JPH03240918A - Production of wide flange shape excellent in refractoriness and reduced in yield ratio - Google Patents

Production of wide flange shape excellent in refractoriness and reduced in yield ratio

Info

Publication number
JPH03240918A
JPH03240918A JP3235790A JP3235790A JPH03240918A JP H03240918 A JPH03240918 A JP H03240918A JP 3235790 A JP3235790 A JP 3235790A JP 3235790 A JP3235790 A JP 3235790A JP H03240918 A JPH03240918 A JP H03240918A
Authority
JP
Japan
Prior art keywords
steel
temperature
strength
reduced
yield ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3235790A
Other languages
Japanese (ja)
Other versions
JPH0756044B2 (en
Inventor
Rikio Chijiiwa
力雄 千々岩
Hiroshi Tamehiro
為広 博
Yoshio Terada
好男 寺田
Haruo Osawa
大沢 治男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3235790A priority Critical patent/JPH0756044B2/en
Publication of JPH03240918A publication Critical patent/JPH03240918A/en
Publication of JPH0756044B2 publication Critical patent/JPH0756044B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To inexpensively produce a wide flange shape excellent in refractoriness and reduced in yield ratio by subjecting a bloom of a steel having a specific composition consisting of C, Si, Mn, Mo, Nb, Al, N, Ni, Cu, Cr, V, Ti, and Fe to specific reheating and then to hot rolling. CONSTITUTION:A bloom of a steel having a composition which consists of, by weight, 0.03-0.15% C, <=0.6% Si, 0.2-1.0% Mn, 0.7-1.5% Mo, 0.005-0.04% Nb, <=0.1 % Al, 0.001-0.0060% N, one or more kinds among 0. 05-0.50% Ni, 0.05-0.50% Cu, 0.05-0.50% Cr, 0.005-0.04% V, and 0.005-0.03% Ti, and the balance Fe with inevitable impurities and in which the value of DI represented by an equation DI=0.316C<0.5>(1+0.7Si) (4.1Mn+0.35) (1+3Mo) (1+0.36Ni) (1+2.2Cr) (1+0.365Cu) is regulated to <0.8 is reheated at 1200-1350 deg.C. Then, hot rolling is finished at 750-1050 deg.C. By the above procedure, the microstructure of the bloom is formed into a structure composed essentially of ferrite. By this method, the amount of expensive additive elements can be reduced, and the wide flange shape excellent in refractoriness and reduced in yield ratio can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は建築、土木の分野において、各種建造物に用い
る耐火性の優れた低降伏比H形鋼の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a low yield ratio H-section steel with excellent fire resistance for use in various buildings in the fields of architecture and civil engineering.

〔従来の技術〕[Conventional technology]

周知の通り建築、土木の分野における各種建造物用構築
材として、−殻構造用圧延鋼材(JIS G3101)
 、溶接構造用圧延鋼材(JIS G 3106)、溶
接構造用耐候性熱間圧延鋼材(JIS G 3114)
、高耐候性圧延鋼材(JIS G 3125)及び−殻
構造用炭素鋼鋼管(JIS G 3444)、−殻構造
用角形鋼板(JIS G 3466)等が広く利用され
ている。
As is well known, rolled steel for shell structures (JIS G3101) is used as a construction material for various buildings in the fields of architecture and civil engineering.
, Rolled steel materials for welded structures (JIS G 3106), Weather-resistant hot rolled steel materials for welded structures (JIS G 3114)
, highly weather resistant rolled steel (JIS G 3125), carbon steel pipes for shell structures (JIS G 3444), rectangular steel plates for shell structures (JIS G 3466), etc. are widely used.

前記周知鋼材は、通常高炉によって得られた溶銑を脱S
、脱Pしたのち転炉精錬を行ない、連続鋳造もしくは分
塊工程において鋼片とし、ついで熱間塑性加工すること
により、所望の特性を備えたものとして製品化される。
The above-mentioned well-known steel materials are usually made by removing S from hot metal obtained in a blast furnace.
After dephosphorization, the steel is refined in a converter furnace and made into a steel billet in a continuous casting or blooming process, followed by hot plastic working to produce a product with desired properties.

ところで、各種建造物のうち、特に生活に密着したビル
や事務所及び住居等の建造物に前記周知鋼材を用いる場
合、火災における安全性を確保するため、十分な耐火被
覆を施すことが義務ずけられており、建築関係諸法令で
は、火災時に鋼材温度が350℃以上にならぬように規
定している。つまり、前記周知鋼材は建築物に使用する
場合、350℃程度で耐力が常温時の60〜70%にな
り、建築物の倒壊を引き起こす恐れがあるため、たとえ
ば、−殻構造用圧延鋼材(JIS G 3101)に規
定される形鋼を柱材とする建造物の例では、その表面に
スラグウール、ガラスウール、アスベスト等を基材とす
る吹き付は材やフェルトを展着するほか、防火モルタル
で包皮する方法及び前記断熱材層の上に、さらに金属薄
板即ちアルミニウムやステンレス薄板で保護する方法等
、耐火被覆を入念に施し、火災時における熱的損傷によ
り該鋼材が載荷力を失うことのないようにして利用する
。そのため、鋼材費用に比し耐火被覆工費が高額になり
、建築コストが大幅に上昇することを避けることが出来
ない。
By the way, when using the well-known steel materials in buildings such as buildings, offices, and residences that are closely connected to daily life, it is not mandatory to provide sufficient fireproof coating to ensure safety in the event of a fire. Construction-related laws and regulations stipulate that the temperature of steel materials should not exceed 350°C in the event of a fire. In other words, when the above-mentioned well-known steel materials are used in buildings, the yield strength at about 350°C is 60 to 70% of that at room temperature, which may cause the building to collapse. In the case of buildings whose columns are made of steel sections specified in G 3101), in addition to spreading sprayed wood or felt based on slag wool, glass wool, asbestos, etc. on the surface, fire prevention mortar is applied. A fire-resistant coating is carefully applied, such as encasing the heat insulating material layer with a thin metal plate, such as aluminum or stainless steel plate, to prevent the steel material from losing its load-bearing capacity due to thermal damage in the event of a fire. Use it in such a way that it doesn't. Therefore, the cost of fireproof coating becomes higher than the cost of steel materials, and it is unavoidable that construction costs will rise significantly.

そのため、構築材として丸あるいは角鋼管を用い、冷却
水が循環するように構成し、火災時における温度上昇を
防止し、載荷力を低下させない技術が提案され、ビルの
建設コストの引き下げと利用空間の拡大が図られている
Therefore, a technology has been proposed that uses round or square steel pipes as construction materials to allow cooling water to circulate, which prevents temperature rise in the event of a fire and does not reduce load capacity. is being expanded.

たとえば、実公昭52−16021号公報には、建築物
の上部に水タンクを置き、中空鋼管からなる柱材に冷却
水を供給する耐火構造建造物が開示されている。また、
特願平01−139328号明細書では、鋼材の基本成
分として、相当量のMoとNbを複合添加し、高温加熱
−高温圧延法によりミクロ組織を比較的大きなフェライ
ト主体組織として、600℃の高温強度が常温強度の7
0%以上確保出来ることが提案されている。
For example, Japanese Utility Model Publication No. 52-16021 discloses a fire-resistant building in which a water tank is placed on the top of the building and cooling water is supplied to pillars made of hollow steel pipes. Also,
In Japanese Patent Application No. 01-139328, a considerable amount of Mo and Nb are added in combination as the basic components of the steel material, and the microstructure is changed to a relatively large ferrite-based structure by a high-temperature heating-high-temperature rolling method, and the steel is heated at a high temperature of 600°C. Strength is room temperature strength 7
It is proposed that it is possible to secure 0% or more.

しかしながら、この方法では、複雑な形状をしたH形鋼
のウェブとフランジの両方の部位の常温と600℃の強
度特性を工業的に満足させることは出来ない。即ち、ウ
ェブとフランジの厚みの違いや圧延中の冷却水の効果が
両部位で異なるため、実質の圧延終了温度は100℃程
度も差が生じ、強度に影響を与える。これに加えて、薄
手材では、圧延終了温度の絶対値が低くならざるを得す
、圧延中にフェライトが生成するため、フェライトが加
工され、常温の降伏比が大幅に高くなる傾向があり、実
用的ではない。
However, with this method, it is not possible to industrially satisfy the strength characteristics of both the web and the flange of an H-section steel having a complicated shape at room temperature and 600°C. That is, because the thickness of the web and the flange are different and the effect of cooling water during rolling is different between the two parts, the actual rolling end temperature differs by about 100°C, which affects the strength. In addition, for thin materials, the absolute value of the rolling end temperature must be low, and since ferrite is generated during rolling, the ferrite is processed and the yield ratio at room temperature tends to be significantly high. Not practical.

さらに、特願平01−139329号明細書では、一定
量のMoを含有した鋼を圧延後のオーステナイトとフェ
ライト域の一定の温度から水冷する方法を用いることに
より、ミクロ組織を20〜50%の比較的大きなフェラ
イトとベイナイトの混合組織とすることにより、常温の
降伏比を低く抑え、600℃の強度を確保していた。し
かしながら、H形鋼を圧延後の一定温度から水冷するこ
とは容易でなく、ウェブとフランジの温度差を考慮する
と十分な形状の確保が出来ない。
Furthermore, in Japanese Patent Application No. 01-139329, by using a method of water cooling steel containing a certain amount of Mo from a certain temperature in the austenite and ferrite regions after rolling, the microstructure is reduced by 20 to 50%. By creating a mixed structure of relatively large ferrite and bainite, the yield ratio at room temperature was kept low and strength at 600°C was ensured. However, it is not easy to water-cool the H-section steel from a constant temperature after rolling, and it is not possible to secure a sufficient shape considering the temperature difference between the web and the flange.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者らは、火災時における鋼材強度について研究の
結果、無被覆使用を目標とした場合、火災時の最高到達
温度が1000’Cであることから、鋼材が該温度で常
温耐力の70%以上の耐力を備えるためには、やはり高
価な金属元素を多量に添加せねばならず、経済性を失す
ることを知った。つまり、周知の鋼材費とそれに加え耐
火被覆を施工する費用以上に鋼材単価が高くなり、その
ような鋼材は実際的に利用することが出来ない。そこで
、さらに研究を進めた結果、600℃での高温耐力が常
温時の70%以上となる鋼材が最も経済的であることを
つきとめ、高価な添加元素の量を少なくし、かつ耐火被
覆を薄くすることが可能で、火災荷重が小さい場合は、
無被覆で使用することが出来るH形鋼の製造方法を開発
した。
As a result of research on the strength of steel materials in the event of a fire, the present inventors found that when uncoated use is targeted, the maximum temperature reached in the event of a fire is 1000'C. It was learned that in order to provide the above-mentioned yield strength, a large amount of expensive metal elements must be added, resulting in a loss of economic efficiency. In other words, the unit price of the steel material becomes higher than the cost of the well-known steel material and, in addition, the cost of constructing the fireproof coating, and such steel material cannot be practically used. As a result of further research, we found that the most economical steel material had a high-temperature yield strength at 600°C that was 70% or more of that at room temperature. If possible and the fire load is small,
We have developed a manufacturing method for H-section steel that can be used without coating.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前述の課題を克服し、目的を達成するもので、
その具体的手段は重量比で、 C0.03〜0.15%、Si0.6%以下、Mn0.
2〜1.0%、Mo  0.7〜1.5%、Nb 0.
005〜0.04%、A10.1%以下、N 0.00
1〜0.0060%に加えてN i 0.05〜0.5
0%、Cu 0.05〜0.50%、Cr 0.05〜
0.50%、V  0.005〜0.04%、T i 
0.005〜0.03%のうち1種または2種以上、残
部がFe及び不可避的不純物を含み、しかも、下記(1
)式で与えられるDI値が0.80未満の成分組成より
なる鋼片を1200〜1350℃の温度域で再加熱後、
熱間圧延を750〜1050℃の温度範囲で終了してミ
クロ組織をフェライト主体とすることを特徴とする耐火
性の優れた低降伏比H形鋼の製造方法である。
The present invention overcomes the aforementioned problems and achieves the objectives.
The specific means is, in terms of weight ratio, C0.03 to 0.15%, Si 0.6% or less, Mn0.
2-1.0%, Mo 0.7-1.5%, Nb 0.
005-0.04%, A10.1% or less, N 0.00
1-0.0060% plus Ni 0.05-0.5
0%, Cu 0.05~0.50%, Cr 0.05~
0.50%, V 0.005-0.04%, Ti
One or more of 0.005 to 0.03%, the remainder containing Fe and unavoidable impurities, and the following (1)
) After reheating a steel piece having a composition with a DI value of less than 0.80 in the temperature range of 1200 to 1350°C,
This is a method for producing a low yield ratio H-beam steel with excellent fire resistance, characterized in that hot rolling is completed in a temperature range of 750 to 1050°C, and the microstructure is made mainly of ferrite.

(1)式: DI 〜0.316./”il:(1+0
.7Si) (4,1Mn+0.35) (1+3Mo
)(1+0.36Ni) (1+2.2Cr) (1+
0.365Cu)(成分単位;重量%) 〔作 用〕 さて、本発明の特徴は、低Mn鋼に0.70%以上のM
OとNbを添加し、(1)式で与えられるDI値が0.
80未満の成分組成の鋼片を高温で再加熱したのち、比
較的高温で圧延を終了することにあり、本発明法によっ
て製造したH形鋼はウェブ、フランジともに、適当な常
温耐力と低い降伏比を有するとともに、高温耐力が高い
とゆう特性を備えている。つまり、常温耐力に対し60
0℃の温度域に於ける耐力の割合が大きい。この理由は
低Mnのベース成分に焼入性を抑えて、合金成分を添加
しているためミクロ組織がフェライト主体となることに
よる。また、焼入性を抑えているため、常温と600℃
の強度を確保するため、0.70%以上のM。
(1) Formula: DI ~0.316. /”il: (1+0
.. 7Si) (4,1Mn+0.35) (1+3Mo
) (1+0.36Ni) (1+2.2Cr) (1+
0.365Cu) (component unit; weight%) [Function] Now, the feature of the present invention is that 0.70% or more of Mn is added to low Mn steel.
When O and Nb are added, the DI value given by equation (1) is 0.
After reheating a steel slab with a composition of less than 80 at a high temperature, rolling is finished at a relatively high temperature.The H-beam steel produced by the method of the present invention has appropriate room temperature yield strength and low yield for both the web and flange. In addition to having a high temperature ratio, it also has the characteristics of high high temperature yield strength. In other words, the room temperature yield strength is 60
The percentage of yield strength in the temperature range of 0°C is large. The reason for this is that the microstructure mainly consists of ferrite because alloy components are added to the low-Mn base component to suppress hardenability. In addition, since the hardenability is suppressed, it can be heated at both room temperature and 600°C.
M of 0.70% or more to ensure strength.

を添加して、これを補っている。さらに、0.70%以
上のMoの添加は圧延時の変態開始温度を低下する働き
があり、H形鋼のような圧延温度が降下しやすい場合に
有効である。即ち、変態温度以下での圧延はフェライト
部が加工されるため、常温のYRが大幅に上昇し高い降
伏比となる。0.70%以上のMoの添加は変態開始温
度を約60℃以上も低下させる効果があり、低降伏比を
得る手段として有効である。
is added to compensate for this. Furthermore, the addition of 0.70% or more of Mo has the effect of lowering the transformation start temperature during rolling, and is effective in cases where the rolling temperature is likely to drop, such as in H-section steel. That is, rolling at a temperature below the transformation temperature processes the ferrite portion, resulting in a significant increase in YR at room temperature, resulting in a high yield ratio. Addition of 0.70% or more of Mo has the effect of lowering the transformation start temperature by about 60° C. or more, and is effective as a means for obtaining a low yield ratio.

次に、本発明鋼にかかる特徴的な成分元素とその添加量
について説明する。
Next, the characteristic constituent elements of the steel of the present invention and their addition amounts will be explained.

Mo、Nbは微細な炭窒化物を形成し、さらに、Moは
固溶体強化によって高温強度を増加させるが、Moの単
独添加では600℃という高温領域において十分な耐力
を得ることは難しい0本発明者等は研究の結果、該高温
N域における耐力を増加させるには、MoとNbを複合
添加させることが極めて有効なことを見出した。しかし
ながらMo。
Mo and Nb form fine carbonitrides, and Mo increases high-temperature strength through solid solution strengthening, but it is difficult to obtain sufficient yield strength in the high-temperature region of 600°C by adding Mo alone. As a result of their research, they found that the combined addition of Mo and Nb is extremely effective in increasing the yield strength in the high-temperature N range. However, Mo.

Nb量が高すぎると、溶接性が悪くなるので、M o 
If the amount of Nb is too high, weldability will deteriorate, so M o
.

Nb含有量の上限はそれぞれ1.5%、 0.04%と
する必要があり、また下限はMoについては、前述した
変態温度の低下効果や高温強度を確保する最小量として
0.7%とした。Nbの下限は複合効果が得られる最小
量として0.005%とした。なお、高温強度を上昇さ
せるため、Moを利用することは、従来の耐熱鋼では知
られているが、建築用に用いる耐火鋼材として前述のよ
うにMoに加えて微量のNbを複合添加した鋼材は知ら
れていない。
The upper limit of the Nb content needs to be 1.5% and 0.04%, respectively, and the lower limit of Mo is 0.7%, which is the minimum amount to ensure the above-mentioned effect of lowering the transformation temperature and high-temperature strength. did. The lower limit of Nb was set at 0.005% as the minimum amount to obtain a composite effect. The use of Mo to increase high-temperature strength is known in conventional heat-resistant steels, but as mentioned above, steel materials with a compound addition of a small amount of Nb in addition to Mo are used as fire-resistant steel materials for construction. is not known.

次に、本発明における前記Mo、Nb以外の成分限定理
由について詳細に説明する。
Next, the reason for limiting components other than Mo and Nb in the present invention will be explained in detail.

Cは母材および溶接部の強度確保ならびにMo。C ensures the strength of the base metal and welded part, and Mo.

Nbの添加効果を発揮させるために必要であり、0.0
3%未満では効果が薄れるので下限は0.03%とする
。さらにC量が多すぎると母材靭性を劣化させるので、
0.15%が上限となる。
Necessary to exhibit the effect of Nb addition, and 0.0
If it is less than 3%, the effect will be weakened, so the lower limit is set at 0.03%. Furthermore, too much C deteriorates the toughness of the base material, so
The upper limit is 0.15%.

Siは脱酸上鋼に含まれる元素で、Siが多くなると溶
接性を害するので、その上限を0.6%とした。本発明
鋼ではAI脱酸で十分であり、さらにTi脱酸でも良い
Si is an element contained in deoxidized steel, and an increase in Si impairs weldability, so the upper limit was set at 0.6%. In the steel of the present invention, AI deoxidation is sufficient, and Ti deoxidation may also be used.

次に、Mnは強度、靭性を確保する上で不可欠な元素で
あり、その下限は0.2%である。しかし、Mn量が多
すぎると、焼入性が増加してミクロ組織をベイナイト化
して、目標とする規格に適合する母材強度を得ることが
出来ない。このためMn量の上限を1.0%とした。
Next, Mn is an essential element for ensuring strength and toughness, and its lower limit is 0.2%. However, if the amount of Mn is too large, the hardenability increases and the microstructure becomes bainite, making it impossible to obtain a base material strength that meets the target specifications. Therefore, the upper limit of the Mn content was set to 1.0%.

AIは一般に脱酸上鋼に含まれる元素であるが、Siお
よびTiによっても脱酸は行なわれるので、本発明では
AIについて下限は限定しない。しかしAI量が多くな
ると鋼の清浄度が悪くなり、靭性が劣化するので上限を
0.1%とした。
AI is generally an element contained in deoxidized steel, but since deoxidation is also performed by Si and Ti, the present invention does not limit the lower limit of AI. However, if the amount of AI increases, the cleanliness of the steel will deteriorate and the toughness will deteriorate, so the upper limit was set at 0.1%.

Nは一般に不可避的不純物として鋼中に含まれるもので
あるが、Nbと結合し炭窒化物Nb(CN )を形成し
て高温耐力の向上に効果を発揮する。このため最小量と
して0.001%必要であるが、N量が多くなると連続
鋳造時の表面疵の発生を助長するので、その上限を0.
006%とした。
N is generally contained in steel as an unavoidable impurity, but it combines with Nb to form carbonitride Nb (CN 2 ), which is effective in improving high-temperature yield strength. For this reason, a minimum amount of 0.001% is required, but if the amount of N increases, it will promote the occurrence of surface flaws during continuous casting, so the upper limit should be set at 0.001%.
006%.

なお、本発明鋼材は、不可避的不純物としてPおよびS
を含有する。P、Sは高温強度に与える影響は小さいの
で、その量について特に限定はしないが、一般に靭性な
どに関する鋼材の特性は、P、S量が少ないほど向上す
る。望ましいP、S量はそれぞれ0.02%、 0.0
10%以下である。
In addition, the steel material of the present invention contains P and S as inevitable impurities.
Contains. Since P and S have a small effect on high temperature strength, their amounts are not particularly limited, but generally the properties of steel materials such as toughness improve as the amounts of P and S decrease. Desirable amounts of P and S are 0.02% and 0.0, respectively.
It is 10% or less.

本発明鋼材の基本成分は以上のとおりであり、十分に目
的を達成できるが、さらに以下に述べる元素即ちNi、
Cu、Cr、V、Tiを選択的に添加すると強度、靭性
の向上について、さらに好ましい結果が得られる。つぎ
に、前記添加元素とその添加量について説明する。
The basic components of the steel material of the present invention are as described above, and the purpose can be fully achieved, but the following elements, namely Ni,
By selectively adding Cu, Cr, V, and Ti, more favorable results can be obtained in terms of improvement in strength and toughness. Next, the additive elements and their amounts will be explained.

Niは母材の強度、靭性を向上させるが、0.05%以
下では効果が薄く、0.5%以上の添加は建築用鋼材と
して、極めて高価になるため、経済性を失するので、上
限は0.5%とした。
Ni improves the strength and toughness of the base metal, but if it is less than 0.05%, the effect is weak, and if it is added more than 0.5%, it becomes extremely expensive for construction steel, so it loses economic efficiency, so the upper limit is set. was set at 0.5%.

CuはNi とほぼ同様な効果を持つほか、Cu析出物
による高温強度の増加や耐食性、耐候性の向上にも効果
を有する。しかし、0.05%未満では効果が薄いので
、Cu量は0.05〜0.5%に限定する。
In addition to having almost the same effect as Ni, Cu also has the effect of increasing high-temperature strength and improving corrosion resistance and weather resistance due to Cu precipitates. However, if it is less than 0.05%, the effect is weak, so the amount of Cu is limited to 0.05 to 0.5%.

Crは母材の強度を高める元素であり、耐候性の向上に
も効果はあるが、0.05%東鞠では効果が薄い。従っ
てCr量は0.05〜0.5%とする。
Cr is an element that increases the strength of the base material, and is also effective in improving weather resistance, but the effect is weak in 0.05% Azumari. Therefore, the amount of Cr is set to 0.05 to 0.5%.

■はNbと同様に高温強度の向上に効果があるが、0.
005%未満では効果が薄く、そのため、■量は0.0
05〜0.04%に限定する。
(2) is effective in improving high temperature strength like Nb, but 0.
If it is less than 0.005%, the effect is weak, so the amount is 0.0.
05-0.04%.

TiはAI量が少ない場合、脱酸元素として有効である
ほか、HAZ靭性を向上させるが、0.005%未満で
は効果がなく、0.03%を超えると溶接性などに悪影
響がでて好ましくない。
When the amount of AI is small, Ti is effective as a deoxidizing element and improves HAZ toughness, but it is not effective when it is less than 0.005%, and it is preferable because it has a negative effect on weldability etc. when it exceeds 0.03%. do not have.

次に、本発明に係る鋼材の製造方法について説明する。Next, a method for manufacturing steel materials according to the present invention will be explained.

常温において溶接構造用圧延鋼材(JIS G3106
 )に規定する性能を満足し、600℃の高温において
高い耐力を維持させるためには、鋼材成分と共に鋼材の
加熱および圧延にかかる条件が重要である。本発明の鋼
材成分の特徴をなすMo、Nbの複合添加による高温耐
力の増大を図るには、加熱時にこれらの元素を十分に溶
体化させる必要があり、このため本発明の成分よりなる
鋼片の加熱温度の下限を1200℃とする。また、加熱
温度が高すぎると鋼片が著しく酸化されたり、変形する
ため、その上限は1350℃にしなければならない。
Rolled steel materials for welded structures (JIS G3106
In order to satisfy the performance stipulated in ) and maintain high yield strength at a high temperature of 600°C, the conditions for heating and rolling the steel are important as well as the steel composition. In order to increase the high-temperature yield strength through the combined addition of Mo and Nb, which are characteristic of the steel components of the present invention, it is necessary to sufficiently dissolve these elements during heating. The lower limit of the heating temperature is 1200°C. Furthermore, if the heating temperature is too high, the steel piece will be significantly oxidized or deformed, so the upper limit must be 1350°C.

次に、加熱した鋼片を熱間圧延するが、その圧延終了温
度を750℃以上の高温とする。その理由は圧延中にM
o、Nbの炭窒化物を析出させないためであり、T域で
これらの元素が析出すると、析出物サイズが大きくなり
、高温耐力が著しく低下する。さらに、本発明鋼は0.
70%以上のMoを添加して、圧延中の変態開始温度を
低下させているが、750℃未満の温度域での圧延はフ
ェライトを加工するため好ましくない。本発明において
、圧延終了温度の上限を1050℃とするが、その理由
は建築用鋼としての靭性を確保するためである。熱間圧
延終了後は室温まで放冷する。
Next, the heated steel slab is hot rolled, and the rolling end temperature is set to a high temperature of 750° C. or higher. The reason is that M during rolling
This is to prevent carbonitrides of o and Nb from precipitating, and if these elements precipitate in the T region, the precipitate size increases and the high temperature yield strength decreases significantly. Furthermore, the steel of the present invention has 0.
Although 70% or more of Mo is added to lower the transformation start temperature during rolling, rolling at a temperature below 750° C. is not preferable because it processes the ferrite. In the present invention, the upper limit of the rolling end temperature is set to 1050° C., and the reason for this is to ensure toughness as a construction steel. After hot rolling, the product is allowed to cool to room temperature.

なお、本発明鋼材を製造後、脱水素などの目的でA c
 1変態点以下の温度に再加熱しても、本発明鋼材の特
徴は何等損なわれることはない。
In addition, after manufacturing the steel material of the present invention, A c
Even if the steel material is reheated to a temperature below one transformation point, the characteristics of the steel material of the present invention are not impaired in any way.

〔実施例〕〔Example〕

周知の転炉、連続鋳造、形鋼工程で表に示す鋼成分のH
形鋼を製造し、常温強度、600℃の強度を調査した。
H of the steel components shown in the table in the well-known converter, continuous casting, and section steel processes.
A shaped steel was manufactured and its strength at room temperature and at 600°C was investigated.

第1表のkl〜Na2Oに本発明鋼を、N1121〜阻
30に比較鋼の化学成分を示す。つづいて第2表に本発
明鋼と比較鋼について、加熱、圧延条件別に機械的特性
を示す。第2表の阻1〜N1120の例では、すべて良
好な常温および高温強度を有している。
In Table 1, chemical compositions of the present invention steel are shown in kl to Na2O, and chemical compositions of comparative steels are shown in N1121 to Na2O. Next, Table 2 shows the mechanical properties of the steel of the present invention and the comparative steel according to heating and rolling conditions. The examples No. 1 to No. 1120 in Table 2 all have good strength at room temperature and at high temperature.

これに対し、NtL21〜随25では、加熱、圧延温度
が低いため、常温のYRが80%を超えたり、常温強度
に対する600℃強度の割合(以下、強度比とする)が
70%以下であり、不十分な特性である。
On the other hand, in NtL21 to Tsui 25, the heating and rolling temperatures are low, so the YR at room temperature exceeds 80%, and the ratio of 600°C strength to room temperature strength (hereinafter referred to as strength ratio) is 70% or less. , is an insufficient characteristic.

また、隘26〜Na35では、加熱、圧延条件は発明の
要件を満たすが、成分組成が発明の要件を満足出来ない
ため、不十分な特性である。すなわち、N(126、N
o、32 、 No、33では、Mo量が低いため、強
度比が不十分である。Nα27 、 No、28では、
DI値が高すぎるため、常温のYR,および強度比とも
にか不十分である。Nα29ではMn量が低すぎるため
、強度比が不十分である。Nα30 、 No、34 
、 Nα35では、Nbが添加されてないため、強度比
が不十分である。No、31では、C量が少ないため、
強度比が不十分である。
Further, in No. 26 to Na35, although the heating and rolling conditions meet the requirements of the invention, the component compositions do not satisfy the requirements of the invention, so the properties are insufficient. That is, N(126, N
No. o, 32, No. 33, the amount of Mo is low, so the strength ratio is insufficient. In Nα27, No, 28,
Since the DI value is too high, both the YR at room temperature and the strength ratio are insufficient. In Nα29, the Mn content is too low, so the intensity ratio is insufficient. Nα30, No, 34
, Nα35 has an insufficient intensity ratio because Nb is not added. No. 31 has a small amount of C, so
Insufficient strength ratio.

以下余白 [発明の効果] 本発明の化学成分および製造法で製造したH形鋼はウェ
ブ、フランジ共に、600℃の降伏強度が常温降伏強度
の70%以上で、常温の降伏比(YR:YS/TS)も
低い等の特徴を兼ね備えた全く新しい鋼材である。
Blank space below [Effects of the invention] The H-beam steel manufactured using the chemical composition and manufacturing method of the present invention has a yield strength at 600°C of 70% or more of the yield strength at room temperature for both the web and the flange, and the yield ratio at room temperature (YR:YS /TS) is a completely new steel material that also has the characteristics of low resistance.

Claims (1)

【特許請求の範囲】 1)重量比で C0.03〜0.15%、Si0.6%以下、Mn0.
2〜1.0%、Mo0.7〜1.5%Nb0.005〜
0.04%、Al0.1%以下、N0.001〜0.0
060% に加えて Ni0.05〜0.50%、Cu0.05〜0.50%
、Cr0.05〜0.50%、V0.005〜0.04
%、Ti0.005〜0.03%のうち1種または2種
以上、残部がFe及び不可避的不純物を含み、かつ下記
(1)式で与えられるDI値が0.8未満の成分組成よ
りなる鋼片を1200〜1350℃の温度域で再加熱後
、熱間圧延を750〜1050℃の温度範囲で終了して
ミクロ組織をフェライト主体とすることを特徴とする耐
火性の優れた低降伏比H形鋼の製造方法。 (1)式: DI=0.316√C(1+0.7Si)(4.1Mn
+0.35)(1+3Mo)(1+0.36Ni)(1
+2.2Cr)(1+0.365Cu)(成分単位;重
量%)
[Claims] 1) Weight ratio of C0.03 to 0.15%, Si 0.6% or less, Mn0.
2-1.0%, Mo0.7-1.5%, Nb0.005-
0.04%, Al 0.1% or less, N0.001~0.0
060% plus Ni0.05-0.50%, Cu0.05-0.50%
, Cr0.05-0.50%, V0.005-0.04
%, Ti 0.005 to 0.03%, the remainder contains Fe and unavoidable impurities, and the DI value given by the following formula (1) is less than 0.8. A low yield ratio with excellent fire resistance characterized by having a microstructure mainly composed of ferrite by reheating the steel billet in a temperature range of 1200 to 1350°C and then finishing hot rolling in a temperature range of 750 to 1050°C. Method for manufacturing H-beam steel. Equation (1): DI=0.316√C(1+0.7Si)(4.1Mn
+0.35)(1+3Mo)(1+0.36Ni)(1
+2.2Cr) (1+0.365Cu) (component unit; weight %)
JP3235790A 1990-02-15 1990-02-15 Method for producing low yield ratio H-section steel with excellent fire resistance Expired - Lifetime JPH0756044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3235790A JPH0756044B2 (en) 1990-02-15 1990-02-15 Method for producing low yield ratio H-section steel with excellent fire resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3235790A JPH0756044B2 (en) 1990-02-15 1990-02-15 Method for producing low yield ratio H-section steel with excellent fire resistance

Publications (2)

Publication Number Publication Date
JPH03240918A true JPH03240918A (en) 1991-10-28
JPH0756044B2 JPH0756044B2 (en) 1995-06-14

Family

ID=12356706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3235790A Expired - Lifetime JPH0756044B2 (en) 1990-02-15 1990-02-15 Method for producing low yield ratio H-section steel with excellent fire resistance

Country Status (1)

Country Link
JP (1) JPH0756044B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271753A (en) * 1992-03-23 1993-10-19 Nippon Steel Corp Manufacture of h-beam excellent in high temperature strength
JP2007050480A (en) * 2005-08-18 2007-03-01 Kobe Steel Ltd Manufacturing method of steel bar
JP2010215996A (en) * 2009-03-19 2010-09-30 Jfe Steel Corp Steel for earthquake resistant structure, and method for producing the same
CN108411191A (en) * 2018-03-02 2018-08-17 山东钢铁股份有限公司 A kind of 500MPa grades of H profile steels of normalizing rolling yield strength and preparation method thereof
CN113462974A (en) * 2021-06-29 2021-10-01 莱芜钢铁集团银山型钢有限公司 10-60 mm thickness specification high-strength high-toughness forklift steel and preparation method thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05271753A (en) * 1992-03-23 1993-10-19 Nippon Steel Corp Manufacture of h-beam excellent in high temperature strength
JP2007050480A (en) * 2005-08-18 2007-03-01 Kobe Steel Ltd Manufacturing method of steel bar
JP4637681B2 (en) * 2005-08-18 2011-02-23 株式会社神戸製鋼所 Steel bar manufacturing method
JP2010215996A (en) * 2009-03-19 2010-09-30 Jfe Steel Corp Steel for earthquake resistant structure, and method for producing the same
CN108411191A (en) * 2018-03-02 2018-08-17 山东钢铁股份有限公司 A kind of 500MPa grades of H profile steels of normalizing rolling yield strength and preparation method thereof
CN113462974A (en) * 2021-06-29 2021-10-01 莱芜钢铁集团银山型钢有限公司 10-60 mm thickness specification high-strength high-toughness forklift steel and preparation method thereof

Also Published As

Publication number Publication date
JPH0756044B2 (en) 1995-06-14

Similar Documents

Publication Publication Date Title
JPH0450362B2 (en)
JPS5927370B2 (en) High strength cold rolled steel plate for press working
JP4696602B2 (en) Method for producing rolled H-section steel with excellent low-temperature toughness
JPH0610040A (en) Production of high strength refractory steel excellent in toughness at low temperature in weld zone
JP3635208B2 (en) Low yield ratio fireproof steel plate and steel pipe excellent in toughness and method for producing the same
JPH03240918A (en) Production of wide flange shape excellent in refractoriness and reduced in yield ratio
JPS6293006A (en) Production of high strength hot rolled steel sheet
JP3559455B2 (en) Low-yield-ratio type refractory steel, steel pipe, and method for producing the same
JPH1068016A (en) Production of extra thick wide flange shape
JPH07224351A (en) Hot rolled high strength steel plate excellent in uniform elongation after cold working and its production
JPH0450363B2 (en)
JPH04263012A (en) Production of refractory wide flange shape excellent in strength at high temperature
JPH08176660A (en) Production of high strength extremely thick rolled wide flange shape steel for construction use, having fire resistance and excellent weldability and reduced in change in strength in plate thickness direction
JPH05271753A (en) Manufacture of h-beam excellent in high temperature strength
JPH046245A (en) Steel for building structure excellent in weatherability and fire resistance
JPH03271342A (en) Manufacture of building thin low yield ratio steel excellent in fire resistance and weldability
JPH0456722A (en) Production of steel with low yield ratio for construction use excellent in refractoriness
JPH0579744B2 (en)
JPH0456723A (en) Production of steel with low yield ratio for construction use excellent in refractoriness
JPH0553854B2 (en)
JPS61257421A (en) Production of extra-high tensile steel plate
JPH05339632A (en) Production of refractory steel plate for building having excellent toughness
JPH05339637A (en) Production of steel pipe or square pipe having low yield ratio and excellent weatherability
JPH03130319A (en) Production of thin low yield ratio steel for construction use excellent in refractoriness and weldability
JP2546953B2 (en) Method for manufacturing high-strength steel for construction with excellent fire resistance

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 15