JPH0552659B2 - - Google Patents

Info

Publication number
JPH0552659B2
JPH0552659B2 JP60004290A JP429085A JPH0552659B2 JP H0552659 B2 JPH0552659 B2 JP H0552659B2 JP 60004290 A JP60004290 A JP 60004290A JP 429085 A JP429085 A JP 429085A JP H0552659 B2 JPH0552659 B2 JP H0552659B2
Authority
JP
Japan
Prior art keywords
tcnq
capacitors
salt
oxide film
neutral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60004290A
Other languages
Japanese (ja)
Other versions
JPS61163625A (en
Inventor
Shozo Takahashi
Susumu Yoshimura
Soji Tsucha
Yasuo Kudo
Toshikuni Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP429085A priority Critical patent/JPS61163625A/en
Priority to US06/818,592 priority patent/US4679124A/en
Publication of JPS61163625A publication Critical patent/JPS61163625A/en
Publication of JPH0552659B2 publication Critical patent/JPH0552659B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、損失が小さく、高周波特性の良好な
固体電解コンデンサの製造方法に関するものであ
る。 従来の技術 近年、電気機器のデイジタル化にともなつて、
そこに使用されるコンデンサも高周波領域におい
てインピーダンスが低く、小型大容量化への要求
が高まつている。従来、高周波領域用のコンデン
サとしてはプラスチツクフイルムコンデンサ、マ
イカコンデンサ、積層セラミツクコンデンサなど
が用いられているが、フイルムコンデンサおよび
マイカコンデンサでは形状が大きくなつてしまう
ために大容量化がむずかしく、また積層セラミツ
クコンデンサは小型大容量の要望から生まれたも
のであるが価格が非常に高くなること、温度特性
が悪いことなどの欠点を有している。一方、大容
量タイプのコンデンサとして用いられているもの
にアルミニウム乾式電解コンデンサやアルミニウ
ムまたはタンタル固体電解コンデンサなどがあ
る。これらのコンデンサは誘電体となる酸化皮膜
をひじように薄くできるために大容量が実現でき
るのであるが、その反面酸化皮膜の損傷が起き易
いために酸化皮膜と陰極間に電解質を施し随時損
傷を修復する必要がある。アルミニウム乾式電解
コンデンサでは、エツチングを施した陽・陰極ア
ルミニウム箔を紙のセパレータを介して巻き取
り、液状の電解質を用いている。このため、電解
質の液もれやイオン電導性などの理由から経時的
に静電容量の減少や損失の増大をもたらす事と高
周波特性・低温領域での損失が大きいなどの欠点
を有している。又、アルミニウムやタンタル固体
電解コンデンサでは前記アルミニウム電解コンデ
ンサの欠点改良のため電解質の固体化がなされて
いる。この固体電解質形成には硝酸マンガン液に
陽極箔を浸漬し、350℃前後の高温炉中にて熱分
解し、二酸化マンガン(MnO2)層をつくる。こ
のコンデンサの場合、電解質が固体のために高温
における電解質の流出、低温域での凝固から生ず
る機能低下などの欠点がなく、液状電解質と較べ
良好な周波数特性・温度特性を示すが、高温で数
回熱分解することによる酸化皮膜の損傷及び二酸
化マンガンの比抵抗が高いことなどの理由から高
周波領域での損失は十分に小さいとは言えない。 そこで、これらのコンデンサの欠点を改良する
ために固体電解質として導電性が高く、陽極酸化
性のすぐれた有機半導体たとえば7,7,8,8
−テトラシアノキノジメタン(以下TCNQと記
す)錯体を用いることが提案されている。この有
機半導体は有機溶媒に溶解したり、加熱による融
解などの手段を用いて酸化皮膜に含浸塗布するこ
とが可能であり、MnO2を含浸する際に生ずる熱
分解による酸化皮膜の損傷を防ぐことができ、導
電性が高く、陽極酸化性のすれたTCNQ錯体を
用いることで高周波特性が良好で大容量のコンデ
ンサが可能となる。この有機半導体を固体電解質
として用いる技術は、例えば丹羽信一氏により出
願されている特開昭58−17609号公報に記載され
ている。 発明が解決しようとする問題点 前記発明によると、酸化皮膜へのTCNQ塩の
含浸が有機半導体(TCNQ塩)を加熱融解する
ことによるとしている。TCNQ塩が融解後、た
だちに酸化皮膜を浸漬し、TCNQ塩の熱分解が
起き始めるまでの短時間の間に浸漬を終了し、そ
ののち急冷することによつてTCNQ塩の微結晶
を形成せしめ、被覆性へ良好な素子が得られたこ
とが言われている。しかしながら、TCNQ塩は
融解した際の粘性が大きく、短時間の浸漬では酸
化皮膜への含浸は不十分である。 本発明は上記問題を解決するもので、含浸性の
向上により有機半導体を電解質として用いる固体
電解コンデンサの小型大容量化をねらつた製造方
法を提供するものである。 問題点を解決するための手段 本発明による固体電解コンデンサの製造方法
は、固体電解質として7,7,8,8−テトラシ
アノキジメタンのコンプレツクス塩と中性の7,
7,8,8−テトラシアノキジメタンの混合物を
用意する工程と、前記固体電解質を溶融する工程
と、前記溶融した固体電解質を減圧下において陽
極酸化皮膜に含浸させる工程とを有するものであ
る。 作 用 今まで行なつていたTCNQ塩を常圧にて溶融
含浸する方法では、溶融時の粘性が大きいこと及
び分解するまでの時間が短かいので短時間しか浸
漬できないなどの理由から、微細なエツチングを
施した陽極酸化皮膜には十分な含浸塗布ができる
には至らなかつた。又、減圧含浸法を行なえば含
浸性の向上することは良く知られた事例である
が、TCNQ塩の昇華・分解が加速されるので実
際に行なうことは不可能であつた。そこで、鋭意
研究を行ないTCNQ塩の昇華・分解を抑え、且
つ溶融時の粘性も低下するための方法を検討した
ところ、TCNQ塩に中性のTCNQを添加するこ
とが良好な結果をもたらすことが判明した。中性
のTCNQは絶縁物であるので過剰な添加は半導
体であるところのTCNQ塩の抵抗値を増加させ、
コンデンサの特性に悪影響を与えるが、TCNQ
塩の溶融時におこる昇華はTCNQ塩から離脱し
た中性のTCNQであるので、その離脱分に相当
する量の中性のTCNQを前もつて添加しておく
と溶融時に化学結合し、塩を形成するので何ら問
題はない。中性のTCNQが昇華する量は、溶融
含浸に要する時間(約20秒)で、大気圧で5重量
%以下、減圧(10-2Torr)では約30重量%であ
つたので、上記の含浸条件では中性のTCNQの
添加量は30重量%が最適量である。 本発明で開示される有機半導体(TCNQ塩)
を固体電解質とした固体電解コンデンサの製造方
法は、TCNQ塩に昇華性の高い中性のTCNQを
余分に添加することにより、TCNQ塩の組成変
化を抑え安定化したことから減圧含浸することが
可能となり、且つ、中性のTCNQ添加で溶融時
の粘性が下がり流動性が良くなつたことから、微
細なエツチングピツトである陽極化皮膜への含浸
塗布性が向上し、コンデンサの初期特性を改良し
たものである。 実施例 以下に本発明の実施例について述べる。 有機半導体として公知の方法で合成されたn−
ブチルイソキノリニウム(TCNQ)2100重量部を
用い、これに中性のTCNQを2から50重量%添
加して乳鉢にて良く混合した。こののち、アルミ
チウム缶ケース(直径4mm、高さ5mm)に約20mg
を充填し、その上に巻取形のアルミ電解コンデン
サのユニツトをのせた。加熱が減圧でき、且つ、
急速な昇温のできる赤外線加熱装置を用い、この
装置の加熱品ホルダーに上記のユニツト入りアル
ミ缶ケースを配置した。まず、加熱槽内を約
10-2Torrまで減圧にひいたのち、270℃まで1秒
以内に昇温し、20秒の間その温度に保持して、溶
融したTCNQ塩と中性のTCNQをユニツト中に
浸み込ませた。その後、一気に室内空気を加熱槽
内へ導入し、酸化皮膜内に含浸すると同時に有機
半導体の冷却固化をはかつた。これによつて得ら
れた固体電解コンデンサの初期特性を、減圧しな
い場合と比較して表に示す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing a solid electrolytic capacitor with low loss and good high frequency characteristics. Conventional technology In recent years, with the digitization of electrical equipment,
The capacitors used there also have low impedance in the high frequency range, and there is an increasing demand for smaller size and larger capacity. Conventionally, plastic film capacitors, mica capacitors, multilayer ceramic capacitors, etc. have been used as capacitors for high frequency ranges, but film capacitors and mica capacitors are large in size, making it difficult to increase the capacitance, and multilayer ceramic capacitors Capacitors were created out of a desire for small size and large capacity, but they have drawbacks such as being extremely expensive and having poor temperature characteristics. On the other hand, aluminum dry electrolytic capacitors and aluminum or tantalum solid electrolytic capacitors are used as large capacity capacitors. These capacitors can achieve large capacitance because the oxide film that serves as the dielectric can be made as thin as an elbow, but on the other hand, the oxide film is easily damaged, so an electrolyte is applied between the oxide film and the cathode to prevent damage from time to time. Needs to be repaired. In aluminum dry electrolytic capacitors, etched anode and cathode aluminum foils are wound up with a paper separator in between, and a liquid electrolyte is used. For this reason, it has drawbacks such as a decrease in capacitance and an increase in loss over time due to electrolyte leakage and ionic conductivity, as well as large losses in high frequency characteristics and low temperature regions. . In addition, in aluminum or tantalum solid electrolytic capacitors, the electrolyte is solidified to improve the drawbacks of the aluminum electrolytic capacitors. To form this solid electrolyte, an anode foil is immersed in a manganese nitrate solution and thermally decomposed in a high-temperature furnace at around 350°C to form a manganese dioxide (MnO 2 ) layer. In the case of this capacitor, since the electrolyte is solid, there are no drawbacks such as electrolyte leakage at high temperatures or functional deterioration caused by solidification at low temperatures, and it shows better frequency and temperature characteristics than liquid electrolytes. The loss in the high frequency range cannot be said to be sufficiently small due to damage to the oxide film due to recurrent decomposition and the high specific resistance of manganese dioxide. Therefore, in order to improve the shortcomings of these capacitors, organic semiconductors with high conductivity and excellent anodic oxidation properties are used as solid electrolytes, such as 7, 7, 8, 8.
It has been proposed to use a -tetracyanoquinodimethane (hereinafter referred to as TCNQ) complex. This organic semiconductor can be applied to the oxide film by dissolving it in an organic solvent or melting it by heating, and can prevent damage to the oxide film due to thermal decomposition that occurs when impregnating MnO 2 . By using the TCNQ complex, which has high conductivity and good anodic oxidation properties, it is possible to create capacitors with good high-frequency characteristics and large capacity. A technique for using this organic semiconductor as a solid electrolyte is described, for example, in Japanese Patent Application Laid-Open No. 17609/1983 filed by Shinichi Niwa. Problems to be Solved by the Invention According to the invention, the oxide film is impregnated with TCNQ salt by heating and melting the organic semiconductor (TCNQ salt). Immediately after the TCNQ salt melts, the oxide film is immersed, the immersion is completed for a short time until thermal decomposition of the TCNQ salt begins to occur, and then it is rapidly cooled to form microcrystals of the TCNQ salt, It is said that an element with good coverage was obtained. However, TCNQ salt has a high viscosity when melted, and impregnation into the oxide film is insufficient even when immersed for a short time. The present invention solves the above-mentioned problems and provides a method of manufacturing a solid electrolytic capacitor using an organic semiconductor as an electrolyte in a smaller size and larger capacity by improving the impregnating property. Means for Solving the Problems The method for manufacturing a solid electrolytic capacitor according to the present invention comprises a complex salt of 7,7,8,8-tetracyanokydimethane and a neutral 7,
The method includes a step of preparing a mixture of 7,8,8-tetracyanoki dimethane, a step of melting the solid electrolyte, and a step of impregnating the anodic oxide film with the melted solid electrolyte under reduced pressure. Effect The conventional method of melting and impregnating TCNQ salt at normal pressure has a high viscosity when melted and a short time for decomposition, so it can only be immersed for a short time. The etched anodic oxide film could not be sufficiently impregnated and coated. Furthermore, although it is a well-known example that impregnating properties can be improved by performing a reduced pressure impregnation method, it has been impossible to actually carry out this method because the sublimation and decomposition of the TCNQ salt are accelerated. Therefore, we conducted extensive research to find a method to suppress the sublimation and decomposition of TCNQ salt, as well as to reduce its viscosity when melted.We found that adding neutral TCNQ to TCNQ salt can bring about good results. found. Since neutral TCNQ is an insulator, excessive addition increases the resistance value of TCNQ salt, which is a semiconductor.
Although it adversely affects the characteristics of the capacitor, TCNQ
The sublimation that occurs when the salt melts is neutral TCNQ released from the TCNQ salt, so if you add neutral TCNQ in an amount equivalent to the amount released in advance, it will chemically bond during melting and form a salt. So there is no problem. The amount of neutral TCNQ sublimated was less than 5% by weight at atmospheric pressure and about 30% by weight at reduced pressure (10 -2 Torr) in the time required for melt impregnation (about 20 seconds). Under these conditions, the optimum amount of neutral TCNQ added is 30% by weight. Organic semiconductor (TCNQ salt) disclosed in the present invention
The manufacturing method for solid electrolytic capacitors using TCNQ as a solid electrolyte involves adding extra neutral TCNQ with high sublimability to TCNQ salt, which suppresses compositional changes in the TCNQ salt and stabilizes it, making it possible to impregnate under reduced pressure. In addition, the addition of neutral TCNQ lowers the viscosity during melting and improves fluidity, which improves the impregnation applicability to the anodized film, which is a fine etching pit, and improves the initial characteristics of the capacitor. It is. Examples Examples of the present invention will be described below. n- synthesized by a method known as an organic semiconductor
Using 100 parts by weight of butylisoquinolinium (TCNQ) 2 , 2 to 50% by weight of neutral TCNQ was added and mixed well in a mortar. After this, approximately 20 mg was placed in an aluminum can case (diameter 4 mm, height 5 mm).
A rolled-up aluminum electrolytic capacitor unit was placed on top of the capacitor. Heating can be done under reduced pressure, and
An infrared heating device capable of rapid temperature rise was used, and the aluminum can case containing the unit was placed in the heating product holder of this device. First, check the inside of the heating tank for approx.
After reducing the pressure to 10 -2 Torr, the temperature was raised to 270°C within 1 second and held at that temperature for 20 seconds to allow the molten TCNQ salt and neutral TCNQ to permeate into the unit. Ta. Thereafter, indoor air was introduced into the heating tank all at once to impregnate the oxide film and simultaneously cool and solidify the organic semiconductor. The initial characteristics of the solid electrolytic capacitor thus obtained are shown in the table in comparison with those obtained without pressure reduction.

【表】【table】

【表】 このように中性TCNQの添加量が多くなるに
つれて容量の増大、損失の減少を示しているが、
減圧がない場合で5重量%の添加、減圧した場合
で30重量%の添加でそれぞれ最良の特性を示して
いる。 発明の効果 以上要するに本発明は陽極酸化皮膜に固体電解
質を含浸塗布する際に、減圧含浸法を用いること
を特徴とする固体電解コンデンサの製造方法を提
供するもので、小型大容量化をはかることができ
る。
[Table] This shows that as the amount of neutral TCNQ added increases, the capacity increases and the loss decreases.
Addition of 5% by weight without reduced pressure and addition of 30% by weight with reduced pressure showed the best characteristics, respectively. Effects of the Invention In summary, the present invention provides a method for manufacturing a solid electrolytic capacitor characterized by using a reduced pressure impregnation method when impregnating and applying a solid electrolyte to an anodized film. I can do it.

Claims (1)

【特許請求の範囲】[Claims] 1 固体電解質として7,7,8,8−テトラシ
アノキジメタンのコンプレツクス塩と中性の7,
7,8,8−テトラシアノキジメタンの混合物を
用意する工程と、前記固体電解質を溶融する工程
と、前記溶融した固体電解質を減圧下において陽
極酸化皮膜に含浸させる工程とを有することを特
徴とする固体電解コンデンサの製造方法。
1 As a solid electrolyte, a complex salt of 7,7,8,8-tetracyanoki dimethane and a neutral 7,
It is characterized by comprising a step of preparing a mixture of 7,8,8-tetracyanoki dimethane, a step of melting the solid electrolyte, and a step of impregnating the anodic oxide film with the melted solid electrolyte under reduced pressure. A method for manufacturing solid electrolytic capacitors.
JP429085A 1985-01-14 1985-01-14 Manufacture of solid electrolytic capacitor Granted JPS61163625A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP429085A JPS61163625A (en) 1985-01-14 1985-01-14 Manufacture of solid electrolytic capacitor
US06/818,592 US4679124A (en) 1985-01-14 1986-01-13 Solid electrolytic capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP429085A JPS61163625A (en) 1985-01-14 1985-01-14 Manufacture of solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS61163625A JPS61163625A (en) 1986-07-24
JPH0552659B2 true JPH0552659B2 (en) 1993-08-06

Family

ID=11580382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP429085A Granted JPS61163625A (en) 1985-01-14 1985-01-14 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS61163625A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916855A (en) * 1972-06-13 1974-02-14
JPS5817609A (en) * 1981-07-24 1983-02-01 三洋電機株式会社 Solid electrolytic condenser and method of pruducing same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916855A (en) * 1972-06-13 1974-02-14
JPS5817609A (en) * 1981-07-24 1983-02-01 三洋電機株式会社 Solid electrolytic condenser and method of pruducing same

Also Published As

Publication number Publication date
JPS61163625A (en) 1986-07-24

Similar Documents

Publication Publication Date Title
JPS6252939B2 (en)
JPH0552659B2 (en)
JPH0553051B2 (en)
JP3055199B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0260047B2 (en)
JPH0374028B2 (en)
JP2500657B2 (en) Method for manufacturing solid electrolytic capacitor
KR940005995B1 (en) Capacitor
JPH0666237B2 (en) Solid electrolytic capacitor
JPH09260215A (en) Manufacture of solid electrolytic capacitor
JPH0337854B2 (en)
JPH0374029B2 (en)
JP3162738B2 (en) Solid electrolytic capacitors
JPS61163627A (en) Manufacture of solid electrolytic capacitor
JPH0666236B2 (en) Solid electrolytic capacitor
JPH0250611B2 (en)
JPS61107716A (en) Solid electrolytic capacitor
JPS6242509A (en) Manufacture of solid electrolytic capacitor
JPS6065520A (en) Solid electrolytic condenser
JPS62204514A (en) Solid electrolytic capacitor
JPH01209716A (en) Manufacture of solid electrolytic capacitor
JPH0744131B2 (en) Method for manufacturing solid electrolytic capacitor
JPS62235720A (en) Solid electrolytic capacitor
JPH058565B2 (en)
JPH0722074B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees