JPH072969B2 - Manufacturing method of thin low yield ratio steel for construction with excellent fire resistance and weldability - Google Patents

Manufacturing method of thin low yield ratio steel for construction with excellent fire resistance and weldability

Info

Publication number
JPH072969B2
JPH072969B2 JP26808989A JP26808989A JPH072969B2 JP H072969 B2 JPH072969 B2 JP H072969B2 JP 26808989 A JP26808989 A JP 26808989A JP 26808989 A JP26808989 A JP 26808989A JP H072969 B2 JPH072969 B2 JP H072969B2
Authority
JP
Japan
Prior art keywords
steel
temperature
strength
weldability
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26808989A
Other languages
Japanese (ja)
Other versions
JPH03130319A (en
Inventor
力雄 千々岩
博 為広
好男 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26808989A priority Critical patent/JPH072969B2/en
Publication of JPH03130319A publication Critical patent/JPH03130319A/en
Publication of JPH072969B2 publication Critical patent/JPH072969B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は建築、土木及び海洋構造物等の分野において、
各種建造物に用いる耐火性と溶接性の優れた低降伏比鋼
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to the fields of architecture, civil engineering and marine structures, etc.
The present invention relates to a method for producing a low yield ratio steel having excellent fire resistance and weldability used in various structures.

(従来の技術) 周知の通り建築、土木及び海洋構造物等の分野における
各種建造物用建築材として、一般構造用圧延鋼材(JIS
G 3101)、溶接構造用圧延鋼材(JIS G 3106)、溶接構
造用耐候性熱間圧延鋼材(JIS G 3114)、高耐候性圧延
鋼材(JIS G 3125)及び一般構造用炭素鋼鋼管(JIS G
3444)、一般構造用角形鋼板(JIS G 3466)等が広く利
用されている。
(Prior Art) As is well known, as a building material for various structures in the fields of construction, civil engineering and marine structures, etc., rolled steel for general structure (JIS
G 3101), rolled steel for welded structure (JIS G 3106), weather resistant hot rolled steel for welded structure (JIS G 3114), high weather resistant rolled steel (JIS G 3125) and carbon steel pipe for general structure (JIS G
3444), square steel plates for general structure (JIS G 3466), etc. are widely used.

前記周知鋼材は、通常高炉によって得られた溶銑を脱
S、脱Pしたのち転炉精錬を行ない、連続鋳造もしくは
分塊工程において鋼片とし、ついで熱間塑性加工するこ
とにより、所望の特性を備えたものとして製品化され
る。
The well-known steel material is subjected to converter smelting after de-S and de-P of the hot metal usually obtained by a blast furnace, and is made into a steel slab in a continuous casting or slabbing process, and then hot plastic working to obtain desired characteristics. Be commercialized as equipped.

ところで、各種建造物のうち、特に生活に密着したビル
や事務所及び住居等の建造物に前記周知鋼材を用いる場
合、火災における安全性を確保するため、十分な耐火被
覆を施すことが義務ずけられており、建築関係諸法令で
は、火災時に鋼材温度が350℃以上にならぬように規定
している。
By the way, in the case of using the above-mentioned well-known steel materials for buildings, offices, houses, etc. that are closely related to daily life among various buildings, it is not obligatory to apply sufficient fireproof coating to ensure safety in case of fire. However, building-related laws and regulations stipulate that the steel material temperature should not exceed 350 ° C during a fire.

つまり、前記周知鋼材は建築物に使用する場合、350℃
程度で耐力が常温時の60〜70%になり、建造物の倒壊を
引き起こす恐れがあるため、たとえば、一般構造用圧延
鋼材(JIS G 3101)に規定される形鋼を柱材とする建造
物の例では、その表面にスラグウール、ガラスウールア
スベスト等を基材とする吹き付け材やフェルトを展着す
るほか、防火モルタルで包被する方法及び前記断熱材層
の上に、さらに金属薄板即ちアルミニウムやステンレス
薄板で保護する方法等、耐火被覆を入念に施し、火災時
における熱的損傷により該鋼材が載荷力を失うことのな
いようにして利用する。そのため、鋼材費用に比し耐火
被覆工費が高額になり、建築コストが大幅に上昇するこ
とを避けることができない。
In other words, if the well-known steel is used for buildings,
Since the yield strength will be 60 to 70% of the normal temperature and it may cause the building to collapse, for example, a structure using a shaped steel as a pillar material specified in general structural rolled steel (JIS G 3101). In the above example, a slag wool, a glass wool asbestos etc. as a base material is spread on the surface and a felt is spread, and a method of covering with fire mortar and the heat insulating material layer is further applied to a metal thin plate, that is, aluminum. Use a fireproof coating, such as a method of protecting with a stainless steel thin plate, etc., so that the steel material will not lose its loading force due to thermal damage in the event of a fire. Therefore, it is inevitable that the fireproof coating work cost will be higher than the steel product cost and the construction cost will be significantly increased.

そこで、建築材として丸あるいは角鋼管を用い、冷却水
が循環するように構成し、火災時における温度上昇を防
止し、載荷力を低下させない技術が提案され、ビルの建
設コストの引き下げと利用空間の拡大が図られている。
Therefore, a technology was proposed that uses round or square steel pipes as building materials so that the cooling water circulates, prevents temperature rise in the event of a fire, and does not reduce the loading capacity. Is being expanded.

たとえば、実公昭52-16021号公報には、建築物の上部に
水タンクを置き、中空鋼管からなる柱材に冷却水を供給
する耐火構造建造物が開示されている。また、特願昭63
-143740号明細書では、鋼材の基本成分として、相当量
のMoとNbを複合添加し、高温加熱‐高温圧延法によりミ
クロ組織を比較的大きなフェライト主体組織として、60
0℃の高温強度が常温強度の70%以上確保できることが
提案されている。
For example, Japanese Utility Model Publication No. 52-16021 discloses a refractory structure in which a water tank is placed above a building and cooling water is supplied to a pillar made of a hollow steel pipe. Also, Japanese Patent Application Sho 63
-143740 specification, as a basic component of the steel material, by adding a considerable amount of Mo and Nb in combination, high temperature heating-high temperature rolling method, the microstructure as a relatively large ferrite main structure, 60
It has been proposed that the high temperature strength of 0 ° C can be secured at 70% or more of the normal temperature strength.

しかしながら、この方法では常温と600℃の強度確保はM
o,Nb等の合金元素の添加に頼らざるを得ず、合金添加量
が多くなることが必須とならざるを得ず、建築用鋼材と
して重要な溶接性に影響がある等の問題点を含んでい
た。
However, with this method, it is not
There is no choice but to rely on the addition of alloying elements such as o and Nb, and it is inevitable that the amount of alloy addition is large, which includes problems such as affecting the weldability, which is important as a steel material for construction. I was out.

さらに、特願平‐139329号明細書では、一定量のMoを含
有した鋼を圧延後のナーステナイトとフェライト域の一
定の温度から水冷する方法を用いることにより、ミクロ
組織を20〜50%の比較的大きなフェライトとベイナイト
の混合組織とすることにより、常温の降伏比を低く抑
え、600℃の強度を確保していた。しかしながら、圧延
後の一定温度からの水冷は工業的に必ずしも容易でな
く、とくに、比較的薄い鋼板の場合、圧延後の温度降下
の速度が速く、圧延板全体を適正な温度から水冷するこ
とはかなり困難であった。
Further, in Japanese Patent Application No. 139329, by using a method of water cooling the steel containing a certain amount of Mo from a certain temperature of the rolled austenite and ferrite region, the microstructure of 20-50%. By using a relatively large mixed structure of ferrite and bainite, the yield ratio at room temperature was kept low and a strength of 600 ° C was secured. However, water cooling from a constant temperature after rolling is not always industrially easy, and particularly in the case of a relatively thin steel sheet, the rate of temperature drop after rolling is fast, and it is not possible to water-cool the entire rolled sheet from an appropriate temperature. It was quite difficult.

(発明が解決しようとする課題) 本発明者らは、火災時における鋼材強度について研究の
結果、無被覆使用を目標とした場合、火災時の最高到達
温度が1000℃であることから、鋼材が該温度で常温耐力
の70%以上の耐力を備えるためには、やはり高価な金属
元素を多量に添加せねばならず、経済性を失することを
知った。
(Problems to be Solved by the Invention) As a result of research on the strength of steel materials at the time of fire, the inventors of the present invention have found that the maximum temperature reached at the time of fire is 1000 ° C. when the target temperature is uncoated. It has been found that in order to have a yield strength of 70% or more of the room temperature yield strength at that temperature, a large amount of expensive metal elements must be added, which is economically disadvantageous.

つまり、周知の鋼材費とそれに加え耐火被覆を施工する
費用以上に鋼材単価が高くなり、そのような鋼材は実際
的に利用することができない。
In other words, the steel material unit price becomes higher than the well-known steel material cost and the cost of applying the fireproof coating, and such steel material cannot be practically used.

そこで、さらに研究を進めた結果、600℃での高温耐力
が常温時の70%以上となる鋼材が最も経済的であること
をつきとめ、高価な添加元素の量を少なくし、かつ耐火
被覆を薄くすることが可能で、火災荷重が小さい場合
は、無被覆で使用することができる鋼材の製造方法を開
発した。
Therefore, as a result of further research, we found that the steel material with a high temperature proof stress at 600 ° C of 70% or more at room temperature was the most economical, reduced the amount of expensive additional elements, and made the fireproof coating thin We have developed a manufacturing method for steel that can be used without coating when the fire load is small.

(課題を解決するための手段) 本発明は前述の課題を克服し、目的を達成するもので、
その具体的手段は重量比で、C0.02〜0.10%、Si0.6%以
下、Mn0.8〜2.0%、Mo0.2〜1.0%、Al0.1%以下、N0.00
6%以下に加えてTi0.005〜0.03%、Zr0.005〜0.03%、C
a0.0005〜0.005%、REM0.001〜0.005%のうち一種また
は二種以上、残部がFe及び不可避的不純物を含み、しか
も、C/Mnの比が0.05以下で、(1)式で与えられるDI
が0.80以上の成分組成よりなる鋼片を1150〜1300℃の温
度域で再加熱後、熱間圧延を800℃〜1000℃の温度範囲
で終了してミクロ組織をベイナイトとすることを特徴と
する耐火性と溶接性の優れた建築用薄手低降伏比鋼の製
造方法である。
(Means for Solving the Problems) The present invention achieves the object by overcoming the aforementioned problems.
The specific means is, by weight ratio, C0.02 to 0.10%, Si0.6% or less, Mn0.8 to 2.0%, Mo0.2 to 1.0%, Al0.1% or less, N0.00.
In addition to 6% or less, Ti0.005-0.03%, Zr0.005-0.03%, C
a 0.0005 to 0.005%, REM 0.001 to 0.005%, one or more, and the balance contains Fe and unavoidable impurities, and the C / Mn ratio is 0.05 or less, and is given by the formula (1). D I * After reheating a steel slab with a composition of 0.80 or more in the temperature range of 1150 to 1300 ℃, finish the hot rolling in the temperature range of 800 ℃ to 1000 ℃ and make the microstructure bainite. Is a method of manufacturing a thin low yield ratio steel for construction having excellent fire resistance and weldability.

(1)式: (作用) さて、本発明の特徴は、低C−中〜高Mn鋼にMoを添加
し、C/Mnの比が0.05以下で、(1)式で与えられるDI
が0.80以上の成分組成の鋼片を高温で再加熱したのち、
比較的高温で圧延を終了することにあり、本発明法によ
って製造した鋼及び鋼材(以下鋼という)は、適当な常
温耐力と低い降伏比を有するとともに、高温耐力が高く
溶接性も良好であるという特性を備えている。
(1 set: (Operation) The feature of the present invention is that Mo is added to the low C-medium to high Mn steel, the C / Mn ratio is 0.05 or less, and the D I * value given by the equation (1) is 0.80 or more. After reheating the steel composition of the composition at high temperature,
Since the rolling is completed at a relatively high temperature, the steel and the steel material (hereinafter referred to as steel) produced by the method of the present invention have an appropriate room temperature proof stress and a low yield ratio, and also have high high temperature proof stress and good weldability. It has the characteristics of

つまり、常温耐力に対し600℃の温度域に於ける耐力の
割合が大きい。この理由は低Cのベース成分でベイナイ
ト組織としているためで、これに対し、ベース成分のC
量が高いと、ミクロ組織がベイナイトでも、常温の降伏
比が高くなり耐震性を満足させることができない。ま
た、ベース成分が低Cでも焼入性が低いと、常温と600
℃の強度が不十分である。
In other words, the yield strength in the temperature range of 600 ° C is higher than the yield strength at room temperature. The reason for this is that the base component of low C has a bainite structure.
If the amount is high, even if the microstructure is bainite, the yield ratio at room temperature becomes high and the seismic resistance cannot be satisfied. In addition, even if the base component is low C, if the hardenability is low, it will not exceed 600 at room temperature.
The strength at ℃ is insufficient.

本発明鋼では、これらの母材特性に加えて溶接部の特性
即ち、耐ラメラーテア性や溶接継手部の靱性を向上させ
るため、微量のTiやCaを添加している。建築用鋼材に要
求される溶接継手部の靱性は、0℃程度のシャルピー値
でさほど厳しくないが、溶接入熱が比較的高い場合に問
題となる。本発明鋼では、鋼中に微細なTiNやZrNを分布
させることにより、この課題を解決した。
In the steel of the present invention, a small amount of Ti or Ca is added in order to improve the characteristics of the welded portion, that is, the lamellar tear resistance and the toughness of the welded joint portion, in addition to these base material characteristics. The toughness of the welded joint portion required for steel for construction is not so severe at a Charpy value of about 0 ° C., but it becomes a problem when the welding heat input is relatively high. In the steel of the present invention, this problem has been solved by distributing fine TiN and ZrN in the steel.

また、溶接時に溶接材料から混入する拡散性水素は、鋼
中に存在する板厚方向に伸びた介在物にトラップされ板
厚方向に沿って割れを生ずる。これを防止するため、Mn
Sや群状酸化物の低減が必要であり、CaやREMの添加が有
効である。本発明鋼はこのような用途も考慮にいれ必要
に応じて、適正量のCaやREMの添加を行なっている。
Further, diffusible hydrogen mixed from the welding material during welding is trapped by inclusions existing in the steel and extending in the plate thickness direction, and cracks occur along the plate thickness direction. To prevent this, Mn
It is necessary to reduce S and group oxides, and addition of Ca and REM is effective. The steel of the present invention is added with an appropriate amount of Ca or REM as necessary in consideration of such applications.

つぎに、本発明にかかる特徴的な成分元素とその添加量
について説明する。
Next, the characteristic component elements according to the present invention and the addition amounts thereof will be described.

Moは微細な炭窒化物を形成し、さらに、固溶体強化によ
って高温強度を増加させるが、ミクロ組織がベイナイト
の場合、その添加量は比較的少ない量で600℃の高温強
度を確保することができる。
Mo forms fine carbonitrides and further increases the high temperature strength by solid solution strengthening, but when the microstructure is bainite, the addition amount can secure a high temperature strength of 600 ° C with a relatively small amount. .

本発明者等は研究の結果、常温の強度と600℃の高温強
度を確保するためには、低Cのベース成分にMoを添加し
て、ミクロ組織をベイナイト化することが有効なことを
見出した。しかしながら、Mo量が高すぎると、溶接性が
悪くなり、さらに、溶接熱影響部(HAZ)の靱性が劣化
するので、Mo量の上限は1.0%とする必要がある。
As a result of research, the present inventors have found that it is effective to add Mo to a low C base component to bainite the microstructure in order to secure the strength at room temperature and the high temperature strength at 600 ° C. It was However, if the Mo content is too high, the weldability deteriorates and the toughness of the heat affected zone (HAZ) deteriorates. Therefore, the upper limit of the Mo content needs to be 1.0%.

さて、常温において、溶接構造用圧延鋼材(JIS G 310
6)に規定する性能を満足し、かつ600℃の高温において
高い耐力を維持せしめるためには、鋼成分と共に鋼の再
加熱及び圧延にかかる条件が重要である。
Now, at room temperature, rolled steel for welded structures (JIS G 310
In order to satisfy the performance specified in 6) and to maintain high yield strength at a high temperature of 600 ° C, the conditions for reheating and rolling the steel are important together with the steel components.

前述のMo添加による高温強度の増大を図るには、Moを再
加熱時に十分に溶体化させる必要があり、このため再加
熱温度の下限を1150℃とする。また、再加熱温度が高す
ぎると結晶粒が大きくなって低温靱性が劣化するので、
その上限は1300℃にせねばならない。
In order to increase the high temperature strength by adding Mo as described above, it is necessary to sufficiently solutionize Mo during reheating, and therefore the lower limit of the reheating temperature is set to 1150 ° C. Further, if the reheating temperature is too high, the crystal grains become large and the low temperature toughness deteriorates.
The upper limit must be 1300 ° C.

さらに、圧延終了温度を800℃以上とする理由は、圧延
中にMoの炭窒化物を析出させないためである。周知の低
温圧延(制御圧延)はラインパイプ等低温靱性が必要な
鋼材では必須要件であるが、本発明鋼のように低温靱性
について、高い要求が無く、常温強度と600℃の強度及
び、そのバランスが重要な場合には、ミクロ組織をベイ
ナイト化するため、圧延を高温で終了せねばならない。
Furthermore, the reason for setting the rolling end temperature to 800 ° C. or higher is to prevent carbonitrides of Mo from being precipitated during rolling. Well-known low-temperature rolling (controlled rolling) is an essential requirement for steel materials that require low-temperature toughness such as line pipes, but there is no high requirement for low-temperature toughness like the steel of the present invention, and room-temperature strength and 600 ° C strength and its When balance is important, rolling must be terminated at high temperatures to bainite the microstructure.

また、本発明において、圧延終了温度の上限を1000℃と
したのは、建築用鋼としての靱性を確保するためであ
る。
Further, in the present invention, the upper limit of the rolling end temperature is set to 1000 ° C. in order to secure the toughness as the building steel.

さて、高温強度を上昇せしめるため、Moを利用すること
が、従来のボイラー用鋼管等に使用されている鋼では知
られているが、建築用に用いる耐火鋼材として微量のMo
に加えてベース成分のC/Mn比を抑え、焼入性(DI )を
確保し、ミクロ組織をベイナイト化して常温と高温の強
度を満足させた鋼材は知られていない。ボイラー用に使
用されている鋼は基本的な特性を得るため、圧延後に調
質熱処理を施しており、本発明鋼とは製造プロセスが異
なる。
By the way, it is known that steel used for conventional steel pipes for boilers, etc., to increase the high temperature strength, is a small amount of Mo as a fire resistant steel material used for construction.
In addition, the steel material that suppresses the C / Mn ratio of the base component, secures the hardenability (D I * ), and bainites the microstructure to satisfy the strength at room temperature and high temperature is not known. The steel used for the boiler is subjected to tempering heat treatment after rolling in order to obtain basic properties, and the manufacturing process is different from the steel of the present invention.

つぎに、本発明における前記Mo以外の成分限定理由につ
いて詳細に説明する。
Next, the reasons for limiting the components other than Mo in the present invention will be described in detail.

Cは母材及び溶接部の強度確保ならびにMoの添加効果を
発揮させるために必要であり、0.02%未満では効果が薄
れるので下限は0.02%とする。また、C量が多すぎると
常温の降伏比が上昇し、さらに、HAZの低温靱性に悪影
響をおよぼすので、0.10%が上限となる。
C is necessary to secure the strength of the base material and the welded portion and to exert the effect of adding Mo. If the content is less than 0.02%, the effect is weakened, so the lower limit is made 0.02%. On the other hand, if the C content is too large, the yield ratio at room temperature rises, and the low temperature toughness of the HAZ is adversely affected, so 0.10% is the upper limit.

Siは脱酸上鋼に含まれる元素で、Si量が多くなると溶接
性、HAZ靱性が劣化するため、その上限を0.6%とした。
Si is an element contained in the deoxidized upper steel. Since the weldability and HAZ toughness deteriorate when the amount of Si increases, the upper limit was made 0.6%.

Mnは強度、靱性を確保する上で不可欠の元素であり、そ
の下限は0.8%である。しかし、Mn量が多すぎると焼入
性が増加して溶接性、HAZ靱性が劣化するため、Mn量の
上限を2.0%とした。
Mn is an essential element for ensuring strength and toughness, and its lower limit is 0.8%. However, if the Mn content is too large, the hardenability increases and the weldability and HAZ toughness deteriorate, so the upper limit of the Mn content was set to 2.0%.

Alは一般に脱酸上鋼に含まれる元素であるが、Si及びTi
によっても脱酸は行なわれるので、本発明ではAlについ
ては下限は限定しない。しかしAl量が多くなると鋼の清
浄度が悪くなり、溶接部の靱性が劣化するので上限を0.
1%とした。
Al is an element generally contained in deoxidized upper steel, but Si and Ti
Since deoxidation is also performed by the above, the lower limit of Al is not limited in the present invention. However, if the amount of Al increases, the cleanliness of the steel deteriorates and the toughness of the weld deteriorates, so the upper limit is set to 0.
It was set to 1%.

Nは一般に不可避的不純物として鋼中に含まれるもので
あるが、N量が多くなるとHAZ靱性の劣化や連続鋳造ス
ラブの表面きずの発生等を助長するので、その上限を0.
006%とした。
N is generally contained in steel as an unavoidable impurity, but if the amount of N increases, it promotes the deterioration of HAZ toughness and the occurrence of surface flaws in the continuous cast slab, so its upper limit is 0.
It was 006%.

なお、本発明鋼は、不可避的不純物としてP及びSを含
有する。P,Sは高温強度に与える影響は小さいので、そ
の量について特に限定はしないが、一般に靱性、板厚方
向強度等に関する鋼の特性は、これらP,S元素が少ない
ほど向上する。望ましいP,S量はそれぞれ0.02%,0.005
%以下である。
The steel of the present invention contains P and S as unavoidable impurities. Since the effects of P and S on the high temperature strength are small, the amount thereof is not particularly limited, but generally, the properties of steel such as toughness and strength in the plate thickness direction improve as the content of these P and S elements decreases. Desirable P and S contents are 0.02% and 0.005, respectively
% Or less.

基本的な特性を得るための成分は以上のとおりである
が、本発明鋼は用途が厳しい条件(溶接部の水素割れ性
が要求されたり、大入熱の溶接が適用される)での適用
を考慮しており、以下に述べる元素即ちTi,Zr,Ca,REMを
選択的に添加することにより特性の向上を図っている。
Although the components for obtaining the basic properties are as described above, the steel of the present invention is applied under conditions where the use is severe (hydrogen cracking of the welded part is required, or welding with high heat input is applied) In consideration of the above, the characteristics are improved by selectively adding the elements described below, that is, Ti, Zr, Ca, and REM.

Tiは炭窒化物を形成してHAZ靱性を向上させる。さら
に、Al量が少ない場合、Tiの酸化物を形成しHAZ靱性を
向上させるが、0.005%未満では効果がなく、0.03%を
超えるとHAZ靱性に好ましくない影響がある。
Ti forms carbonitrides and improves HAZ toughness. Further, when the amount of Al is small, an oxide of Ti is formed to improve the HAZ toughness, but if it is less than 0.005%, it has no effect, and if it exceeds 0.03%, it has an unfavorable influence on the HAZ toughness.

ZrはTiとほぼ同じ効果をもつが、その効果が有効な範囲
は0.005〜0.03%である。
Zr has almost the same effect as Ti, but the effective range is 0.005 to 0.03%.

Ca,REMは硫化物(MnS)の形態を制御し、溶接部のラメ
ラーテアの改善や耐水素有機割れ性の改善に効果を発揮
するほか、シャルピー吸収エネルギーを増加させ、低温
靱性を向上させる効果がある。しかし、Ca量は0.0005%
未満では実用上効果がなく、また、0.005%を超える
と、CaO,CaSが多量に生成して大形介在物となり、鋼の
靱性のみならず清浄度も害し、さらに、溶接性、耐ラメ
ラーテア性にも悪影響を与えるので、Ca添加量の範囲を
0.0005%〜0.005%とする。
Ca and REM control the morphology of sulfide (MnS) and have the effect of improving the lamellar tear of the weld and hydrogen-organic cracking resistance, as well as increasing Charpy absorbed energy and improving low temperature toughness. is there. However, the amount of Ca is 0.0005%
If it is less than 0.005%, there is no practical effect, and if it exceeds 0.005%, a large amount of CaO and CaS are formed to form large inclusions, which not only impairs the toughness of steel but also the cleanliness, and also has weldability and lamellar tear resistance. It also adversely affects the
0.0005% to 0.005%.

また、REMについてもCaと同様な効果があり、添加量を
多くするとCaと同様な問題を生じ、さらに経済性も悪く
なるので、REM量の下限を0.001%、上限を0.005%とし
た。
Further, REM has the same effect as Ca, and if the addition amount is increased, the same problem as that of Ca occurs and the economical efficiency is deteriorated. Therefore, the lower limit of 0.001% and the upper limit of 0.005% were set.

(実施例) 周知の転炉、連続鋳造、厚板工程で鋼板を製造し、常温
強度、高温強度等を調査した。
(Example) A steel plate was manufactured by a well-known converter, continuous casting, and thick plate process, and room temperature strength, high temperature strength, etc. were investigated.

第1表のNo.1〜No.14に本発明鋼を、No.15〜No.20に比
較鋼の化学成分を示す。
In Table 1, No. 1 to No. 14 show the present invention steels, and No. 15 to No. 20 show the chemical compositions of the comparative steels.

続いて第2表に本発明鋼と比較鋼について、加熱、圧
延、条件別に機械的特性を示す。
Next, Table 2 shows the mechanical properties of the steel of the present invention and the comparative steel by heating, rolling and conditions.

第2表の本発明鋼No.1〜No.14の例では、すべて良好な
常温及び高温強度を有している。
The examples of the invention steels No. 1 to No. 14 in Table 2 all have good room temperature and high temperature strength.

これに対し、比較鋼No.15では、加熱温度、仕上圧延温
度が低いため、常温の降伏比が高くなりすぎ、No.16で
は、圧延後に再加熱して焼入、焼戻の熱処理をしている
ため、常温の降伏比が高すぎる。No.17では、圧延後に
再加熱して焼準しているため、常温、高温強度が低い。
さらに、No.18,19では、C/Mn比が高く、DI が低いた
め、常温、高温の強度が低い。No.20では、DI が低い
ため、常温、高温の強度が低い。No.21では、DI は満
足するが、C/Mn比が高いため、常温の降伏比が高すぎ
る。No.22,23では常温と600℃の強度は満足している
が、HAZ靱性や板厚方向の特性が不十分である。
On the other hand, in Comparative Steel No. 15, since the heating temperature and finish rolling temperature are low, the yield ratio at room temperature is too high, and in No. 16, reheating after rolling, quenching, and heat treatment of tempering are performed. Therefore, the yield ratio at room temperature is too high. No. 17 has low normal temperature and high temperature strength because it is reheated and normalized after rolling.
Furthermore, in Nos. 18 and 19, the C / Mn ratio is high and the D I * is low, so the strength at room temperature and high temperature is low. In No. 20, since D I * is low, the strength at room temperature and high temperature is low. In No. 21, although D I * is satisfied, the yield ratio at room temperature is too high because the C / Mn ratio is high. In Nos. 22 and 23, the strength at room temperature and 600 ° C is satisfied, but the HAZ toughness and the properties in the plate thickness direction are insufficient.

この結果を第3表、第4表に示す。The results are shown in Tables 3 and 4.

第3表は、ベース成分がほぼ同じ本発明鋼と比較鋼の再
現HAZ靱性の特性を示す。本発明鋼はTiを添加している
ため、良好な靱性であるが、比較鋼は無添加であるた
め、靱性が極めて悪い。第4表には、ベース成分がほぼ
同じ本発明鋼と比較鋼の板厚方向特性を示す。
Table 3 shows the characteristics of the reproduced HAZ toughness of the invention steel and the comparative steel having almost the same base composition. The steel of the present invention has good toughness because it contains Ti, but the comparative steel has very poor toughness because it has no addition. Table 4 shows the properties in the plate thickness direction of the steel of the present invention and the comparative steel having almost the same base composition.

なお、板厚方向の特性は耐ラメラーテア特性を評価する
代表的な試験方法である。
The property in the plate thickness direction is a typical test method for evaluating anti-lamellar tear property.

本発明鋼はCaを添加しているため、良好な特性を示す
が、比較鋼はCaを添加していないため不十分な結果であ
る。
Since the steel of the present invention has Ca added, it exhibits good properties, but the comparative steel has insufficient results because it has not added Ca.

(発明の効果) 本発明の化学成分及び製造法で製造した鋼材は600℃の
降伏強度が高く且つ、600℃の降伏強度が常温降伏強度
の70%以上で、常温の降伏比(YS/TS)も低く、溶接
性、溶接継手靱性、板厚方向特性が良好である等の特徴
を兼ね備えた全く新しい鋼材である。
(Effect of the invention) The steel material manufactured by the chemical composition and the manufacturing method of the present invention has a high yield strength of 600 ° C, a yield strength of 600 ° C is 70% or more of a room temperature yield strength, and a yield ratio (YS / TS) at room temperature. ) Is low, and the weldability, welded joint toughness, and properties in the plate thickness direction are good, and it is a completely new steel material.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量比で C 0.02〜0.10%、 Si 0.6%以下、 Mn 0.8〜2.0%、 Mo 0.2〜1.0%、 Al 0.1%以下、 N 0.006%以下、 に加えて Ti 0.005〜0.03%、 Zr 0.005〜0.03%、 Ca 0.0005〜0.005%、 REM 0.001〜0.005% のうち一種または二種以上 残部がFe及び不可避的不純物を含み、しかも、C/Mnの比
が0.05%以下で、(1)式で与えられるDI 値が0.80以上
の成分組成よりなる鋼片を1150〜1300℃の温度域で再加
熱後、熱間圧延を800℃〜1000℃の温度範囲で終了して
ミクロ組織をベイナイトとすることを特徴とする耐火性
の優れた建築用薄手低降伏比鋼の製造方法。 (1)式:
1. A weight ratio of C 0.02 to 0.10%, Si 0.6% or less, Mn 0.8 to 2.0%, Mo 0.2 to 1.0%, Al 0.1% or less, N 0.006% or less, and Ti 0.005 to 0.03%, One or more of Zr 0.005-0.03%, Ca 0.0005-0.005%, REM 0.001-0.005% The balance contains Fe and unavoidable impurities, and the C / Mn ratio is 0.05% or less, (1) After reheating a steel slab consisting of a composition with a D I * value of 0.80 or more in the temperature range of 1150 to 1300 ° C, finish the hot rolling in the temperature range of 800 ° C to 1000 ° C to obtain a microstructure. A method for producing a thin low yield ratio steel for construction having excellent fire resistance, which is characterized by using bainite. (1 set:
JP26808989A 1989-10-17 1989-10-17 Manufacturing method of thin low yield ratio steel for construction with excellent fire resistance and weldability Expired - Lifetime JPH072969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26808989A JPH072969B2 (en) 1989-10-17 1989-10-17 Manufacturing method of thin low yield ratio steel for construction with excellent fire resistance and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26808989A JPH072969B2 (en) 1989-10-17 1989-10-17 Manufacturing method of thin low yield ratio steel for construction with excellent fire resistance and weldability

Publications (2)

Publication Number Publication Date
JPH03130319A JPH03130319A (en) 1991-06-04
JPH072969B2 true JPH072969B2 (en) 1995-01-18

Family

ID=17453736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26808989A Expired - Lifetime JPH072969B2 (en) 1989-10-17 1989-10-17 Manufacturing method of thin low yield ratio steel for construction with excellent fire resistance and weldability

Country Status (1)

Country Link
JP (1) JPH072969B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114645125A (en) * 2022-03-03 2022-06-21 包头钢铁(集团)有限责任公司 Method for reducing yield ratio of weather-resistant bridge steel

Also Published As

Publication number Publication date
JPH03130319A (en) 1991-06-04

Similar Documents

Publication Publication Date Title
US5147474A (en) Building construction steel having excellent fire resistance and low yield ratio
JPH0450362B2 (en)
JPH0610040A (en) Production of high strength refractory steel excellent in toughness at low temperature in weld zone
JPH06316723A (en) Production of weather resistant refractory steel material for building construction, excellent in gas cutting property and weldability
JPH072969B2 (en) Manufacturing method of thin low yield ratio steel for construction with excellent fire resistance and weldability
JPH0756044B2 (en) Method for producing low yield ratio H-section steel with excellent fire resistance
JPH05117745A (en) Production of 490n/mm2 class weather resistant refractory steel products for building structural purpose
JPH05339632A (en) Production of refractory steel plate for building having excellent toughness
JP2546954B2 (en) Method for manufacturing high-strength steel for construction with excellent fire resistance
JPH0713251B2 (en) Manufacturing method of thin low yield ratio steel for construction with excellent fire resistance and weldability
JP4592173B2 (en) Martensitic stainless steel welded structure with excellent fire resistance
JPH0713250B2 (en) Manufacturing method of low yield ratio steel with excellent fire resistance
JP4192537B2 (en) Ultra-high tensile ERW steel pipe
JPH0450363B2 (en)
JPH0737649B2 (en) Manufacturing method of fireproof steel plate for building with low yield ratio
JPH04350120A (en) Production of high strength refractory steel plate for construction use
JP2546953B2 (en) Method for manufacturing high-strength steel for construction with excellent fire resistance
JP4002463B2 (en) 490 N / mm grade 2 steel excellent in fire resistance and method for producing the same
JP2816008B2 (en) Low yield ratio steel material for building with excellent fire resistance and method of manufacturing the same
JP2529035B2 (en) Large diameter steel pipe for construction with excellent fire resistance
JPH036322A (en) Production of low yield ratio steel products for building having excellent fire resistivity and steel material for building formed by using these steel products
JPH0713249B2 (en) Manufacturing method of low yield ratio steel with excellent fire resistance
JPH07300618A (en) Production of hot rolled steel strip for construction use, excellent in refractoriness and toughness
JP2001262269A (en) Fire resistant steel for building and welded steel pipe excellent in toughness at weld heat affected zone
JPH0545646B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090118

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20100118

EXPY Cancellation because of completion of term