JPH1096043A - Fire resistant steel for building structure excellent in galvanizing cracking resistance and its production - Google Patents

Fire resistant steel for building structure excellent in galvanizing cracking resistance and its production

Info

Publication number
JPH1096043A
JPH1096043A JP25133796A JP25133796A JPH1096043A JP H1096043 A JPH1096043 A JP H1096043A JP 25133796 A JP25133796 A JP 25133796A JP 25133796 A JP25133796 A JP 25133796A JP H1096043 A JPH1096043 A JP H1096043A
Authority
JP
Japan
Prior art keywords
less
steel
cooling
weight
rem
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25133796A
Other languages
Japanese (ja)
Inventor
Tatsuki Kimura
達己 木村
Mitsuhiro Okatsu
光浩 岡津
Fumimaru Kawabata
文丸 川端
Kenichi Amano
虔一 天野
Toru Hayashi
透 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP25133796A priority Critical patent/JPH1096043A/en
Publication of JPH1096043A publication Critical patent/JPH1096043A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase high temp. strength of a steel and to simplify and eliminate fireproofing coatings according to the Building Standards Act, by specifying its compsn., executing controlled cooling after hot rolling and precipitating an optimum amt. of VN into the structure. SOLUTION: The steel contains, by weight, 0.01 to 0.15%C, <=0.6% Si, 0.5 to 1.5% Mn <=0.030% P, <=0.030% S, 0.005 to 0.05$ Al, 0.2 to 0.7% Mo, 0.01 to0.15% V and 0.0050 to 0.0120% N, contg. one or >= two kinds among 0.001 to 0.15% Ti, 0.001 to 0.030% rare earth metals, 0.0005 to 0.0030% B, 0.0005 to 0.0030% Ca and 0.001 to 0.05% Zr and preferably contg. one or >= two kinds among 0.05 to 0.5% Cu, 0.05 to 0.5% Ni, 0.05 to 0.5% Cr and 0.005 to 0.3% Nb as well. This steel is subjected to hot rolling and is thereafter subjected to cooling in such a manner that the average cooling rate is regulated to <=αdefined by the formula I and the cooling stopping temp. is regulated to >=(Ar3-200 deg.C) based on Ar3 defined by the formula II.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、耐火被覆を簡略
化あるいは省略しても火災時に十分な強度を有する建築
構造用耐火鋼に関し、とくに耐亜鉛めっき割れ性を付与
した建築構造用耐火鋼材とその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refractory steel for a building structure which has sufficient strength in a fire even if the refractory coating is simplified or omitted, and more particularly to a refractory steel material for a building structure having galvanized crack resistance. It relates to the manufacturing method.

【0002】[0002]

【従来の技術】鉄骨構造の建築構造物には、例えば、JI
S G3136 の建築構造用圧延鋼材(SN規格)に準拠して熱
間圧延により製造された、厚鋼板、熱延鋼板、形鋼ある
いは鋼管が部材として多量に用いられている。一般的に
は、圧延H形鋼や鋼管は、熱間圧延のまま部材として使
用されるが、厚鋼板、熱延鋼板は、溶接H形鋼、ボック
ス柱、冷間成形コラム、溶接軽量H形鋼等の部材に加工
されて用いられている。
2. Description of the Related Art Steel building structures include, for example, JI
Thick steel sheets, hot-rolled steel sheets, shaped steel or steel pipes manufactured by hot rolling in accordance with S G3136 rolled steel for building structures (SN standard) are used in large quantities as members. Generally, rolled H-section steel and steel pipe are used as hot-rolled members, but thick steel plates and hot-rolled steel plates are welded H-section steel, box columns, cold-formed columns, welded lightweight H-sections. It is used after being processed into a member such as steel.

【0003】近年、建築基準法が改正されて、鋼材の高
温における強度に応じ耐火被覆を簡略化あるいは省略で
きるようになった。例えば、鋼材が 600℃において常温
の規格降伏強度の2/3 以上の高温耐力を有する場合に
は、耐火被覆を省略し、裸使用が可能になると言われて
いる。特に、耐火性能を付与した鋼材を利用することに
より、施工工数の削除、建設コストの低減、有効空間の
拡大などの大きな効果を生じる。
In recent years, the Building Standards Law has been revised, and it has become possible to simplify or omit the refractory coating according to the strength of steel at high temperatures. For example, it is said that if a steel material has a high-temperature proof strength of 2/3 or more of the standard yield strength at room temperature at 600 ° C., the refractory coating is omitted and bare use becomes possible. In particular, by using a steel material with fire resistance, great effects such as elimination of the number of construction steps, reduction of construction costs, and expansion of the effective space are produced.

【0004】このような耐火性能を付与した鋼材とし
て、例えば特公平8− 32945号公報に、Vを 0.005〜
0.2%含有し、炭素当量( Ceq=C+Mn/6+Si/24 +Ni/
40 +Cr/5+V/14 )を0.35〜0.50%とする耐火強度の
優れた建築構造用鋼材が提案されている。しかしなが
ら、耐火被覆を省略した場合には、耐食性の観点から鋼
材に溶融亜鉛めっき処理を施す必要がある。すでに提案
されている耐火鋼材では、溶融亜鉛めっき処理に際し
て、母材あるいは溶接熱影響部に亜鉛めっき割れを生じ
るという問題が残されており、耐亜鉛めっき割れ性に優
れた耐火鋼が要望されていた。
[0004] As a steel material having such fire resistance, for example, Japanese Patent Publication No. 8-32945 discloses that
0.2%, carbon equivalent (Ceq = C + Mn / 6 + Si / 24 + Ni /
40 + Cr / 5 + V / 14) of 0.35 to 0.50% has been proposed, which has excellent fire resistance. However, when the refractory coating is omitted, it is necessary to perform galvanizing on the steel material from the viewpoint of corrosion resistance. In the refractory steel materials already proposed, there is a problem that galvanizing cracks occur in the base metal or the weld heat-affected zone during hot-dip galvanizing, and there is a demand for refractory steels having excellent galvanizing crack resistance. Was.

【0005】[0005]

【発明が解決しようとする課題】本発明は、JIS G3136
に規定される強度、靱性および溶接性を満足することは
勿論、さらに建築構造用鋼材として要求される溶接熱影
響部の靱性、耐歪時効性に優れ、かつ 600℃における強
度および耐亜鉛めっき割れ性の優れた建築構造用耐火鋼
材とその製造方法を提案することを目的とする。
The present invention is based on JIS G3136
Not only satisfy the strength, toughness and weldability specified in, but also have excellent toughness and strain aging resistance of the welded heat-affected zone required for steel materials for building structures, as well as strength at 600 ° C and galvanizing crack resistance. An object of the present invention is to propose a refractory steel material for building structures having excellent heat resistance and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記課
題、特に耐火鋼における耐亜鉛めっき割れ性の向上を解
決するために鋭意検討した結果、 VとNを適正量添加し、VNを適正量析出させること
により、VNがフェライトおよびパーライトの変態核と
なり、組織の微細化を促進し、さらに、パーライトバン
ド生成の抑制によりパーライト(第2相)組織の均一分
散が図れ、耐亜鉛めっき割れ性が著しく向上すること、 VNの適正析出は、熱間圧延後の冷却速度と冷却停止
温度の最適化が重要であること、という知見を新規に見
出した。
Means for Solving the Problems The inventors of the present invention have made intensive studies to solve the above-mentioned problems, especially the improvement of galvanizing resistance to fire-resistant steel. As a result, V and N were added in appropriate amounts and VN was reduced. By precipitating an appropriate amount, VN becomes a transformation nucleus of ferrite and pearlite, promoting the refinement of the structure, and further suppressing the formation of the pearlite band, whereby the pearlite (second phase) structure can be uniformly dispersed, and the zinc plating cracking It has been newly found that the remarkably improved properties and that the proper precipitation of VN is important to optimize the cooling rate and cooling stop temperature after hot rolling.

【0007】本発明は、上記知見をもとに強度、靱性、
溶接性、溶接熱影響部の靱性、歪時効性を考慮して完成
されたものである。すなわち、本発明は、重量%で、
C:0.01〜0.15%、Si: 0.6%以下、Mn:0.5〜 1.6
%、P: 0.030%以下、S: 0.030%以下、Al: 0.005
〜0.05%、Mo: 0.2〜 0.7%、V:0.01〜0.15%、N:
0.0050〜0.0120%を含み、さらにTi:0.001〜 0.030
%、 REM: 0.001〜 0.030%、B:0.0005〜0.0030%、
Ca:0.0005〜0.0030%、Zr: 0.001〜0.05%のうちから
選ばれた1種または2種以上を含有し、残部Feおよび不
可避的不純物からなることを特徴とする耐亜鉛めっき割
れ性に優れた建築構造用耐火鋼材であり、また、本発明
は、重量%で、C:0.01〜0.15%、Si: 0.6%以下、
Mn: 0.5〜 1.6%、P: 0.030%以下、S: 0.030%以
下、Al: 0.005〜0.05%、Mo: 0.2〜 0.7%、V:0.01
〜0.15%、N:0.0050〜0.0120%およびTi: 0.001〜
0.030%、 REM: 0.001〜 0.030%、B:0.0005〜0.003
0%、Ca:0.0005〜0.0030%、Zr: 0.001〜0.05%のう
ちから選ばれた1種または2種以上を含み、さらにCu:
0.05〜 0.5%、Ni:0.05〜 0.5%、Cr:0.05〜 0.5%、
Nb: 0.005〜0.030 %のうちから選ばれた1種または2
種以上を含有し、残部Feおよび不可避的不純物からなる
ことを特徴とする耐亜鉛めっき割れ性に優れた建築構造
用耐火鋼材である。
[0007] The present invention is based on the above findings, strength, toughness,
It was completed in consideration of weldability, toughness of the heat affected zone, and strain aging. That is, the present invention provides, in weight percent,
C: 0.01 to 0.15%, Si: 0.6% or less, Mn: 0.5 to 1.6
%, P: 0.030% or less, S: 0.030% or less, Al: 0.005
-0.05%, Mo: 0.2-0.7%, V: 0.01-0.15%, N:
0.0050-0.0120%, Ti: 0.001-0.030
%, REM: 0.001 ~ 0.030%, B: 0.0005 ~ 0.0030%,
Ca: 0.0005 to 0.0030%, Zr: One or more selected from 0.001 to 0.05%, excellent in galvanizing crack resistance characterized by being composed of the balance of Fe and unavoidable impurities. The present invention is a fire-resistant steel material for building structures, and the present invention provides, in weight%, C: 0.01 to 0.15%, Si: 0.6% or less,
Mn: 0.5 to 1.6%, P: 0.030% or less, S: 0.030% or less, Al: 0.005 to 0.05%, Mo: 0.2 to 0.7%, V: 0.01
~ 0.15%, N: 0.0050 ~ 0.0120% and Ti: 0.001 ~
0.030%, REM: 0.001 to 0.030%, B: 0.0005 to 0.003
0%, Ca: 0.0005 to 0.0030%, Zr: One or more selected from 0.001 to 0.05%, and Cu:
0.05-0.5%, Ni: 0.05-0.5%, Cr: 0.05-0.5%,
Nb: One or two selected from 0.005 to 0.030%
It is a refractory steel material for building structures excellent in galvanization crack resistance, characterized by containing at least one species and the balance of Fe and unavoidable impurities.

【0008】また、本発明は上記またはに記載の鋼
を、加熱後熱間圧延したのち、平均冷却速度(℃/sec)
が空冷以上次(1) 式 α(℃/sec)=(V/N)× 3.5 ………… (1) で定義されるα以下、冷却停止温度が次(2) 式または次
(3) 式 Ar3(℃)= 910− 273C+25Si−74Mn−9Mo ………… (2) Ar3(℃)= 910− 273C+25Si−74Mn−9Mo−56Ni−16Cr−5Cu−1620Nb ………… (3) で定義されるAr3を基準として(Ar3− 200℃)以上と
なる冷却を施すことを特徴とする耐亜鉛めっき割れ性に
優れた建築構造用耐火鋼材の製造方法である。
[0008] The present invention also provides a steel described above or above, which is hot-rolled after heating and then cooled at an average cooling rate (° C / sec).
Is equal to or higher than air cooling, and is equal to or less than α defined by the following equation (1): α (° C./sec)=(V/N)×3.5 (1).
(3) Ar 3 (℃) = 910- 273C + 25Si-74Mn-9Mo ............ (2) Ar 3 (℃) = 910- 273C + 25Si-74Mn-9Mo-56Ni-16Cr-5Cu-1620Nb ............ ( This is a method for producing a fire-resistant steel material for building structures excellent in galvanization crack resistance, characterized by performing cooling of (Ar 3 −200 ° C.) or more based on Ar 3 defined in 3).

【0009】[0009]

【発明の実施の形態】本発明でいう鋼材とは、厚鋼板、
熱延鋼板、形鋼、鋼管を含む各種鋼材を意味する。ま
ず、本発明鋼材の化学組成について説明する。 C:0.01〜0.15% Cは強度を増加させる元素であり、強度を確保するため
に0.01%以上を必要とするが、0.15%を超えての添加は
歪時効性を低下させるので0.01〜0.15%に限定した。な
お、好ましい範囲は0.03〜0.12%である。
BEST MODE FOR CARRYING OUT THE INVENTION A steel material according to the present invention is a steel plate,
It means various steel materials including hot-rolled steel sheet, shaped steel, and steel pipe. First, the chemical composition of the steel material of the present invention will be described. C: 0.01 to 0.15% C is an element that increases the strength, and requires 0.01% or more to secure the strength. However, if added over 0.15%, the strain aging resistance is reduced, so 0.01 to 0.15% Limited to. The preferred range is 0.03 to 0.12%.

【0010】Si: 0.6%以下 Siは強度上昇に有効な元素であるが、 0.6%を超えると
溶接熱影響部(HAZ )靱性を著しく劣化させるので、
0.6%以下に限定した。なお、好ましくはスケール制御
の観点から0.01〜0.40%である。 Mn: 0.5〜 1.6% MnはSiと同様に強度上昇に有効な元素であるが、その効
果を得るためには 0.5%以上の添加を必要とする。しか
し、 1.6%を超えての添加は、粒内フェライトの生成を
阻害し、組織を粗大化させ、靱性を大きく低下させる。
このためMnは 0.5〜 1.6%の範囲とした。なお、好まし
くは0.6 〜1.5 %の範囲である。
Si: 0.6% or less Si is an effective element for increasing the strength, but if it exceeds 0.6%, the toughness of the heat affected zone (HAZ) significantly deteriorates.
Limited to 0.6% or less. In addition, it is preferably 0.01 to 0.40% from the viewpoint of scale control. Mn: 0.5 to 1.6% Mn is an element effective for increasing the strength like Si, but in order to obtain the effect, addition of 0.5% or more is required. However, if added over 1.6%, the formation of intragranular ferrite is inhibited, the structure becomes coarse, and the toughness is greatly reduced.
Therefore, Mn is set in the range of 0.5 to 1.6%. Incidentally, the content is preferably in the range of 0.6 to 1.5%.

【0011】P: 0.030%以下 Pは母材、溶接熱影響部の靱性、溶接割れ感受性を高め
るので、極力低減すべき元素であり、上限を 0.030%と
した。 S: 0.030%以下 Sは靱性および延性に対して圧延における異方性を高め
ることから、極力低減すべき元素であり、上限を 0.030
%とした。
P: 0.030% or less P increases the toughness and weld cracking susceptibility of the base material and the weld heat-affected zone, and is an element to be reduced as much as possible. S: 0.030% or less S is an element to be reduced as much as possible because it increases the anisotropy in rolling with respect to toughness and ductility, and the upper limit is 0.030%.
%.

【0012】Al: 0.005〜0.05% Alは脱酸剤として添加するが、脱酸のために 0.005%以
上必要であるが、0.05%を超えて含有しても脱酸効果は
飽和するので、上限を0.05%とした。 Mo: 0.2〜 0.7% Moは冷却変態開始温度(Ar3点)を低下させ、焼入れ性
を向上させ、さらにMo炭化物の単独析出により高温での
強度、耐火性能を高める有用な元素である。この効果を
得るためには、 0.2%以上の添加を必要とする。しかし
ながら、 0.7%を超えての添加は溶接性を低下させるの
で、Moは 0.2〜 0.7%の範囲とした。なお、好ましくは
0.3超〜 0.6%である。
Al: 0.005 to 0.05% Al is added as a deoxidizing agent, but 0.005% or more is required for deoxidation. However, if the content exceeds 0.05%, the deoxidizing effect is saturated. Was set to 0.05%. Mo: 0.2 to 0.7% Mo is a useful element that lowers the cooling transformation start temperature (Ar 3 point), improves quenching properties, and further enhances high-temperature strength and fire resistance by single precipitation of Mo carbide. To achieve this effect, 0.2% or more must be added. However, the addition of more than 0.7% lowers the weldability, so Mo was set in the range of 0.2 to 0.7%. Preferably,
More than 0.3 to 0.6%.

【0013】V:0.01〜0.15% Vは圧延冷却中にVNとしてオーステナイト中へ単独析
出しフェライト変態核となり組織を微細化し、靱性を高
め、さらに、母材の強度を上昇させ、強度、靱性バラン
スを向上させる不可欠な元素である。また、VNはパー
ライト変態の核としてパーライトバンドの生成を抑制
し、母材の耐亜鉛めっき割れ性向上に有効に作用する。
これらの効果を発揮させるには0.01%以上の添加が必要
であるが、一方、0.15%を超えて添加しても耐亜鉛めっ
き割れ性向上に対してその効果が飽和し、溶接硬化性を
高める耐溶接割れ性が低下するため、Vは0.01〜0.15%
の範囲とした。なお、好ましくは0.03〜0.12%である。
V: 0.01% to 0.15% V precipitates as VN alone in austenite during rolling and cooling, becomes a ferrite transformation nucleus, refines the structure, increases the toughness, further increases the strength of the base material, and balances the strength and toughness. It is an indispensable element to improve. In addition, VN suppresses generation of a pearlite band as a nucleus of pearlite transformation, and effectively acts to improve zinc plating crack resistance of a base material.
In order to exert these effects, 0.01% or more of addition is necessary. On the other hand, even if added in excess of 0.15%, the effect is saturated with respect to the improvement of galvanization crack resistance, and the weld hardening is enhanced. V is 0.01-0.15% because welding crack resistance decreases.
Range. In addition, it is preferably 0.03 to 0.12%.

【0014】N:0.0050〜0.0120% NはVと結合してVNとなり、母材の耐亜鉛めっき割れ
性向上に重要な役割をもつ元素である。0.0040%未満で
はその効果が小さく、逆に0.0120%を超えての添加は溶
接熱影響部の靱性を著しく低下させ、また歪時効性を助
長する。このため、Nは0.0050〜0.0120%の範囲とし
た。なお、Nは歪時効脆化防止の観点から、Vとの関係
でV/Nが 3.6以上となるようにするのが望ましい。
N: 0.0050% to 0.0120% N combines with V to form VN, and is an element that plays an important role in improving the galvanizing resistance of the base material. If it is less than 0.0040%, the effect is small, and if it exceeds 0.0120%, on the contrary, the toughness of the heat affected zone is significantly reduced and the strain aging property is promoted. Therefore, N is set in the range of 0.0050 to 0.0120%. From the viewpoint of preventing strain aging and embrittlement, it is desirable that N be such that V / N is 3.6 or more in relation to V.

【0015】Ti: 0.001〜 0.030%、 REM: 0.001〜
0.030%、B:0.0005〜0.0030%、Ca:0.0005〜0.0030
%、Zr: 0.001〜0.05%のうちから選ばれた1種または
2種以上 これらの元素は溶接熱影響部の靱性向上および耐亜鉛め
っき割れ性向上に顕著な効果を示す有効な元素であり、
これら効果を得るためには、Ti、 REM、B、Ca、Zrをそ
れぞれ 0.001%以上、 0.001%以上、0.0005%以上、0.
0005%以上および0.001 %以上、単独あるいは複合添加
する必要がある。しかし、Ti、 REM、B、Ca、Zrをそれ
ぞれ 0.030%、 0.030%、0.0030%、0.0030%および0.
0030%を超えて添加すると、母材の清浄性を低下させ、
靱性を低下させる。
Ti: 0.001 to 0.030%, REM: 0.001 to
0.030%, B: 0.0005-0.0030%, Ca: 0.0005-0.0030
%, Zr: one or more selected from 0.001 to 0.05% These elements are effective elements that have a remarkable effect on the improvement of the toughness of the heat affected zone and the improvement of the galvanization crack resistance.
To obtain these effects, Ti, REM, B, Ca, and Zr should be added at 0.001% or more, 0.001% or more, 0.0005% or more, respectively.
0005% or more and 0.001% or more need to be added alone or in combination. However, Ti, REM, B, Ca, and Zr were 0.030%, 0.030%, 0.0030%, 0.0030%, and 0.3%, respectively.
When added in excess of 0030%, the cleanliness of the base material is reduced,
Decreases toughness.

【0016】このため、Tiは 0.001〜 0.030%、 REMは
0.001〜 0.030%、Bは0.0005〜0.0030%、Caは0.0005
〜0.0030%、Zrは 0.001〜0.05%の範囲とした。 Cu:0.05〜 0.5%、Ni:0.05〜 0.5%、Cr:0.05〜 0.5
%、Nb: 0.005〜0.030 %のうちから選ばれた1種また
は2種以上 圧延による組織微細化効果が小さく且つ十分な冷却速度
を得ることが期待できない厚物サイズや高い強度を必要
とする場合には、Cu、Ni、Cr、Nbのうちから選択的に1
種または2種以上添加する。Cu、Ni、Cr、Nbは熱間圧延
後の冷却変態開始温度(Ar3点)を低下させ、オーステ
ナイト粒界からのフェライト変態を抑制する作用があ
り、一部がベイナイト化することによって母材の強度上
昇に有効に作用する。このような効果を得るためには、
Cu、Ni、Cr、Nbはそれぞれ0.05%、0.05%、0.05%、
0.005%以上添加する必要がある。Cuは熱間加工性を阻
害させるため、多量に添加する場合にはNiを同時に添加
する必要がある。しかし、 0.5%を超えての添加は製造
コストが高くなりすぎるため、Cu、Niの上限は 0.5%と
した。また、Cr、Nbはそれぞれ、0.50%、0.0030%を超
えて添加すると溶接性や靱性を損なう。このため、Cuは
0.05〜 0.5%、Niは0.05〜 0.5%、Crは0.05〜 0.5%、
Nbは 0.005〜0.030 %の範囲とした。
Therefore, Ti is 0.001 to 0.030%, and REM is
0.001 to 0.030%, B is 0.0005 to 0.0030%, Ca is 0.0005
0.000.0030%, Zr was in the range of 0.001 to 0.05%. Cu: 0.05-0.5%, Ni: 0.05-0.5%, Cr: 0.05-0.5
%, Nb: one or two or more selected from 0.005 to 0.030% In the case of requiring a thick material size or a high strength, which has a small effect of microstructure refinement by rolling and cannot expect a sufficient cooling rate Is selectively one of Cu, Ni, Cr, and Nb.
Seeds or two or more are added. Cu, Ni, Cr, and Nb have the effect of lowering the cooling transformation start temperature (Ar three points) after hot rolling and suppressing the transformation of ferrite from austenite grain boundaries. Effectively increases the strength of the steel. To achieve this effect,
Cu, Ni, Cr, Nb are 0.05%, 0.05%, 0.05%, respectively.
It is necessary to add 0.005% or more. Since Cu impairs hot workability, it is necessary to add Ni at the same time when adding a large amount. However, if the addition exceeds 0.5%, the production cost becomes too high, so the upper limits of Cu and Ni are set to 0.5%. If Cr and Nb are added in excess of 0.50% and 0.0030%, respectively, the weldability and toughness are impaired. For this reason, Cu
0.05-0.5%, Ni 0.05-0.5%, Cr 0.05-0.5%,
Nb was set in the range of 0.005 to 0.030%.

【0017】その他、残部はFeおよび不可避的不純物で
ある。つぎに製造条件について説明する。上記した組成
の鋼を加熱し、熱間圧延する。熱間圧延により厚鋼板、
熱延鋼板、形鋼、鋼管に成形される。それぞれの熱間圧
延については特に規定しないが、公知の圧延方法すべて
が好適である。加熱温度については1100℃〜1350℃の範
囲が好ましく、圧延終了温度はAr3点よりも高いことが
望ましい。
The remainder is Fe and inevitable impurities. Next, the manufacturing conditions will be described. The steel having the above composition is heated and hot-rolled. Steel plate by hot rolling,
It is formed into hot rolled steel sheet, shaped steel, and steel pipe. Although each hot rolling is not particularly limited, all known rolling methods are suitable. The heating temperature is preferably in the range of 1100 ° C. to 1350 ° C., and the rolling end temperature is preferably higher than the three Ar points.

【0018】熱間圧延後、鋼材は冷却される。 圧延後の平均冷却速度(℃/sec ):空冷以上次 (1)式
で定義されるα以下 α(℃/sec)=(V/N)× 3.5 ………… (1) 熱間圧延後、平均冷却速度が (1)式で定義されるαを超
えると、オーステナイト域でのVNの析出が抑制され、
フェライトおよびパーライト変態の核生成が抑制される
ため、バンド状組織となり耐亜鉛めっき割れ性を阻害す
る。このことから、圧延後の平均冷却速度はα以下とし
た。なお、冷却速度の下限は空冷の冷却速度である。
After the hot rolling, the steel is cooled. Average cooling rate after rolling (° C / sec): not less than air cooling and not more than α defined by the following equation (1) α (° C / sec) = (V / N) × 3.5 (1) After hot rolling When the average cooling rate exceeds α defined by the equation (1), precipitation of VN in the austenite region is suppressed,
Since nucleation of ferrite and pearlite transformation is suppressed, a band-like structure is formed, which inhibits galvanizing crack resistance. From this, the average cooling rate after rolling was set to α or less. The lower limit of the cooling rate is the cooling rate of air cooling.

【0019】冷却停止温度:次 (2)式または(3) 式で定
義されるAr3を基準として、Ar3−200 ℃以上 Ar3(℃)= 910− 273C+25Si−74Mn−9Mo ………… (2) Ar3(℃)= 910− 273C+25Si−74Mn−9Mo−56Ni−16Cr−5Cu−1620Nb ………… (3) 空冷以上の冷却速度でAr3−200 ℃よりも低い温度まで
冷却すると、残留応力の増加による条切り歪の問題や歪
時効性を高めることから、冷却停止温度はAr3−200 ℃
以上とした。なお、好ましくは冷却停止温度の範囲はA
r3−150 ℃以上、Ar3以下である。
Cooling stop temperature: Ar 3 −200 ° C. or higher Ar 3 (° C.) = 910−273C + 25Si−74Mn−9Mo based on Ar 3 defined by the following equation (2) or (3): (2) Ar 3 (℃) = 910- 273C + 25Si-74Mn-9Mo-56Ni-16Cr-5Cu-1620Nb ............ (3) When cooled in air or more cooling rate until a temperature lower than the Ar 3 -200 ° C., Due to the problem of shear distortion due to the increase in residual stress and the improvement of strain aging, the cooling stop temperature is Ar 3 -200 ° C.
It was above. Preferably, the range of the cooling stop temperature is A
r 3 −150 ° C. or higher and Ar 3 or lower.

【0020】なお、冷却を停止したのち、厚鋼板、圧延
H形鋼および鋼管については放冷、熱延鋼板については
以降コイルに巻きとり、放冷する。Ar3の計算は、鋼材
の化学組成により (2)式または (3)式を用いて行うが、
Cu、Ni、Cr、Nbを添加しない場合には (2)式、添加する
場合には (3)式を用いる。
After the cooling is stopped, the steel plate, the rolled H-section steel and the steel pipe are allowed to cool, and the hot-rolled steel plate is wound around a coil and allowed to cool. The calculation of Ar 3 is performed by using equation (2) or (3) depending on the chemical composition of the steel material.
Formula (2) is used when Cu, Ni, Cr, and Nb are not added, and Formula (3) is used when Cu, Ni, Cr, and Nb are added.

【0021】[0021]

【実施例】表1に示す化学組成を有する鋼を加熱し、熱
間圧延を施したのち、表2に示す冷却を施し、厚鋼板、
熱延鋼板、H形鋼および鋼管とした。製造した鋼材につ
いて、引張特性(降伏点(YP)、引張強さ(TS)、降伏
比(YR)、延び(El))、靱性(0℃におけるシャルピ
ー吸収エネルギー(vE0 ))を調査した。
EXAMPLE A steel having a chemical composition shown in Table 1 was heated and hot-rolled, and then cooled as shown in Table 2 to obtain a steel plate.
A hot-rolled steel sheet, an H-section steel and a steel pipe were used. The manufactured steel materials were examined for tensile properties (yield point (YP), tensile strength (TS), yield ratio (YR), elongation (El)) and toughness (Charpy absorbed energy at 0 ° C. (vE 0 )).

【0022】さらに、上記鋼材を用い、表2に示す入熱
で溶接継手を作製し、 HAZ部(ボンド部から1mm)の靱
性(0℃におけるシャルピー吸収エネルギー(vE0 HAZ
)を調査した。また、上記鋼材および溶接熱影響部に
ついて、 450℃亜鉛浴中で引張試験を実施し絞り値を求
め、亜鉛めっき割れ性を評価した。また、上記鋼材に溶
融亜鉛めっき処理(めっき条件: 450℃浴中に10min 間
浸漬)を施したのち、 600℃における引張特性( 600℃
YS)を調査した。
Further, a welded joint was produced from the above steel material by heat input shown in Table 2, and the toughness of the HAZ portion (1 mm from the bond portion) (Charpy absorbed energy at 0 ° C. (vE 0 HAZ)
)investigated. In addition, a tensile test was performed on the above steel material and the weld heat affected zone in a zinc bath at 450 ° C. to determine the aperture value, and the galvanization cracking property was evaluated. After subjecting the above steel materials to hot dip galvanizing (plating conditions: immersion in a 450 ° C bath for 10 minutes), tensile properties at 600 ° C (600 ° C
YS).

【0023】これらの結果を表2に示す。Table 2 shows the results.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】表2から、本発明例は、母材の強度靱性、
溶接熱影響部の靱性にすぐれているうえに、耐火特性、
耐亜鉛めっき割れ性に優れている。一方、圧延後の冷却
条件が本発明範囲を逸脱している比較例は、母材靱性が
低く、YRが高く、母材の耐亜鉛めっき割れ性が低い。Mo
が低いNo.12 は耐火性能が低く、N、V量が本発明範囲
を外れるNo.13 、No.14 、No.16 では、母材の耐亜鉛め
っき割れ性が低い。Ti、REM 、B、Ca、Zrがいずれも添
加されていないNo.15 は、 HAZ靱性および HAZの耐亜鉛
めっき割れ性が低い。
From Table 2, it can be seen that the examples of the present invention show the strength toughness of the base material,
In addition to excellent toughness of the heat affected zone, fire resistance,
Excellent galvanizing crack resistance. On the other hand, the comparative examples in which the cooling conditions after rolling are out of the range of the present invention have low base metal toughness, high YR, and low zinc plating crack resistance of the base metal. Mo
No. 12 having a low N is low in fire resistance, and Nos. 13, 14, and 16 having N and V amounts out of the range of the present invention have low zinc plating cracking resistance of the base material. No. 15, in which none of Ti, REM, B, Ca, and Zr was added, had low HAZ toughness and low HAZ galvanizing cracking resistance.

【0027】このように、本発明範囲に鋼組成、圧延後
の冷却条件を調整することにより、母材の強度、靱性は
もちろん、溶接熱影響部の靱性、耐火強度に加え耐亜鉛
めっき性が優れた鋼材を容易に製造できる。
As described above, by adjusting the steel composition and the cooling conditions after rolling within the scope of the present invention, not only the strength and toughness of the base metal but also the toughness and fire resistance of the weld heat affected zone and the galvanization resistance are improved. Excellent steel materials can be easily manufactured.

【0028】[0028]

【発明の効果】本発明によれば、溶接構造用鋼に用いら
れる鋼材に関して耐火性能が高く、強度、 HAZ靱性や耐
震性も十分な性能が確保でき、しかも耐亜鉛めっき割れ
性に優れた鋼材を提供でき、産業上極めて有益な効果を
奏する。
According to the present invention, according to the present invention, a steel material having high fire resistance, sufficient strength, HAZ toughness and seismic resistance, and excellent galvanization crack resistance can be secured for steel materials used for welded structural steel. Can be provided, which has an extremely beneficial effect on industry.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川端 文丸 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 天野 虔一 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 (72)発明者 林 透 岡山県倉敷市水島川崎通1丁目(番地な し) 川崎製鉄株式会社水島製鉄所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Fumimaru Kawabata 1-chome, Mizushima-Kawasaki-dori, Kurashiki-shi, Okayama Pref. 1-chome (without address) Mizushima Works, Kawasaki Steel Corporation (72) Inventor Toru Hayashi 1-chome, Mizushima-Kawasaki-dori, Kurashiki City, Okayama Prefecture (without address) Mizushima Works, Kawasaki Steel Corporation

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.01〜0.15%、Si: 0.6
%以下、Mn: 0.5〜 1.6%、P: 0.030%以下、S:
0.030%以下、Al: 0.005〜0.05%、Mo: 0.2〜 0.7
%、V:0.01〜0.15%、N:0.0050〜0.0120%を含み、
さらにTi: 0.001〜 0.030%、 REM: 0.001〜 0.030
%、B:0.0005〜0.0030%、Ca:0.0005〜0.0030%、Z
r: 0.001〜0.05%のうちから選ばれた1種または2種
以上を含有し、残部Feおよび不可避的不純物からなるこ
とを特徴とする耐亜鉛めっき割れ性に優れた建築構造用
耐火鋼材。
C .: 0.01 to 0.15% by weight, Si: 0.6% by weight
% Or less, Mn: 0.5 to 1.6%, P: 0.030% or less, S:
0.030% or less, Al: 0.005 to 0.05%, Mo: 0.2 to 0.7
%, V: 0.01 to 0.15%, N: 0.0050 to 0.0120%,
Further Ti: 0.001 to 0.030%, REM: 0.001 to 0.030
%, B: 0.0005-0.0030%, Ca: 0.0005-0.0030%, Z
r: A fire-resistant steel material for building structures excellent in galvanization crack resistance, containing one or two or more selected from 0.001 to 0.05%, the balance being Fe and unavoidable impurities.
【請求項2】 重量%で、C:0.01〜0.15%、Si: 0.6
%以下、Mn: 0.5〜 1.6%、P: 0.030%以下、S:
0.030%以下、Al: 0.005〜0.05%、Mo: 0.2〜 0.7
%、V:0.01〜0.15%、N:0.0050〜0.0120%およびT
i: 0.001〜 0.030%、 REM: 0.001〜 0.030%、B:
0.0005〜0.0030%、Ca:0.0005〜0.0030%、Zr: 0.001
〜0.05%のうちから選ばれた1種または2種以上を含
み、さらにCu:0.05〜 0.5%、Ni:0.05〜 0.5%、Cr:
0.05〜 0.5%、Nb: 0.005〜0.030 %のうちから選ばれ
た1種または2種以上を含有し、残部Feおよび不可避的
不純物からなることを特徴とする耐亜鉛めっき割れ性に
優れた建築構造用耐火鋼材。
2. In% by weight, C: 0.01 to 0.15%, Si: 0.6
% Or less, Mn: 0.5 to 1.6%, P: 0.030% or less, S:
0.030% or less, Al: 0.005 to 0.05%, Mo: 0.2 to 0.7
%, V: 0.01 to 0.15%, N: 0.0050 to 0.0120% and T
i: 0.001 to 0.030%, REM: 0.001 to 0.030%, B:
0.0005-0.0030%, Ca: 0.0005-0.0030%, Zr: 0.001
One or two or more selected from the group consisting of 0.05 to 0.5%, Cu: 0.05 to 0.5%, Ni: 0.05 to 0.5%, and Cr:
Architectural structure with excellent galvanization resistance, characterized by containing one or more selected from 0.05 to 0.5% and Nb: 0.005 to 0.030%, with the balance being Fe and unavoidable impurities. For refractory steel.
【請求項3】 重量%で、C:0.01〜0.15%、Si: 0.6
%以下、Mn: 0.5〜 1.6%、P: 0.030%以下、S:
0.030%以下、Al: 0.005〜0.05%、Mo: 0.2〜 0.7
%、V:0.01〜0.15%、N:0.0050〜0.0120%を含み、
さらにTi: 0.001〜 0.030%、 REM: 0.001〜 0.030
%、B:0.0005〜0.0030%、Ca:0.0005〜0.0030%、Z
r: 0.001〜0.05%のうちから選ばれた1種または2種
以上を含有し、残部Feおよび不可避的不純物からなる鋼
を加熱後熱間圧延したのち、平均冷却速度(℃/sec)が
空冷以上下記(1) 式で定義されるα以下、冷却停止温度
が下記(2) 式で定義されるAr3を基準として(Ar3− 2
00℃)以上となる冷却を施すことを特徴とする耐亜鉛め
っき割れ性に優れた建築構造用耐火鋼材の製造方法。 記 α(℃/sec)=(V/N)× 3.5 ………… (1) Ar3(℃)= 910− 273C+25Si−74Mn−9Mo ………… (2)
3. C .: 0.01 to 0.15% by weight, Si: 0.6% by weight
% Or less, Mn: 0.5 to 1.6%, P: 0.030% or less, S:
0.030% or less, Al: 0.005 to 0.05%, Mo: 0.2 to 0.7
%, V: 0.01 to 0.15%, N: 0.0050 to 0.0120%,
Further Ti: 0.001 to 0.030%, REM: 0.001 to 0.030
%, B: 0.0005-0.0030%, Ca: 0.0005-0.0030%, Z
r: A steel containing one or more selected from 0.001 to 0.05%, the balance consisting of Fe and unavoidable impurities is heated, then hot-rolled, and the average cooling rate (° C / sec) is air-cooled Above α defined by the following equation (1), the cooling stop temperature is based on Ar 3 defined by the following equation (2) (Ar 3 −2
(00 ° C.) or more. Note α (° C / sec) = (V / N) × 3.5 (1) Ar 3 (° C) = 910-273C + 25Si-74Mn-9Mo ... (2)
【請求項4】 重量%で、C:0.01〜0.15%、Si: 0.6
%以下、Mn: 0.5〜 1.6%、P: 0.030%以下、S:
0.030%以下、Al: 0.005〜0.05%、Mo: 0.2〜 0.7
%、V:0.01〜0.15%、N:0.0050〜0.0120%およびT
i: 0.001〜 0.030%、 REM: 0.001〜 0.030%、B:
0.0005〜0.0030%、Ca:0.0005〜0.0030%、Zr: 0.001
〜0.05%のうちから選ばれた1種または2種以上を含
み、さらにCu:0.05〜 0.5%、Ni:0.05〜 0.5%、Cr:
0.05〜 0.5%、Nb: 0.005〜0.030 %のうちから選ばれ
た1種または2種以上を含有し、残部Feおよび不可避的
不純物からなる鋼を加熱後熱間圧延したのち、平均冷却
速度(℃/sec)が空冷以上下記(1) 式であらわされるα
以下、冷却停止温度が下記(3) 式であらわされるAr3
基準として(Ar3− 200℃)以上となる冷却を施すこと
を特徴とする耐亜鉛めっき割れ性に優れた建築構造用耐
火鋼材の製造方法。 記 α(℃/sec)=(V/N)× 3.5 ………… (1) Ar3(℃)= 910− 273C+25Si−74Mn−9Mo−56Ni−16Cr−5Cu−1620Nb ………… (3)
4. C: 0.01 to 0.15% by weight, Si: 0.6% by weight
% Or less, Mn: 0.5 to 1.6%, P: 0.030% or less, S:
0.030% or less, Al: 0.005 to 0.05%, Mo: 0.2 to 0.7
%, V: 0.01 to 0.15%, N: 0.0050 to 0.0120% and T
i: 0.001 to 0.030%, REM: 0.001 to 0.030%, B:
0.0005-0.0030%, Ca: 0.0005-0.0030%, Zr: 0.001
One or two or more selected from the group consisting of 0.05 to 0.5%, Cu: 0.05 to 0.5%, Ni: 0.05 to 0.5%, and Cr:
After hot-rolling a steel containing at least one selected from 0.05 to 0.5% and Nb: 0.005 to 0.030%, the balance being Fe and inevitable impurities, the average cooling rate (° C.) / sec) is equal to or greater than air cooling.
A refractory steel material for building structure excellent in galvanizing crack resistance, characterized in that cooling is performed so that the cooling stop temperature becomes (Ar 3 −200 ° C.) or more based on Ar 3 represented by the following formula (3). Manufacturing method. Note α (° C / sec) = (V / N) × 3.5 (1) Ar 3 (° C) = 910-273C + 25Si-74Mn-9Mo-56Ni-16Cr-5Cu-1620Nb (3)
JP25133796A 1996-09-24 1996-09-24 Fire resistant steel for building structure excellent in galvanizing cracking resistance and its production Pending JPH1096043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25133796A JPH1096043A (en) 1996-09-24 1996-09-24 Fire resistant steel for building structure excellent in galvanizing cracking resistance and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25133796A JPH1096043A (en) 1996-09-24 1996-09-24 Fire resistant steel for building structure excellent in galvanizing cracking resistance and its production

Publications (1)

Publication Number Publication Date
JPH1096043A true JPH1096043A (en) 1998-04-14

Family

ID=17221332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25133796A Pending JPH1096043A (en) 1996-09-24 1996-09-24 Fire resistant steel for building structure excellent in galvanizing cracking resistance and its production

Country Status (1)

Country Link
JP (1) JPH1096043A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358335B1 (en) * 1999-03-10 2002-03-19 Kawasaki Steel Corporation Continuous casting slab suitable for the production of non-tempered high tensile steel material
JP2003003238A (en) * 2001-06-22 2003-01-08 Nisshin Steel Co Ltd Zn-Al-Mg BASED HOT DIP PLATED STEEL HAVING EXCELLENT CORROSION RESISTANCE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358335B1 (en) * 1999-03-10 2002-03-19 Kawasaki Steel Corporation Continuous casting slab suitable for the production of non-tempered high tensile steel material
JP2003003238A (en) * 2001-06-22 2003-01-08 Nisshin Steel Co Ltd Zn-Al-Mg BASED HOT DIP PLATED STEEL HAVING EXCELLENT CORROSION RESISTANCE

Similar Documents

Publication Publication Date Title
US8052807B2 (en) Steel sheet excellent in workability
JP4772927B2 (en) High-strength steel sheet, hot-dip galvanized steel sheet, alloyed hot-dip galvanized steel sheet having excellent fatigue characteristics and elongation and impact characteristics, and methods for producing them
WO2019189842A1 (en) High-strength galvanized steel sheet, high-strength member, and manufacturing methods therefor
US6007644A (en) Heavy-wall H-shaped steel having high toughness and yield strength and process for making steel
JP4834149B2 (en) Welded structural steel excellent in high temperature strength and low temperature toughness and its manufacturing method
JP5277672B2 (en) High strength steel plate with excellent delayed fracture resistance and method for producing the same
WO2006093282A1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP4102281B2 (en) High strength thin steel sheet excellent in hydrogen embrittlement resistance, weldability and hole expandability, and method for producing the same
JP4571915B2 (en) Refractory thick steel plate and manufacturing method thereof
JP6690787B1 (en) ERW steel pipe, its manufacturing method, and steel pipe pile
JP5264234B2 (en) Zn-Al-Mg-based plated steel sheet having excellent resistance to molten metal embrittlement cracking and method for producing the same
JP4265153B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
JP4265152B2 (en) High-tensile cold-rolled steel sheet with excellent elongation and stretch flangeability and method for producing the same
US20060065335A1 (en) High tensile steel excellent in high temperature strength and method for production thereof
JPH0737646B2 (en) Manufacturing method of refractory high strength steel with excellent low temperature toughness of weld zone
JPH04325657A (en) High strength hot rolled steel sheet excellent in stretch-flanging property and its manufacture
JP2010235989A (en) High strength zn-al-mg based plated steel sheet excellent in liquid metal embrittlement resistant characteristics and production method therefor
JPH10280090A (en) High strength cold rolled steel sheet having superior shape and excellent in bendability, and its production
JP3267324B2 (en) Manufacturing method of high tensile galvanized steel sheet for fire resistance
JP4348102B2 (en) 490 MPa class high strength steel excellent in high temperature strength and manufacturing method thereof
JPH1096043A (en) Fire resistant steel for building structure excellent in galvanizing cracking resistance and its production
KR20040004137A (en) STRUCTURAL Fe-Cr STEEL SHEET, MANUFACTURING METHOD THEREOF, AND STRUCTURAL SHAPED STEEL
JP3687400B2 (en) Manufacturing method of high strength thin steel sheet with excellent workability and plating properties
JP4028815B2 (en) 780 MPa class high strength steel excellent in high temperature strength and manufacturing method thereof
JPH11323477A (en) Extremely thick wide flange shape having high strength and high toughness