JPH0374028B2 - - Google Patents

Info

Publication number
JPH0374028B2
JPH0374028B2 JP59064004A JP6400484A JPH0374028B2 JP H0374028 B2 JPH0374028 B2 JP H0374028B2 JP 59064004 A JP59064004 A JP 59064004A JP 6400484 A JP6400484 A JP 6400484A JP H0374028 B2 JPH0374028 B2 JP H0374028B2
Authority
JP
Japan
Prior art keywords
organic semiconductor
capacitors
pvac
aluminum
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59064004A
Other languages
Japanese (ja)
Other versions
JPS60206126A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6400484A priority Critical patent/JPS60206126A/en
Publication of JPS60206126A publication Critical patent/JPS60206126A/en
Publication of JPH0374028B2 publication Critical patent/JPH0374028B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は酢酸ビニル樹脂をバインダーとして含
有した有機半導体を固体電解質として用い、損失
の小さい高周波特性の良好な固体電解コンデンサ
の製造方法に関するものである。 従来例の構成とその問題点 近年、電気機器のデイジタル化にともなつて、
そこに使用されるコンデンサも高周波領域におい
てインピーダンスが低く、小型大容量化への要求
が高まつている。従来、高周波領域用のコンデン
サとしてはプラスチツクフイルムコンデンサ、マ
イカコンデンサ、積層セラミツクコンデンサなど
が用いられているが、フイルムコンデンサおよび
マイカコンデンサでは形状が大きくなつてしまう
ために大容量化がむずかしく、また積層セラミツ
クコンデンサは小型大容量の要望から生まれたも
のであるが価格が非常に高くなること、温度特性
が悪いことなどの欠点を有している。一方、大容
量タイプのコンデンサとして用いられているもの
にアルミニウム乾式電解コンデンサやアルミニウ
ムまたはタンタル固体電解コンデンサなどがあ
る。これらのコンデンサは誘電体となる酸化皮膜
をひじように薄くできるために大容量が実現でき
るのであるが、その反面酸化皮膜の損傷が起き易
いために酸化皮膜と陰極間に電解質を施し随時損
傷を修復する必要がある。アルミニウム乾式電解
コンデンサでは、エツチングを施した陽・陰極ア
ルミニウム箔を紙のセパレータを介して巻き取
り、液状の電解質を用いている。このため、電解
質の液もれやイオン電導性などの理由から経時的
に静電容量の減少や損失の増大をもたらす事と高
周波特性・低温領域での損失が大きいなどの欠点
を有している。 又、アルミニウムやタンタル固体電解コンデン
サでは前記アルミニウム電解コンデンサの欠点改
良のため電解質の固体化がなされている。この固
体電解質形成には硝酸マンガン液に陽極箔を浸漬
し、350℃前後の高温炉中にて熱分解し、二酸化
マンガン(MnO2)層をつくる。このコンデンサ
の場合、電解質が固体のために高温における電解
質の流出、低温域での凝固から生ずる機能低下な
どの欠点がなく、液状電解質と較べ良好な周波数
特性・温度特性を示すが、高温で数回熱分解する
ことによる酸化皮膜の損傷及び二酸化マンガンの
比抵抗が高いことなどの理由から高周波域での損
失は十分に小さいとは言えない。 そこで、これらのコンデンサの欠点を改良する
ため固体電解質として導電性が高く、陽極酸化性
のすぐれた有機半導体(7,7,8,8,テトラ
シアノキノジメタン錯体)を用いる事が提案され
ている。この有機半導体は有機溶媒に溶解した
り、加熱による融解などの手段を用いて酸化皮膜
に含浸塗布することが可能であり、MnO2を含浸
する際に生ずる熱分解による酸化皮膜の損傷を防
ぐことができ、導電性が高く、陽極酸化性のすぐ
れたTCNQ錯体を用いることで高周波特性が良
好で大容量のコンデンサが可能となる。 従来、丹羽信一氏による発明では、N−n−プ
ロピルあるいはN−iso−プロピルイソキノリン
とTCNQからなる有機半導体を固体電解質とし
て用いることが出願されている(特開昭58−
17609号公報)。前記発明によると、酸化皮膜への
TCNQ塩の含浸が有機半導体を加熱溶融するこ
とによるとし、その付着性も有機半導体が非晶質
状態であることからバインダー用樹脂を何ら用い
る必要のないことが言われている。しかしなが
ら、TCNQ塩自体ひじように結晶性の高い材料
であり、いかに溶解含浸付着後、短時間内に急冷
して非晶質状態に近づけても酸化皮膜に長時間に
わたつて強固に接着し、コンデンサ特性を安定化
させることは不可能である。 発明の目的 本発明は従来技術のもつその様な欠点を解消す
るので、酢酸ビニル樹脂を有機半導体の酸化皮膜
への接着及び有機半導体同志の結合に用い、コン
デンサの初特性を悪化することなく、tanδと漏れ
電流が小さくかつ高寿命の固体電解コンデンサの
製造方法を提供するものである。 発明の構成 本発明による固体電解コンデンサの基本構成
は、陽極酸化することによつて形成された酸化皮
膜を有する弁金属箔を陽極とし、陰極箔とセパレ
ータ紙を介して巻き取つたのち、この陽・陰極箔
間に酢酸ビニル樹脂をバインダーとして用いて加
熱融解した有機半導体を含浸することにより固体
電解質層を強固に付着形成せしめたものである。 実施例の説明 以下に本発明の実施例について述べる。 実施例 1 有機半導体(N−n−プロピルイソキノリニウ
ム(TCNQ)2)100部に対し、酢酸ビニル樹脂
(PVAc)をバインダーとして添加した例につい
て述べる。また、比較のため、PVAcを添加しな
い場合の例も述べる。上記有機半導体に定められ
たPVAcを添加し、乳鉢にて混合混練したのちア
ルミニウム缶ケース(直径6.5mm、高さ10mm)に
約100mgを充填し、280℃のホツトプレート上にて
溶融して液状にし、あらかじめ同じ温度(280℃)
に予熱してある捲回型アルミニウム電極コンデン
サの巻取りユニツト(定格4.7μF、100V用)を浸
漬し、十分に含浸が施されたのちアルミ缶ケース
ごと液体窒素で急冷を行ない室温まで冷却した。
この際、PVAcを添加した有機半導体が均一に融
解が完了するまでに約20秒(PVAc添加量が多い
ほど長くなる)、巻取りユニツトを浸漬している
時間が約15秒間、冷却のため液体窒素に浸漬した
時間が約10秒間であつた。又、コンデンサの巻取
りユニツトはアルミニウム端面に化成処理を施し
て用いた。 以上の過程を経たのち、最后にアルミ缶ケース
の上部を樹脂封口し、固体電解コンデンサができ
あがる。 本実施例の初期特性を図に示す。図から明らか
なようにPVAcを添加することによつて初期容量
が若干減少するが、接着性が向上したために無添
加の場合に比べtanδが1/2以下に減少している。
また寿命はPVAc添加によつて著しい効果を示
し、添加量が多いほど容量の減少分(△C)がf
小さくなつている。すなわち無添加の場合85℃中
無負荷で1000時間后12%の容量減少であるが、
PVAcを10重量部添加した場合にはこの容量減少
が5%以内であつた。このように、バインダーと
してPVAcを添加することによりアルミニウム箔
へのTCNQ塩の接着及びTCNQ塩結晶どうしの
結合を強め、無添加の場合と比較し、若干の初期
容量減少があるもののtanδ及び寿命特性の面で顕
著な効果があつた。 添加するPVAcの量は0.5部以上であれば、寿
命特性を著しく改善することが判明している。ま
た許される最大の添加量は、コンデンサの損失の
増大が起る60部附近であるが、好ましくは、溶融
含浸の作業性が低下する30部以下が適当である。 実施例 2 有機半導体がN−n−ブチルイソキノリニウム
(TCNQ)2およびN−n−ブチルピコリニウム
(TCNQ)2の場合の例を示す。実施例1と同様の
方法で、有機半導体100部に対し、バインダーと
してPVAcを各10部および50部添加した。 表に
得られたコンデンサの初期特性を示す。 いずれの有機半導体の場合にもPVAcを添加し
ない時と比較し、若干の初期容量に減少があるも
のの、tanδとLC(漏えい電流)の減少が著しく、
PVAcを有機半導体に添加することによつて得ら
れる酸化皮膜への接着性の向上、固体電解質どう
しの結合性が向上することなどによる結果が現れ
ている。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for manufacturing a solid electrolytic capacitor with low loss and good high frequency characteristics, using an organic semiconductor containing vinyl acetate resin as a binder as a solid electrolyte. Conventional configuration and its problems In recent years, with the digitalization of electrical equipment,
The capacitors used there also have low impedance in the high frequency range, and there is an increasing demand for smaller size and larger capacity. Conventionally, plastic film capacitors, mica capacitors, multilayer ceramic capacitors, etc. have been used as capacitors for high frequency ranges, but film capacitors and mica capacitors are large in size, making it difficult to increase the capacitance, and multilayer ceramic capacitors Capacitors were created out of a desire for small size and large capacity, but they have drawbacks such as being extremely expensive and having poor temperature characteristics. On the other hand, aluminum dry electrolytic capacitors and aluminum or tantalum solid electrolytic capacitors are used as large capacity capacitors. These capacitors can achieve large capacitance because the oxide film that serves as the dielectric can be made as thin as an elbow, but on the other hand, the oxide film is easily damaged, so an electrolyte is applied between the oxide film and the cathode to prevent damage from time to time. Needs to be repaired. In aluminum dry electrolytic capacitors, etched anode and cathode aluminum foils are wound up with a paper separator in between, and a liquid electrolyte is used. For this reason, it has drawbacks such as a decrease in capacitance and an increase in loss over time due to electrolyte leakage and ionic conductivity, as well as large losses in high frequency characteristics and low temperature regions. . In addition, in aluminum or tantalum solid electrolytic capacitors, the electrolyte is solidified to improve the drawbacks of the aluminum electrolytic capacitors. To form this solid electrolyte, an anode foil is immersed in a manganese nitrate solution and thermally decomposed in a high-temperature furnace at around 350°C to form a manganese dioxide (MnO 2 ) layer. In the case of this capacitor, since the electrolyte is solid, there are no drawbacks such as electrolyte leakage at high temperatures or functional deterioration caused by solidification at low temperatures, and it shows better frequency and temperature characteristics than liquid electrolytes. The loss in the high frequency range cannot be said to be sufficiently small due to damage to the oxide film due to recurrent decomposition and the high specific resistance of manganese dioxide. Therefore, in order to improve the shortcomings of these capacitors, it has been proposed to use an organic semiconductor (7,7,8,8, tetracyanoquinodimethane complex) with high conductivity and excellent anodic oxidation properties as a solid electrolyte. There is. This organic semiconductor can be applied to the oxide film by dissolving it in an organic solvent or melting it by heating, and can prevent damage to the oxide film due to thermal decomposition that occurs when impregnating MnO 2 . By using the TCNQ complex, which has high conductivity and excellent anodic oxidation properties, it is possible to create capacitors with good high-frequency characteristics and large capacity. Previously, in an invention by Mr. Shinichi Niwa, an application has been filed for the use of an organic semiconductor consisting of N-n-propyl or N-iso-propylisoquinoline and TCNQ as a solid electrolyte (Japanese Patent Application Laid-Open No. 1983-1992).
Publication No. 17609). According to the invention, the oxidation film is
It is said that the impregnation of TCNQ salt is done by heating and melting the organic semiconductor, and since the organic semiconductor is in an amorphous state, there is no need to use any binder resin. However, TCNQ salt itself is a highly crystalline material, and even if it is rapidly cooled to an amorphous state within a short period of time after being melted and impregnated, it will remain firmly attached to the oxide film for a long time. It is impossible to stabilize capacitor characteristics. Purpose of the Invention The present invention eliminates such drawbacks of the prior art by using vinyl acetate resin for adhering organic semiconductors to oxide films and bonding organic semiconductors together, without deteriorating the initial characteristics of the capacitor. The present invention provides a method for manufacturing a solid electrolytic capacitor with low tan δ and leakage current and long life. Structure of the Invention The basic structure of the solid electrolytic capacitor according to the present invention is that a valve metal foil having an oxide film formed by anodizing is used as an anode, and is wound up with a cathode foil and separator paper interposed therebetween. - A solid electrolyte layer is firmly attached and formed by impregnating the cathode foil with an organic semiconductor heated and melted using vinyl acetate resin as a binder. Description of Examples Examples of the present invention will be described below. Example 1 An example will be described in which vinyl acetate resin (PVAc) was added as a binder to 100 parts of an organic semiconductor (Nn-propylisoquinolinium (TCNQ) 2 ). For comparison, an example in which PVAc is not added will also be described. After adding the specified PVAc to the above organic semiconductor, mixing and kneading it in a mortar, approximately 100mg was filled into an aluminum can case (diameter 6.5mm, height 10mm), and melted on a hot plate at 280℃ to form a liquid. and the same temperature (280℃) in advance.
A preheated wound unit of a wound aluminum electrode capacitor (rated at 4.7μF, for 100V) was immersed in the solution, and after sufficient impregnation, the aluminum can case was rapidly cooled with liquid nitrogen and cooled to room temperature.
At this time, it takes about 20 seconds for the PVAc-added organic semiconductor to completely melt uniformly (the longer the amount of PVAc added, the longer it takes), and the time the winding unit is immersed for about 15 seconds. The time of immersion in nitrogen was about 10 seconds. In addition, the winding unit of the capacitor was used by applying a chemical conversion treatment to the aluminum end face. After going through the above process, the top of the aluminum can case is finally sealed with resin to complete the solid electrolytic capacitor. The initial characteristics of this example are shown in the figure. As is clear from the figure, the initial capacity is slightly reduced by adding PVAc, but due to the improved adhesion, tan δ is reduced to less than 1/2 compared to the case without addition.
In addition, the addition of PVAc has a significant effect on life, and the larger the amount added, the more the capacity decreases (△C).
It's getting smaller. In other words, when no additives are used, the capacity decreases by 12% after 1000 hours at 85℃ with no load.
When 10 parts by weight of PVAc was added, this volume reduction was within 5%. In this way, by adding PVAc as a binder, the adhesion of TCNQ salt to aluminum foil and the bonding between TCNQ salt crystals are strengthened, and although there is a slight decrease in initial capacity compared to the case without addition, tan δ and life characteristics are improved. It had a remarkable effect in terms of. It has been found that when the amount of PVAc added is 0.5 part or more, the life characteristics are significantly improved. The maximum allowable addition amount is around 60 parts, which causes an increase in loss in the capacitor, but preferably 30 parts or less, which reduces the workability of melt impregnation. Example 2 An example in which the organic semiconductors are Nn-butylisoquinolinium (TCNQ) 2 and Nn-butylpicolinium (TCNQ) 2 is shown. In the same manner as in Example 1, 10 parts and 50 parts of PVAc were added as binders to 100 parts of the organic semiconductor, respectively. The initial characteristics of the obtained capacitor are shown in the table. In the case of any organic semiconductor, although there is a slight decrease in the initial capacity compared to when PVAc is not added, the decrease in tanδ and LC (leakage current) is significant.
Adding PVAc to organic semiconductors has shown results such as improved adhesion to oxide films and improved bonding between solid electrolytes.

【表】 本発明のバインダーとしては酢酸ビニル樹脂が
好適であり、バインダーを添加することによる特
性の悪化を生ずることなく、有機半導体を強固に
付着させるものである必要がある。 有機半導体の強固な付着のための材料選択の条
件としては、有機半導体を220〜300℃で融解して
含浸するためにバインダー(高分子)自身がその
温度範囲で融解し、有機半導体と良く溶け合い、
かつ融解后も容易に炭化して接着能が劣つてしま
つたり、沸騰あるいは発泡してエツチングした
陽・陰極箔への含浸性が劣らないことがあげられ
る。 このため、酢酸ビニル樹脂と有機半導体を適量
良く混合混練したのち加熱融解するか、あらかじ
め酢酸ビニル樹脂を可溶な溶剤(例えば酢酸エチ
ルなど)に溶解し、巻き取り素子を浸漬して酢酸
ビニル樹脂を含浸・形成したのち有機半導体のみ
の加熱融対に浸漬し含浸しても良い。 なお本発明の酢酸ビニル樹脂の添加量は、固体
電解質100重量部に対して、寿命特性の面から0.5
部以上が好適であり、また溶融含浸の作業性の面
から30部以下が適当である。 発明の効果 以上要するに本発明は有機半導体を加熱溶解
し、コンデンサ素子に含浸し、その後冷却固化す
る固体電解コンデンサーの製造方法において、酢
酸ビニル樹脂をバインダーとして用いることを特
徴とするもので、tanδと漏れ電流が小さく、容量
経時変化が無添加の場合と比較して著しく減少さ
せる効果を得ることが可能である。
[Table] Vinyl acetate resin is suitable as the binder of the present invention, and it must be able to firmly adhere the organic semiconductor without deteriorating the properties due to the addition of the binder. The conditions for selecting materials for strong adhesion of organic semiconductors are that in order to melt and impregnate organic semiconductors at 220 to 300°C, the binder (polymer) itself must melt within that temperature range and blend well with the organic semiconductors. ,
In addition, even after melting, it easily carbonizes, resulting in poor adhesion, and boils or foams, resulting in poor impregnation into etched anode and cathode foils. For this reason, vinyl acetate resin and an organic semiconductor can be mixed and kneaded in appropriate amounts and then heated and melted, or the vinyl acetate resin can be dissolved in advance in a soluble solvent (such as ethyl acetate) and the winding element can be immersed in the vinyl acetate resin. After impregnating and forming the organic semiconductor, it may be impregnated by immersing it in a heated fused pair of only an organic semiconductor. The amount of vinyl acetate resin added in the present invention is 0.5 parts by weight per 100 parts by weight of the solid electrolyte from the viewpoint of life characteristics.
Part or more is suitable, and from the viewpoint of workability of melt impregnation, 30 parts or less is suitable. Effects of the Invention In summary, the present invention is a method for manufacturing a solid electrolytic capacitor in which an organic semiconductor is heated and melted, impregnated into a capacitor element, and then cooled and solidified, which is characterized in that vinyl acetate resin is used as a binder. It is possible to obtain the effect that the leakage current is small and the capacitance change over time is significantly reduced compared to the case without additives.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明のPVAcを添加して得られるアルミ
ニウム固体電解コンデンサの120Hzにおける容量
と損失(tanδ)のPVAc添加量への依存性を示す
図である。
The figure shows the dependence of the capacity and loss (tan δ) at 120 Hz of an aluminum solid electrolytic capacitor obtained by adding PVAc of the present invention on the amount of PVAc added.

Claims (1)

【特許請求の範囲】[Claims] 1 有機半導体を加熱融解し、コンデンサ素子に
含浸し、その後冷却固化する固体電解コンデンサ
の製造方法において、バインダーとして酢酸ビニ
ル樹脂を添加することを特徴とする固体電解コン
デンサの製造方法。
1. A method for producing a solid electrolytic capacitor in which an organic semiconductor is heated and melted, impregnated into a capacitor element, and then cooled and solidified, the method comprising adding vinyl acetate resin as a binder.
JP6400484A 1984-03-30 1984-03-30 Method of producing solid electrolytic condenser Granted JPS60206126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6400484A JPS60206126A (en) 1984-03-30 1984-03-30 Method of producing solid electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6400484A JPS60206126A (en) 1984-03-30 1984-03-30 Method of producing solid electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS60206126A JPS60206126A (en) 1985-10-17
JPH0374028B2 true JPH0374028B2 (en) 1991-11-25

Family

ID=13245615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6400484A Granted JPS60206126A (en) 1984-03-30 1984-03-30 Method of producing solid electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS60206126A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153153A (en) * 1976-06-15 1977-12-20 Nippon Electric Co Conductive polymerization composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153153A (en) * 1976-06-15 1977-12-20 Nippon Electric Co Conductive polymerization composition

Also Published As

Publication number Publication date
JPS60206126A (en) 1985-10-17

Similar Documents

Publication Publication Date Title
JPH0158856B2 (en)
JPH0553051B2 (en)
JPH0374028B2 (en)
JPH0374029B2 (en)
JPH0337854B2 (en)
KR940005995B1 (en) Capacitor
JPH0552659B2 (en)
JPH0260047B2 (en)
JPH0666236B2 (en) Solid electrolytic capacitor
JPH0666237B2 (en) Solid electrolytic capacitor
JPS61107716A (en) Solid electrolytic capacitor
JPH0744131B2 (en) Method for manufacturing solid electrolytic capacitor
JPS62204514A (en) Solid electrolytic capacitor
JPH0255930B2 (en)
JPS6065520A (en) Solid electrolytic condenser
JPS61163626A (en) Solid electrolytic capacitor
JPH0410729B2 (en)
JPS6151906A (en) Solid electrolytic condenser
JPH0241888B2 (en)
JPS6151909A (en) Solid electrolytic condenser
JPS617619A (en) Solid electrolytic condenser and method of producing same
JPS6151908A (en) Solid electrolytic condenser
JPS61163624A (en) Solid electrolytic capacitor
JPH0255928B2 (en)
JPH0722074B2 (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees