inner flange 39. Conventionally, the inner flange 39 was covered with thick concrete, but with the present invention, it is possible to create a simple fireproof structure as shown in the figure. Of course, even in this example, if the fire load is large,
It goes without saying that the inner flange 39 should be coated with a fireproof coating so as not to be exposed, but in that case as well, the thickness may be made much thinner than the conventional one, for example, half the thickness. Next, Figure 7 a and b show general structural steel JIS G
This is a schematic cross-sectional view of an H-beam 43 made of 3101 and an H-beam 44 made of heat-resistant steel, each of which is cut into a sawtooth shape, and the half-cut bodies 43a and 44a are welded together 45a as shown in FIG. ,45b
However, by forming the honeycomb web shaped steel 46, a useful beam material with excellent yield strength can be obtained. Unlike conventional honeycomb web shaped steel 46, the lower side is made of heat resistant steel, so the fireproof coating can be reduced or eliminated as described above, and the through holes 47, 48, 49 can be used for piping. It is expensive, so it can increase the space volume as a structural material for high-rise buildings, and it can reduce equipment costs for the various types of piping, so it can be used in a wide range of areas as an economically efficient member. FIG. 9 shows the honeycomb web shaped steel 46 in the fourth
When filling concrete 50 in an example used as a beam material as shown in the figure, since the through holes 47, 48, and 49 are present, the concrete filling work can be carried out very efficiently. I can do it. In this case, the fireproof coating on the honeycomb web shaped steel 46 can be reduced or eliminated as described above, so the economic effect is great. [Effects of the Invention] The built-up heat-resistant section steel of the present invention can significantly reduce the cost of fireproof coating, has excellent weldability, and has a large degree of freedom in designing desired dimensions, making it extremely useful as an economical structural member. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜fは本発明にかかるビルドアツプ耐
熱形鋼の概略断面図、第2図〜第6図は本発明に
かかるブルドアツプ耐熱形鋼の実施例概略断面
図、第7図a,bはH形鋼の概略断面図、第8図
はハニカムウエブ耐熱形鋼の概略側面図、第9図
は本発明にかかるハニカムウエブ耐熱形鋼の実施
例概略断面図、第10図は本発明にかかる耐熱鋼
と比較鋼の耐力比の比較グラフである。 1……形鋼、2……フランジ、3a……フラ
ンジ、3b……ウエブ、4……溝形鋼、5……フ
ランジ、6a……フランジ、6b……ウエブ、7
……山形鋼、8……フランジ、9……フランジ、
10……角鋼管、11……溝形鋼、12……溝形
鋼、13……柱材、14……リツプ溝形鋼、15
……リツプ溝形鋼、16……H形鋼、17a……
フランジ、17b……ウエブ、18……フラン
ジ、19……コンクリート床版、20……耐火断
熱層、21……破線、22……一点鎖線、23…
…柱材、24……外壁コンクリート、25……内
装ボード、26……支持梁、27……リツプ溝形
鋼、28……リツプ溝形鋼、29……一点鎖線、
30……耐火被覆材、31……下側フランジ、3
2……H形鋼、33……床版、34……コンクリ
ート充填材、35……内側フランジ、36……H
形鋼、37……外壁材、38……繊維質耐熱材、
39……内側フランジ、40……H形鋼、41…
…ブロツク壁材、42……繊維質耐熱材、43…
…H形鋼、43a……H形鋼半截材、44……H
形鋼、44b……H形鋼半截材、45a……溶
接、45b……溶接、46……ハニカムウエブ形
鋼、47……貫通孔、48……貫通孔、49……
貫通孔、50……コンクリート、51……折線、
52……折線、53……折線。
1a to 1f are schematic sectional views of a build-up heat-resistant section according to the present invention, FIGS. 2 to 6 are schematic sectional views of an embodiment of a build-up heat-resistant section according to the present invention, and FIGS. 7 a and b are FIG. 8 is a schematic side view of a honeycomb web heat-resistant steel section; FIG. 9 is a schematic cross-sectional view of an embodiment of the honeycomb web heat-resistant section steel according to the present invention; FIG. 10 is a schematic cross-sectional view of the honeycomb web heat-resistant section steel according to the present invention. It is a comparison graph of proof stress ratio of heat-resistant steel and comparison steel. 1... Shape steel, 2... Flange, 3a... Flange, 3b... Web, 4... Channel steel, 5... Flange, 6a... Flange, 6b... Web, 7
... angle iron, 8 ... flange, 9 ... flange,
10... Square steel pipe, 11... Channel steel, 12... Channel steel, 13... Pillar material, 14... Lip channel steel, 15
...Rip channel steel, 16...H section steel, 17a...
Flange, 17b...Web, 18...Flange, 19...Concrete floor slab, 20...Fireproof insulation layer, 21...Dotted line, 22...Dotted chain line, 23...
...Column material, 24...Exterior wall concrete, 25...Interior board, 26...Support beam, 27...Rip channel steel, 28...Rip channel steel, 29...Dotted chain line,
30...Fireproof covering material, 31...Lower flange, 3
2... H-beam steel, 33... Floor slab, 34... Concrete filler, 35... Inner flange, 36... H
Shaped steel, 37... Exterior wall material, 38... Fibrous heat-resistant material,
39...Inner flange, 40...H-shaped steel, 41...
...Block wall material, 42...Fibrous heat-resistant material, 43...
...H-shaped steel, 43a...H-shaped steel half-cut material, 44...H
Shaped steel, 44b... H-shaped steel half-cut material, 45a... Welded, 45b... Welded, 46... Honeycomb web shaped steel, 47... Through hole, 48... Through hole, 49...
Through hole, 50... concrete, 51... broken line,
52... broken line, 53... broken line.

Claims (1)

【特許請求の範囲】 1 重量比で C 0.04〜0.15%、 Si 0.6%以下、 Mn 0.5〜1.6%、 Nb 0.005〜0.04%、 Mo 0.4〜0.7%、 Al 0.1%以下、 N 0.001〜0.006% 残部がFeおよび不可避不純物からなる鋼片を
1100℃〜1300℃の温度域で加熱後熱間塑性加工を
800℃〜1000℃の温度範囲で終了後空冷した耐熱
鋼材を一般構造用鋼材と溶接接合するビルドアツ
プ耐熱形鋼の製造方法。 2 重量比で Ti 0.005〜0.10%、 Zr 0.005〜0.03%、 V 0.005〜0.10%、 Ni 0.05〜0.5%、 Cu 0.05〜1.0%、 Cr 0.05〜1.0%、 B 0.0003〜0.002%、 Ca 0.0005〜0.005%、 REM
0.001〜0.02%のうち一種または二種以上を含む
請求項1記載のビルドアツプ耐熱形鋼の製造方
法。
[Claims] 1. C 0.04-0.15%, Si 0.6% or less, Mn 0.5-1.6%, Nb 0.005-0.04%, Mo 0.4-0.7%, Al 0.1% or less, N 0.001-0.006% balance is a steel billet consisting of Fe and unavoidable impurities.
Hot plastic working after heating in the temperature range of 1100℃~1300℃
A method for manufacturing build-up heat-resistant steel sections, in which heat-resistant steel materials that have been air-cooled after being heated in a temperature range of 800℃ to 1000℃ are welded to general structural steel materials. 2. Ti 0.005-0.10%, Zr 0.005-0.03%, V 0.005-0.10%, Ni 0.05-0.5%, Cu 0.05-1.0%, Cr 0.05-1.0%, B 0.0003-0.002%, Ca 0.0005-0.005 %, REM
The method for producing a build-up heat-resistant section steel according to claim 1, which contains one or more of 0.001 to 0.02%.
JP19560088A 1988-06-13 1988-08-05 Build-up and heat-resistant shape steel Granted JPH0285336A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP19560088A JPH0285336A (en) 1988-08-05 1988-08-05 Build-up and heat-resistant shape steel
CA 602362 CA1320110C (en) 1988-06-13 1989-06-09 Process for manufacturing building construction steel having excellent fire resistance and low yield ratio, and construction steel material
US07/364,608 US4990196A (en) 1988-06-13 1989-06-09 Process for manufacturing building construction steel having excellent fire resistance and low yield ratio
DE1989628336 DE68928336T3 (en) 1988-06-13 1989-06-13 Process for the production of structural steels with high fire resistance and low yield strength ratio and structural steel produced thereby
EP19890305942 EP0347156B2 (en) 1988-06-13 1989-06-13 Process for manufacturing building construction steel having excellent fire resistance and low yield ratio, and construction steel obtained thereby
US07/614,076 US5147474A (en) 1988-06-13 1990-11-13 Building construction steel having excellent fire resistance and low yield ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19560088A JPH0285336A (en) 1988-08-05 1988-08-05 Build-up and heat-resistant shape steel

Publications (2)

Publication Number Publication Date
JPH0285336A JPH0285336A (en) 1990-03-26
JPH0553854B2 true JPH0553854B2 (en) 1993-08-11

Family

ID=16343850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19560088A Granted JPH0285336A (en) 1988-06-13 1988-08-05 Build-up and heat-resistant shape steel

Country Status (1)

Country Link
JP (1) JPH0285336A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448047A (en) * 1990-06-18 1992-02-18 Nippon Steel Corp Fire proof coat on refractory steel for structural use
NL1003786C2 (en) * 1996-08-12 1998-02-20 Promat B V Fire resistant beam.
CN102851596B (en) * 2011-06-28 2015-10-07 鞍钢股份有限公司 A kind of low cost 490MPa level building structure refractory steel plates and manufacture method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111817A (en) * 1976-03-17 1977-09-19 Sumitomo Metal Ind Ltd Thermal strain brittleness resisting low alloy steel
JPS5357116A (en) * 1976-11-05 1978-05-24 Nippon Steel Corp Production of high tensile h-beam steel with excellent weldability for low t emperature service
JPS5428255A (en) * 1977-08-05 1979-03-02 Asahi Chem Ind Co Ltd Hastelloy-clad steellplate with superior dendability and its manufacture
JPS55119151A (en) * 1979-03-07 1980-09-12 Sumitomo Metal Ind Ltd Nonrefined high tensile steel plate with low yield ratio
JPS5699662A (en) * 1980-01-11 1981-08-11 Mitsubishi Metal Corp Wear resisting composite member
JPS57190792A (en) * 1981-05-18 1982-11-24 Kawasaki Steel Corp Production of stainless steel clad steel
JPS58164770A (en) * 1982-03-25 1983-09-29 Nippon Stainless Steel Co Ltd Triply clad steel with corrosion resistance and formability
JPS61123540A (en) * 1984-11-21 1986-06-11 三菱重工業株式会社 Three layer clad round bar

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52111817A (en) * 1976-03-17 1977-09-19 Sumitomo Metal Ind Ltd Thermal strain brittleness resisting low alloy steel
JPS5357116A (en) * 1976-11-05 1978-05-24 Nippon Steel Corp Production of high tensile h-beam steel with excellent weldability for low t emperature service
JPS5428255A (en) * 1977-08-05 1979-03-02 Asahi Chem Ind Co Ltd Hastelloy-clad steellplate with superior dendability and its manufacture
JPS55119151A (en) * 1979-03-07 1980-09-12 Sumitomo Metal Ind Ltd Nonrefined high tensile steel plate with low yield ratio
JPS5699662A (en) * 1980-01-11 1981-08-11 Mitsubishi Metal Corp Wear resisting composite member
JPS57190792A (en) * 1981-05-18 1982-11-24 Kawasaki Steel Corp Production of stainless steel clad steel
JPS58164770A (en) * 1982-03-25 1983-09-29 Nippon Stainless Steel Co Ltd Triply clad steel with corrosion resistance and formability
JPS61123540A (en) * 1984-11-21 1986-06-11 三菱重工業株式会社 Three layer clad round bar

Also Published As

Publication number Publication date
JPH0285336A (en) 1990-03-26

Similar Documents

Publication Publication Date Title
JPH0450362B2 (en)
EP0347156B2 (en) Process for manufacturing building construction steel having excellent fire resistance and low yield ratio, and construction steel obtained thereby
JPS5927370B2 (en) High strength cold rolled steel plate for press working
JPH0737646B2 (en) Manufacturing method of refractory high strength steel with excellent low temperature toughness of weld zone
JPH0553854B2 (en)
JPH06316723A (en) Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability
JPH1121623A (en) Manufacture of steel product for welded structure, having excellent atmospheric corrosion resistance and low yield ratio
JPH0579744B2 (en)
JPH03240918A (en) Production of wide flange shape excellent in refractoriness and reduced in yield ratio
JPH02282419A (en) Production of low-yield-ratio hot-rolled steel sheet for building excellent in fire resistance and steel material for building using the steel sheet
JPH02247355A (en) Heat-resistant building bolt and nut and their manufacture
JP2546954B2 (en) Method for manufacturing high-strength steel for construction with excellent fire resistance
JPH046245A (en) Steel for building structure excellent in weatherability and fire resistance
JPH0450363B2 (en)
JPH0747810B2 (en) Method of manufacturing low yield ratio hot-dip galvanized hot-rolled steel sheet with excellent fire resistance for construction and steel material for construction using the steel sheet
JPH0737648B2 (en) Manufacturing method of fire-resistant steel plate for construction with excellent toughness
JP4348103B2 (en) 590 MPa class high strength steel excellent in high temperature strength and method for producing the same
JP4028815B2 (en) 780 MPa class high strength steel excellent in high temperature strength and manufacturing method thereof
JPH04263012A (en) Production of refractory wide flange shape excellent in strength at high temperature
JPH03271342A (en) Manufacture of building thin low yield ratio steel excellent in fire resistance and weldability
JPH0713250B2 (en) Manufacturing method of low yield ratio steel with excellent fire resistance
JPH1096043A (en) Fire resistant steel for building structure excellent in galvanizing cracking resistance and its production
JPH02263916A (en) Production of steel plate with low yield ratio for construction use excellent in fire resistance
JP2546953B2 (en) Method for manufacturing high-strength steel for construction with excellent fire resistance
JPH05271753A (en) Manufacture of h-beam excellent in high temperature strength

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080811

Year of fee payment: 15

EXPY Cancellation because of completion of term