JPH0713250B2 - Manufacturing method of low yield ratio steel with excellent fire resistance - Google Patents

Manufacturing method of low yield ratio steel with excellent fire resistance

Info

Publication number
JPH0713250B2
JPH0713250B2 JP2165809A JP16580990A JPH0713250B2 JP H0713250 B2 JPH0713250 B2 JP H0713250B2 JP 2165809 A JP2165809 A JP 2165809A JP 16580990 A JP16580990 A JP 16580990A JP H0713250 B2 JPH0713250 B2 JP H0713250B2
Authority
JP
Japan
Prior art keywords
steel
strength
temperature
less
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2165809A
Other languages
Japanese (ja)
Other versions
JPH0456723A (en
Inventor
力雄 千々岩
博 為広
好男 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2165809A priority Critical patent/JPH0713250B2/en
Publication of JPH0456723A publication Critical patent/JPH0456723A/en
Publication of JPH0713250B2 publication Critical patent/JPH0713250B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は建築、土木及び海洋構造物等の分野における、
各種構造物に用いる耐火性の優れた低降伏比鋼の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to fields such as architecture, civil engineering, and marine structures.
The present invention relates to a method for producing a low yield ratio steel having excellent fire resistance used for various structures.

(従来の技術) 周知の通り建築、土木及び海洋構造物等の分野における
各種構造物用構築材として、一般構造用圧延鋼材(JIS
G 3103)、溶接構造用圧延鋼材(JIS G 3106)、溶接構
造用耐候性熱間圧延鋼材(JIS G 3114)、高耐候性圧延
鋼材(JIS G 3444)、一般構造用角形鋼板(JIS G 346
6)等が広く利用されている。
(Prior art) As is well known, as a structural material for various structures in the fields of architecture, civil engineering, and offshore structures, rolled steel for general structure (JIS
G 3103), rolled steel for welded structure (JIS G 3106), weather resistant hot rolled steel for welded structure (JIS G 3114), high weather resistant rolled steel (JIS G 3444), square steel plate for general structure (JIS G 346)
6) etc. are widely used.

前記周知鋼材は、通常高炉によって得られた溶銑を脱S,
脱Pしたのち転炉精錬を行ない、連続鋳造もしくは分塊
工程において鋼片とし、ついで熱間塑性加工をすること
により、所望の特性を備えたものとして製品化される。
The well-known steel material is usually de-S hot metal obtained by a blast furnace,
After de-Ping, it is subjected to converter refining to form steel pieces in a continuous casting or slabbing process, and then hot plastic working to obtain a product having desired properties.

ところで、各種建造物のうち、特に生活に密着したビル
や事務所及び住居等の建造物に前記周知鋼材を用いる場
合、火災における安全性を確保するため、十分な耐火被
覆を施すことが義務づけられており、建築関係諸法令で
は、火災時に鋼材温度が350℃程度で耐力が常温時の60
〜70%になり、建造物の倒壊を引き起こす恐れがあるた
め、たとえば、一般構造用圧延鋼材(JIS G 3101)に規
定される形鋼を柱材とする構造物の例では、その表面に
スラグウール、ガラスウール、アスベスト等を基材とす
る吹き付け材やフェルトを展着するほか、防火モルタル
で包皮する方法及び前記断熱材層の上に、さらに金属薄
板すなわちアルミニウムやステンレス薄板で保護する方
法等、耐火被覆を入念に施し、火災時における熱的損傷
により該鋼材が載荷力を失うことのないようにして利用
する。
By the way, in the case of using the well-known steel materials in buildings, offices, houses, etc., which are closely related to daily life, among various buildings, it is obliged to apply a sufficient fireproof coating in order to ensure safety in a fire. According to the building-related laws and regulations, the steel material temperature is about 350 ° C and the proof stress is 60% at room temperature.
It is up to 70%, which may cause the collapse of the building. For example, in the case of a structure that uses a section steel as a pillar material specified in general structural rolled steel (JIS G 3101), slag is applied to its surface. In addition to spreading a spraying material and felt based on wool, glass wool, asbestos, etc., a method of wrapping with fireproof mortar and a method of further protecting it with a metal thin plate, that is, aluminum or stainless steel thin plate on the heat insulating material layer, etc. Carefully apply a fireproof coating so that the steel material will not lose its loading capacity due to thermal damage in the event of a fire.

そのため、鋼材費用に比し耐火被覆工費が高額になり、
建築コストが大幅に上昇することを避けることができな
い。
Therefore, the fireproof coating work cost becomes higher than the steel material cost,
There is an unavoidable increase in construction costs.

そこで、構築材として丸あるいは角鋼管を用い、冷却水
が循環するように構成し、火災時における温度上昇を防
止し載荷力を低下させない技術が提案され、ビルの建築
コストの引き下げと利用空間の拡大が図られている。
Therefore, a technology has been proposed in which a round or square steel pipe is used as the building material, and the cooling water is circulated to prevent the temperature from rising in the event of a fire and to prevent the loading capacity from decreasing. It is being expanded.

たとえば、実公昭52−16021号公報には、建築物の上部
に水タンクを置き、中空鋼管からなる柱材に冷却水を供
給する耐火構造建造物が開示されている。また、特願平
2−72566号明細書では、一定量のMoの添加とC/Mn比の
制限及び焼入性の確保によりミクロ組織をベイナイトと
して、600℃の高温強度が常温強度の70%以上確保でき
ることが示されている。
For example, Japanese Utility Model Publication No. 52-16021 discloses a refractory structure where a water tank is placed above a building and cooling water is supplied to a pillar made of a hollow steel pipe. Further, in Japanese Patent Application No. 2-72566, by adding a certain amount of Mo, limiting the C / Mn ratio and ensuring hardenability, the microstructure is bainite, and the high temperature strength at 600 ° C. is 70% of the room temperature strength. It has been shown that the above can be secured.

しかしながら、この方法では、常温の降伏比は低いが、
S−Sカーブは明確な降伏点は見られずラウンド型とな
る。このタイプの鋼は見かけ上の降伏比は低いが、耐震
性に十分とは言えないことが明らかにされ、問題点を含
んでいた。
However, in this method, the yield ratio at room temperature is low,
The SS curve is a round type with no clear yield point. Although this type of steel has a low apparent yield ratio, it was clarified that it was not sufficient for seismic resistance, which included problems.

第1図(a)はミクロ組織がフェライト主体の場合のS
−Sカーブ、第1図(b)はミクロ組織がベイナイト主
体のS−Sカーブである。
Figure 1 (a) shows S when the microstructure is mainly ferrite.
-S curve, Fig. 1 (b) is an S-S curve having a bainite-based microstructure.

(発明が解決しようとする課題) 本発明者らは、火災時における鋼材温度について研究の
結果、無被覆使用を目標とした場合、火災時の最高到達
温度が1000℃であることから、鋼材が該温度で常温耐力
の70%以上の耐力を備えるためには、やはり高価な金属
元素を多量に添加せねばならず、経済性を失することを
知った。
(Problems to be Solved by the Invention) As a result of research on the temperature of steel materials at the time of fire, the inventors of the present invention have found that the maximum temperature reached at the time of fire is 1000 ° C. when the target temperature is uncoated. It has been found that in order to have a yield strength of 70% or more of the room temperature yield strength at that temperature, a large amount of expensive metal elements must be added, which is economically disadvantageous.

つまり、周知の鋼材費とそれに加え耐火被覆を施工する
費用以上に鋼材単価が高くなり、そのような鋼材は実際
的に利用することができない。
In other words, the steel material unit price becomes higher than the well-known steel material cost and the cost of applying the fireproof coating, and such steel material cannot be practically used.

そこで、さらに研究を進めた結果、600℃での高温耐力
が常温時の70%以上となる鋼材が最も経済的であること
をつきとめ、高価な添加元素の量を少なくし、且つ、耐
火被覆を薄くすることが可能で、火災荷重が小さい場合
は、無被覆で使用することができる鋼材の製造方法を開
発した。
Therefore, as a result of further research, we found that the steel material with a high temperature proof stress at 600 ° C of 70% or more at room temperature was the most economical, reduced the amount of expensive additional elements, and provided a fireproof coating. We have developed a method for manufacturing steel that can be made thin and can be used uncoated when the fire load is small.

(課題を解決するための手段) 本発明は前述の課題を克服し、目的を達成するもので、
重量比で、C0.04〜0.11%、Si0.6%以下、Mn0.3〜0.7
%、Mo0.5〜0.8%、Ni0.05〜0.50%、Cu0.05〜0.50%、
Cr0.05〜0.50%、Al0.1%以下、N0.006%以下に加えてV
0.005〜0.05%、Ti0.005〜0.03%、Zr0.005〜0.03%、C
a0.0005〜0.005%、REM0.001〜0.005%の一種または二
種以上、残部がFe及び不可避的不純物を含み、しかも
(1)式で与えられるDi*値が0.80未満の成分組成より
なる鋼片を1150〜1300℃の温度域で再加熱後、熱間圧延
を800〜1000℃の温度範囲で終了し、その後空冷してミ
クロ組織をフェライト主体とする耐火性の優れた建築用
低降伏比鋼の製造方法である。
(Means for Solving the Problems) The present invention achieves the object by overcoming the aforementioned problems.
By weight ratio, C0.04 to 0.11%, Si0.6% or less, Mn0.3 to 0.7
%, Mo 0.5 to 0.8%, Ni 0.05 to 0.50%, Cu 0.05 to 0.50%,
Cr 0.05-0.50%, Al 0.1% or less, N 0.006% or less, plus V
0.005-0.05%, Ti0.005-0.03%, Zr0.005-0.03%, C
a 0.0005 to 0.005%, REM 0.001 to 0.005%, one or two or more, the balance containing Fe and unavoidable impurities, and a steel having a composition composition with a Di * value less than 0.80 given by the formula (1) After reheating the piece in the temperature range of 1150 to 1300 ℃, finish the hot rolling in the temperature range of 800 to 1000 ℃, and then air-cool it to obtain a low yield ratio for buildings with excellent microstructure mainly ferrite It is a method of manufacturing steel.

(1)式 (作用) さて、本発明の特徴は、中C−中Mn鋼に一定量のMoを添
加し(1)式で与えられるDi*値(ここでDi*とは焼入れ
に寄与する合金元素の効果を定量化したものである。)
が0.80未満の組成の鋼片を高温で再加熱したのち、比較
的高温で圧延を終了することにあり、本発明法によって
製造した鋼及び鋼材(以下鋼)は適当な常温耐力と明確
な降伏現象(降伏点が明瞭に認められる)を伴った低い
降伏強度を有するとともに、高温耐力が高い特性を備え
ている。
Formula (1) (Operation) Now, the feature of the present invention is that a certain amount of Mo is added to medium C-medium Mn steel and the Di * value given by the equation (1) (where Di * is the effect of alloying elements contributing to quenching). Is quantified.)
The steel and steel products manufactured by the method of the present invention (hereinafter referred to as "steel") have an appropriate room temperature proof strength and a clear yield. It has a low yield strength accompanied by a phenomenon (the yield point is clearly recognized) and high temperature proof stress.

つまり、常温耐力に対し600℃の温度における耐力の割
合が大きい。この理由は中Cのベース成分に相当量のMo
を添加した鋼で、フェライト組成(フェライト面積率60
%以上)としているためである。
That is, the yield strength at a temperature of 600 ° C. is higher than the yield strength at room temperature. The reason is that a large amount of Mo is added to the base component of medium C.
Steel with the addition of a ferrite composition (ferrite area ratio 60
% Or more).

つぎに、本発明にかかる特徴的な成分元素とその添加量
について説明する。
Next, the characteristic component elements according to the present invention and the addition amounts thereof will be described.

Moは微細な炭窒化物を形成し、さらに、固溶体強化によ
って高温強度を増加させるが、ミクロ組織がフェライト
でNbを添加しない本発明鋼の場合、その添加量は比較的
多く必要である。そのため、Mo添加量の下限は0.5%で
ある。しかしながら、Mo量が多すぎると、溶接性が悪く
なり、さらに、溶接熱影響部(HAZ)の靱性が劣化する
ので、Mo量の上限は0.8%とする必要がある。
Mo forms fine carbonitrides and further increases the high temperature strength by solid solution strengthening, but in the case of the steel of the present invention in which the microstructure is ferrite and Nb is not added, the addition amount thereof is required to be relatively large. Therefore, the lower limit of the amount of Mo added is 0.5%. However, if the amount of Mo is too large, the weldability deteriorates and the toughness of the heat affected zone (HAZ) deteriorates. Therefore, the upper limit of the amount of Mo needs to be 0.8%.

さて、常温において、溶接構造用圧鋼材(JIS G 3106)
に規定する性能を満足し、且つ、600℃の高温において
高い耐力を維持せしめるためには、鋼成分と共に鋼の再
加熱及び圧延にかかる条件が重要である。
Now, at room temperature, welded structural pressure steel (JIS G 3106)
In order to satisfy the performance specified in 1. and to maintain a high yield strength at a high temperature of 600 ° C., the conditions for reheating and rolling the steel together with the steel components are important.

前述のMo添加による高温強度の増大を図るには、Moを再
加熱時に十分に溶体化させる必要があり、このため再加
熱温度の下限を1150℃とする。また、再加熱温度が高す
ぎると結晶粒が大きくなって低温靱性が劣化するので、
その上限は1300℃にせねばならない。
In order to increase the high temperature strength by adding Mo as described above, it is necessary to sufficiently solutionize Mo during reheating, and therefore the lower limit of the reheating temperature is set to 1150 ° C. Further, if the reheating temperature is too high, the crystal grains become large and the low temperature toughness deteriorates.
The upper limit must be 1300 ° C.

さらに、圧延終了温度を800℃以上とする理由は圧延中
にMoの炭窒化物を析出させないためである。周知の低温
圧延(制御圧延)はラインパイプ等低温靱性が必要な鋼
材では必須要件であるが、本発明鋼のように低温靱性に
ついて、高い要求がなく、常温強度と600℃の強度及び
そのバランスが重要な場合には、ミクロ組織を比較的粗
粒のフェライト主体とするため、圧延を高温で終了せね
ばならない。
Further, the reason why the rolling end temperature is set to 800 ° C. or higher is to prevent precipitation of Mo carbonitride during rolling. Well-known low-temperature rolling (controlled rolling) is an essential requirement for steel materials that require low-temperature toughness such as line pipes, but there is no high requirement for low-temperature toughness like the steel of the present invention, and room-temperature strength and 600 ° C strength and their balance Is important, the rolling must be terminated at high temperature because the microstructure is mainly composed of relatively coarse-grained ferrite.

また、本発明において、圧延終了温度の上限を1000℃と
したのは、建築用鋼としての靱性を確保するためであ
る。
Further, in the present invention, the upper limit of the rolling end temperature is set to 1000 ° C. in order to secure the toughness as the building steel.

さて、高温強度を上昇せしめるため、Moを利用すること
は、従来のボイラー用鋼管等に利用されている鋼では知
られているが、この鋼は基本的な特性を得るため、圧延
/造管後調質熱処理を施しており、本発明鋼とは製造プ
ロセスが異なる。
The use of Mo to increase the high temperature strength is known for the steel used for conventional steel pipes for boilers, etc. It is subjected to post-heat treatment and has a different manufacturing process from the steel of the present invention.

また、建築用に用いる耐火鋼材として先に本出願人が出
願している特開平2−77523号公報がある。この鋼は微
量のMoとNbを添加し、高温加熱−高温圧延により製造す
るプロセスである。この製造法は本発明鋼と同じである
が、高温強度を得るため、MoとNbの複合添加を必須とし
ており、本発明のMoの単独添加とは異なる。
Further, as a refractory steel material used for construction, there is Japanese Patent Application Laid-Open No. 2-77523 previously filed by the present applicant. This steel is a process in which a small amount of Mo and Nb are added, and high-temperature heating-high-temperature rolling is used to produce it. This manufacturing method is the same as that of the steel of the present invention, but in order to obtain high temperature strength, it is essential to add Mo and Nb in combination, which is different from the single addition of Mo of the present invention.

さらに、Nb添加鋼は一般的に低降伏比化は難しいことが
知られており、その理由は、フェライト粒径を細粒にす
る効果や圧延中にNbが析出するためと考えられている。
このため、比較的薄い鋼板では、圧下比が大きいことや
圧延温度が低下しやすいため、上記の理由から常温の降
伏比が増加しやすい。この発明鋼では、常温の降伏比が
75%以下で製造できることが明らかにされているが、薄
手の低降伏比鋼板を工業的に製造することは難しいと考
えられる。
Further, it is generally known that it is difficult to reduce the yield ratio of Nb-added steel, and the reason is considered to be the effect of making the ferrite grain size fine and the precipitation of Nb during rolling.
For this reason, in a relatively thin steel plate, the rolling ratio is large and the rolling temperature is likely to be lowered, so that the yield ratio at room temperature is likely to increase for the above reason. In this invention steel, the yield ratio at room temperature is
Although it has been clarified that it can be manufactured at 75% or less, it is considered difficult to industrially manufacture a thin low yield ratio steel plate.

本発明鋼は常温では70%以下の低降伏比で600℃では、
常温の70%以上の降伏強度を有する板厚40mm以下の鋼板
の製造に適しており、工業的な生産に適している。
The steel of the present invention has a low yield ratio of 70% or less at room temperature and 600 ° C.
It is suitable for manufacturing steel sheets with a yield strength of 70% or more at room temperature and a thickness of 40 mm or less, and is suitable for industrial production.

つぎに、本発明における前記Mo以外の成分限定理由につ
いて詳細に説明する。
Next, the reasons for limiting the components other than Mo in the present invention will be described in detail.

Cは母材及び溶接部の強度確保ならびにMoの添加効果を
発揮させるために必要であり、0.04%未満では効果が薄
れるので下限は0.04%とする。また、C量が多すぎると
常温の降伏比が上昇し、さらに、HAZの低温靱性に悪影
響を及ぼすので、0.11%が上限となる。
C is necessary to secure the strength of the base material and the welded portion and to exert the effect of adding Mo, and if the content is less than 0.04%, the effect is weakened, so the lower limit is made 0.04%. If the amount of C is too large, the yield ratio at room temperature rises and the low temperature toughness of HAZ is adversely affected, so 0.11% is the upper limit.

Siは脱酸上鋼に含まれる元素で、Si量が多くなると溶接
性、HAZ靱性が劣化するため、その上限を0.6%とした。
Si is an element contained in the deoxidized upper steel. Since the weldability and HAZ toughness deteriorate when the amount of Si increases, the upper limit was made 0.6%.

つぎに、Mnは強度、靱性を確保する上で不可欠の元素で
あり、その下限は0.3%である。しかし、Mn量が多すぎ
ると焼入性が増加して溶接性、HAZ靱性が劣化するた
め、Mnの上限を0.7%とした。
Next, Mn is an essential element for ensuring strength and toughness, and its lower limit is 0.3%. However, if the amount of Mn is too large, the hardenability increases and the weldability and HAZ toughness deteriorate, so the upper limit of Mn was made 0.7%.

Cr量は母材及び溶接部の強度を高める元素であるが、0.
05%未満の添加量では効果が薄く、Cr量が0.5%を超え
ると溶接性やHAZ靱性を劣化させるため、上下限をそれ
ぞれ0.05%,0.5%とした。
Cr content is an element that enhances the strength of the base metal and the weld, but
If the addition amount is less than 05%, the effect is small, and if the Cr amount exceeds 0.5%, the weldability and HAZ toughness deteriorate, so the upper and lower limits were made 0.05% and 0.5%, respectively.

Niは溶接性、HAZ靱性に悪影響を及ぼすことなく、母材
の強度、靱性を向上させるが、0.05%未満では効果が薄
く、0.5%超の添加は建築用鋼としての目的に対し、極
めて高価になるため経済性を失うので、上下限をそれぞ
れ0.50%,0.5%とした。
Ni improves the strength and toughness of the base metal without adversely affecting the weldability and HAZ toughness, but the effect is weak at less than 0.05%, and the addition of more than 0.5% is extremely expensive for the purpose as a building steel. Therefore, the upper and lower limits are set to 0.50% and 0.5% respectively.

CuはNiとほぼ同様の効果を持つほか、Cu析出物による高
温強度の増加や耐食性、耐候性の向上にも効果を有す
る。しかし、0.05%未満では効果が薄く、0.5%を超え
ると熱間圧延時にCu割れが発生するため上下限をそれぞ
れ0.05%,0.5%とした。
Cu has almost the same effect as Ni, and also has an effect of increasing high temperature strength, improving corrosion resistance and weather resistance due to Cu precipitates. However, if it is less than 0.05%, the effect is weak, and if it exceeds 0.5%, Cu cracking occurs during hot rolling, so the upper and lower limits were made 0.05% and 0.5%, respectively.

Alは一般に脱酸上鋼に含まれる元素であるが、Si及びTi
によっても脱酸は行なわれるので、本発明鋼については
下限は限定しない。しかしAl量が多くなると鋼の清浄度
が悪くなり、溶接部の靱性が劣化するので上限を0.1%
とした。
Al is an element generally contained in deoxidized upper steel, but Si and Ti
Since deoxidation is also performed by the above, the lower limit is not limited for the steel of the present invention. However, if the amount of Al increases, the cleanliness of the steel will deteriorate and the toughness of the weld will deteriorate, so the upper limit is 0.1%.
And

Nは一般に不可避的不純物として鋼中に含まれるもので
あるが、N量が多くなるとHAZ靱性の劣化や連続鋳造ス
ラブの表面キズの発生等を助長するので、その上限を0.
006%とした。
N is generally contained in steel as an unavoidable impurity, but if the amount of N increases, it promotes the deterioration of HAZ toughness and the occurrence of surface flaws in the continuous cast slab, so its upper limit is 0.
It was 006%.

なお、本発明鋼は、不可避的不純物としてP及びSを含
有する。P,Sは高温強度に与える影響は小さいので、そ
の量について特に限定しないが、一般に靱性、板厚方向
強度等に関する鋼の特性は、これらP,S元素の量が少な
いほど向上する。望ましいP,S量はそれぞれ0.02%,0.00
5%以下である。
The steel of the present invention contains P and S as unavoidable impurities. Since the effects of P and S on the high temperature strength are small, the amounts thereof are not particularly limited, but generally the properties of steel such as toughness and strength in the plate thickness direction improve as the amounts of these P and S elements decrease. Desirable P and S contents are 0.02% and 0.00, respectively
It is 5% or less.

基本的な特性を得るための成分は以上のとおりである
が、本発明鋼は用途が厳しい条件(溶接部の水素割れ性
が要求されたり、大入熱の溶接が適用される)での適用
を考慮しており、以下に述べる元素即ちV,Ti,Zr,Ca,REM
を選択的に添加することにより特性の向上を図ってい
る。
Although the components for obtaining the basic properties are as described above, the steel of the present invention is applied under conditions where the use is severe (hydrogen cracking of the welded part is required, or welding with high heat input is applied) The following elements, namely V, Ti, Zr, Ca and REM are taken into consideration.
The characteristics are improved by selectively adding.

VとNと結合してVNを形成し、高温強度を向上させる
が、0.005%未満では効果が認められず、0.05%超ではH
AZ靱性を害するので0.005〜0.05%の範囲に限定した。
It combines with V and N to form VN and improves the high temperature strength, but if less than 0.005%, no effect is observed, and if it exceeds 0.05%, H
Since it impairs AZ toughness, it was limited to the range of 0.005 to 0.05%.

Tiは炭窒化物を形成してHAZ靱性を向上させる。Al量が
少ない場合、Tiの酸化物を形成しHAZ靱性を向上させる
が、0.005%未満では効果がなく、0.03%を超えるとHAZ
靱性に好ましくない影響があるため、0.005〜0.03%に
限定する。
Ti forms carbonitrides and improves HAZ toughness. When the amount of Al is small, it forms an oxide of Ti and improves the HAZ toughness, but if it is less than 0.005%, it has no effect, and if it exceeds 0.03%, the HAZ is toughened.
Since it has an unfavorable effect on toughness, it is limited to 0.005 to 0.03%.

ZrはTiとほぼ同じ効果をもつが、その効果が有効な範囲
は0.005〜0.03%である。
Zr has almost the same effect as Ti, but the effective range is 0.005 to 0.03%.

Ca,REMは硫化物(MnS)の形態を制御し、溶接部のラメ
ラーテアの改善や耐水素有機割れ性の改善に効果を発揮
するほか、シャルピー吸収エネルギーを増加させ、低温
靱性を向上させる効果がある。しかし、Ca量は0.0005%
未満では実用上効果がなく、また、0.005%を超える
と、CaO,CaSが多量に生成して大形介在物となり、鋼の
靱性のみならず清浄度も害し、さらに、溶接性、耐ラメ
ラーテア性にも悪影響を与えるので、Ca添加量の範囲を
0.0005〜0.005%とする。また、REMについてもCaと同様
な効果があり、添加量を多くするとCaと同様な問題を生
じ、さらに経済性も悪くなるのでREM量の下限を0.001
%、上限を0.005%とした。
Ca and REM control the morphology of sulfide (MnS) and have the effect of improving the lamellar tear of the weld and hydrogen-organic cracking resistance, as well as increasing Charpy absorbed energy and improving low temperature toughness. is there. However, the amount of Ca is 0.0005%
If it is less than 0.005%, it has no practical effect. If it exceeds 0.005%, a large amount of CaO and CaS are formed to form large inclusions, which not only impairs the toughness of steel but also the cleanliness, and also has weldability and lamellar tear resistance. It also adversely affects the
0.0005 to 0.005% Also, REM has the same effect as Ca, and if the addition amount is increased, the same problem as Ca occurs and the economical efficiency is deteriorated.
%, And the upper limit was 0.005%.

(実施例) 周知の転炉、連続鋳造、厚板工程で鋼板を製造し、常温
と600℃の高温強度を調査した。
(Example) A steel plate was manufactured by a well-known converter, continuous casting, and thick plate process, and the room temperature and high temperature strength at 600 ° C were investigated.

第1表のNo.1〜No.15に本発明鋼を、No.16〜No.21に比
較鋼の化学成分を示す。
In Table 1, No. 1 to No. 15 show the present invention steels, and No. 16 to No. 21 show the chemical compositions of the comparative steels.

続いて、第2表に本発明鋼と比較鋼の加熱、圧延等の製
造条件とその強度特性を示す。
Next, Table 2 shows manufacturing conditions of the present invention steel and comparative steel such as heating and rolling and their strength characteristics.

第2表の本発明鋼No.1〜No.15の例では、ミクロ組織の
フェライト分率が60%超で、常温の降伏比(降伏強度/
引張強度)が70%以下と低く、600℃の降伏強度が常温
の70%以上を有している。
In the examples of the invention steels No. 1 to No. 15 in Table 2, the ferrite fraction of the microstructure exceeds 60%, and the yield ratio (yield strength / yield strength) at room temperature is
The tensile strength is as low as 70% or less, and the yield strength at 600 ° C is 70% or more at room temperature.

これに対し、比較鋼No.16では、Mnが低いため、常温、6
00℃の強度とも低く、常温の降伏強度に対する600℃の
降伏強度の割合が70%に達しないレベルであった。ま
た、比較鋼No.17では、Mnが高すぎるため、600℃の降伏
強度は十分であるが、常温の降伏比が高すぎ77%にも達
した。比較鋼No.18では、Moが低いため、600℃の降伏強
度が低く、70%に達しないレベルであった。これとは逆
に、比較鋼No.19では、Moが高すぎ、600℃の降伏強度は
十分であるが、常温の降伏比が高すぎ、80%にも達し
た。比較鋼No.20では、Cが低いため、常温と600℃の降
伏強度が低く、常温の降伏強度に対する600℃の降伏強
度の割合が70%に達しないレベルであった。さらに、比
較鋼No.21では、Cが高すぎるため、600℃の降伏強度は
十分であるが、常温の降伏比が高すぎ、82%にも達し
た。
On the other hand, in Comparative Steel No. 16, since Mn is low,
The strength was low at 00 ° C, and the ratio of the yield strength at 600 ° C to the yield strength at room temperature did not reach 70%. In Comparative Steel No. 17, the yield strength at 600 ° C was sufficient because Mn was too high, but the yield ratio at room temperature was too high, reaching 77%. Comparative steel No. 18 had a low Mo content and thus had a low yield strength at 600 ° C, which was a level not reaching 70%. On the contrary, in Comparative Steel No. 19, although Mo was too high and the yield strength at 600 ° C was sufficient, the yield ratio at room temperature was too high, reaching 80%. In Comparative Steel No. 20, since the C content was low, the yield strength at room temperature and 600 ° C was low, and the ratio of the yield strength at 600 ° C to the yield strength at room temperature was at a level not reaching 70%. Further, in Comparative Steel No. 21, the yield strength at 600 ° C. was sufficient because C was too high, but the yield ratio at room temperature was too high, reaching 82%.

(発明の効果) 本発明の化学成分及び製造法で製造した鋼材は600℃の
降伏強度が高く且つ、600℃の降伏強度が常温降伏強度
の70%以上で、常温の降伏比も70%以下と低く、耐火性
及び耐震性の優れた全く新しい鋼である。
(Effect of the invention) The steel material manufactured by the chemical composition and the manufacturing method of the present invention has a high yield strength of 600 ° C, the yield strength of 600 ° C is 70% or more of the room temperature yield strength, and the room temperature yield ratio is 70% or less. It is a completely new steel with low fire resistance and excellent earthquake resistance.

【図面の簡単な説明】[Brief description of drawings]

第1図は応力一歪の図表で、(a)はミクロ組織がフェ
ライト主体、(b)はベイナイト主体の場合を示す。
FIG. 1 is a diagram of stress-strain. (A) shows the case where the microstructure is mainly ferrite, and (b) shows the case where bainite is the main structure.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量比で C :0.04〜0.11%、 Si:0.6%以下、 Mn:0.3〜0.7%、 Mo:0.5〜0.8%、 Ni:0.05〜0.50%、 Cu:0.05〜0.50%、 Cr:0.05〜0.50%、 Al:0.1%以下、 N :0.006%以下 に加えて V :0.005〜0.05%、 Ti:0.005〜0.03%、 Zr:0.005〜0.03%、 Ca:0.0005〜0.005%、 REM:0.001〜0.005%の一種または二種以上、 残部がFe及び不可避的不純物を含み、しかも(1)式で
与えられるDi*値が0.80未満の成分組成よりなる鋼片を1
150〜1300℃の温度域で再加熱後、熱間圧延を800〜1000
℃の温度範囲で終了し、その後空冷してミクロ組織をフ
ェライト主体とすることを特徴とする耐火性の優れた建
築用低降伏比鋼の製造方法。 (1)式
1. A weight ratio of C: 0.04 to 0.11%, Si: 0.6% or less, Mn: 0.3 to 0.7%, Mo: 0.5 to 0.8%, Ni: 0.05 to 0.50%, Cu: 0.05 to 0.50%, Cr : 0.05 to 0.50%, Al: 0.1% or less, N: 0.006% or less, V: 0.005 to 0.05%, Ti: 0.005 to 0.03%, Zr: 0.005 to 0.03%, Ca: 0.0005 to 0.005%, REM: One or more of 0.001 to 0.005%, the balance of which contains Fe and unavoidable impurities, and a steel piece consisting of a chemical composition with a Di * value less than 0.80 given by equation (1)
After reheating in the temperature range of 150-1300 ℃, hot rolling 800-1000
A method for producing a low yield ratio steel for construction having excellent fire resistance, which comprises terminating in a temperature range of ℃ and then air-cooling to make the microstructure mainly composed of ferrite. Formula (1)
JP2165809A 1990-06-26 1990-06-26 Manufacturing method of low yield ratio steel with excellent fire resistance Expired - Lifetime JPH0713250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2165809A JPH0713250B2 (en) 1990-06-26 1990-06-26 Manufacturing method of low yield ratio steel with excellent fire resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2165809A JPH0713250B2 (en) 1990-06-26 1990-06-26 Manufacturing method of low yield ratio steel with excellent fire resistance

Publications (2)

Publication Number Publication Date
JPH0456723A JPH0456723A (en) 1992-02-24
JPH0713250B2 true JPH0713250B2 (en) 1995-02-15

Family

ID=15819410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2165809A Expired - Lifetime JPH0713250B2 (en) 1990-06-26 1990-06-26 Manufacturing method of low yield ratio steel with excellent fire resistance

Country Status (1)

Country Link
JP (1) JPH0713250B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19724051C1 (en) * 1997-06-07 1999-03-11 Thyssen Stahl Ag Heavy plates up to 50 mm thick made of fire-resistant nickel-free steels for steel construction and process for the production of heavy plates from them

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277523A (en) * 1988-06-13 1990-03-16 Nippon Steel Corp Production of building low yield ratio steel having excellent fire resistance and building steel material using same steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0277523A (en) * 1988-06-13 1990-03-16 Nippon Steel Corp Production of building low yield ratio steel having excellent fire resistance and building steel material using same steel

Also Published As

Publication number Publication date
JPH0456723A (en) 1992-02-24

Similar Documents

Publication Publication Date Title
JPH0450362B2 (en)
JPH0610040A (en) Production of high strength refractory steel excellent in toughness at low temperature in weld zone
JPH06316723A (en) Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability
JPH0713250B2 (en) Manufacturing method of low yield ratio steel with excellent fire resistance
JPH03240918A (en) Production of wide flange shape excellent in refractoriness and reduced in yield ratio
JPH0737648B2 (en) Manufacturing method of fire-resistant steel plate for construction with excellent toughness
JP3550721B2 (en) Method for producing hot-rolled steel strip for building with excellent fire resistance and toughness
JP2546954B2 (en) Method for manufacturing high-strength steel for construction with excellent fire resistance
JPH0450363B2 (en)
JPH0713251B2 (en) Manufacturing method of thin low yield ratio steel for construction with excellent fire resistance and weldability
JPH072969B2 (en) Manufacturing method of thin low yield ratio steel for construction with excellent fire resistance and weldability
JPH0713249B2 (en) Manufacturing method of low yield ratio steel with excellent fire resistance
JP2816008B2 (en) Low yield ratio steel material for building with excellent fire resistance and method of manufacturing the same
JP2529035B2 (en) Large diameter steel pipe for construction with excellent fire resistance
JPH0737649B2 (en) Manufacturing method of fireproof steel plate for building with low yield ratio
JP2546953B2 (en) Method for manufacturing high-strength steel for construction with excellent fire resistance
JPH04350120A (en) Production of high strength refractory steel plate for construction use
JPH036322A (en) Production of low yield ratio steel products for building having excellent fire resistivity and steel material for building formed by using these steel products
JPH05339637A (en) Production of steel pipe or square pipe having low yield ratio and excellent weatherability
JPH0285336A (en) Build-up and heat-resistant shape steel
JPH0545646B2 (en)
JPH04263012A (en) Production of refractory wide flange shape excellent in strength at high temperature
JPH0688127A (en) Production of steel pipe or square pipe excellent in earthquake resistance and weather resistance
JPH02263916A (en) Production of steel plate with low yield ratio for construction use excellent in fire resistance
JPH05339638A (en) Production of steel tube or square tube reduced in yield ratio and excellent in atmospheric corrosion resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080215

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090215

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100215

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 16

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 16