JPS5817609A - Solid electrolytic condenser and method of pruducing same - Google Patents

Solid electrolytic condenser and method of pruducing same

Info

Publication number
JPS5817609A
JPS5817609A JP11686181A JP11686181A JPS5817609A JP S5817609 A JPS5817609 A JP S5817609A JP 11686181 A JP11686181 A JP 11686181A JP 11686181 A JP11686181 A JP 11686181A JP S5817609 A JPS5817609 A JP S5817609A
Authority
JP
Japan
Prior art keywords
solid electrolyte
capacitor
tcnq
solid electrolytic
same
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11686181A
Other languages
Japanese (ja)
Other versions
JPS6252939B2 (en
Inventor
丹羽 信一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11686181A priority Critical patent/JPS5817609A/en
Priority to US06/368,001 priority patent/US4580855A/en
Priority to DE19823214355 priority patent/DE3214355A1/en
Publication of JPS5817609A publication Critical patent/JPS5817609A/en
Publication of JPS6252939B2 publication Critical patent/JPS6252939B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fuel Cell (AREA)
  • Thermistors And Varistors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は固体電解コンデンサ及びその製造方法に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solid electrolytic capacitor and a method for manufacturing the same.

固体電解コンデンサは陽極酸化皮膜を有するアルミニウ
ムなどの皮膜形成性金属に固体電解質を付着した構造を
有している。従来より量産化されているこの種コンデン
サにおいて、それを構成する固体wi電解質ほとんど二
酸化マンガンであるが。
A solid electrolytic capacitor has a structure in which a solid electrolyte is attached to a film-forming metal such as aluminum having an anodized film. In this type of capacitor, which has been mass-produced in the past, the solid wi electrolyte that constitutes it is mostly manganese dioxide.

近年、二酸化マンガンの弱点、即ち二酸化マンガン形成
のための熱分解時に皮膜形成性金属の陽極酸化皮膜が損
傷を受けること、又二酸化マンガンによる陽極酸化皮膜
の修復性が乏しいことなどを改善する固体電解質として
有機半導体、主にTCNQ堆を用いることが提案された
。こ\に、〒CNQとは7.7.8.8  テトラシア
ノキノジメタンを意味する。
In recent years, solid electrolytes have been developed to improve the weaknesses of manganese dioxide, such as the damage to the anodic oxide film of the film-forming metal during thermal decomposition to form manganese dioxide, and the poor repairability of the anodic oxide film by manganese dioxide. It has been proposed to use organic semiconductors, mainly TCNQ stacks, as a solution. Here, 〒CNQ means 7.7.8.8 Tetracyanoquinodimethane.

しかし乍ら、テCNQ樵は通常粉末状の結晶であり、そ
の結晶自体高い電導闇や上記皮膜の良好な修復性を示す
ものの、粉末状結晶であるがために加工性に難がある。
However, TeCNQ wood is usually a powdered crystal, and although the crystal itself exhibits high conductivity and good repairability of the above-mentioned film, it is difficult to process because it is a powdered crystal.

即ち、皮嗅形成性金−に〒CNQ堆の結晶をどの様にし
て付着するかという問題がある。特に固体電解コンデン
サに用いる皮膜形成性金属は多孔質の場合が多いが、斯
る多孔質金属へのTCNq塩の一様な含浸的付着は困難
を極める。更に重要なことは、テCNQ墳自体がその付
着作業時に常に斐質などによる劣イヒの危険性をはらん
でいることである。
That is, there is a problem in how to attach the crystals of CNQ to the skin-olfactory gold. In particular, film-forming metals used in solid electrolytic capacitors are often porous, but it is extremely difficult to uniformly impregnate and adhere TCNq salt to such porous metals. What is more important is that the TeCNQ tomb itself is always at risk of being damaged due to poor quality during the attachment work.

従来、提案されたT CN Q樵の付着方法は次の3つ
に分類できる。
Conventionally proposed methods for attaching T CN Q woodcutter can be classified into the following three types.

1110Mr(ジメチルホルムアミド)などの溶媒にT
CNQ塩を溶かした溶液を上記金属に塗布し、その後乾
燥させて溶媒を飛散除去する方法。
T in a solvent such as 1110Mr (dimethylformamide)
A method in which a solution containing a CNQ salt is applied to the metal, and then dried to remove the solvent by scattering.

(2JTCNQ壌をボールミル等によりll細化した結
晶をアルコール等に分散せしめ、それを上記金属に塗布
し乾燥する方法。
(2) A method in which JTCNQ powder is finely milled using a ball mill, etc., the crystals are dispersed in alcohol, etc., and the crystals are applied to the metal and dried.

131TelIQ堆を上記金属に真空蒸着する方法。A method of vacuum depositing 131TelIQ deposits on the above metals.

上記(1:の方法では、TCNQ塩に対する溶解度の高
いDMFを溶媒に用い、斯る溶媒を例えば100tjζ
加熱したとしても、その溶解質は1o95が限度である
。このことは箔伏の上記金属に必要なだけの厚みの固体
電解質を付着したり、あるいは多孔質の上記金属に固体
電解質を十分含浸的に付着するには何度も塗布、乾燥を
繰り返す必要のあることを意味している。例えば定格I
jIF用の多孔質金属の場合、5〜10回の塗布、乾燥
で達せられる含浸率は、二酸化マンガンを固体電解質に
用いた場合の含浸率を100優として、高々5Qllで
ある。この様な低い含浸率では、金属が多孔質であるに
も拘らずコンデンサの容置値を大きくできない、、川に
溶媒を塗布した金属は上記乾燥の度に高温中に族1イさ
れるが、このとき多かれ少なかれTCNQ塩の綾實が起
こり、固体電解質の電導度劣化を招く。加えて、この様
にして上記金属に付着形成される固体電解質はTCNQ
塩の微細結晶からなるため、実際には塗布1g液中にポ
リビニルピロリドンなどの凝固用樹脂が添加されて上記
微細結晶の付着強度の強化が図られるが、斯る凝固用樹
脂はil電気的絶縁物あるため、上記電導度劣化と相俟
って固体電解質の電導度を更に低いもの(800Ω偲程
度(25℃))になす。
In the method (1) above, DMF, which has high solubility for TCNQ salt, is used as a solvent, and such a solvent is
Even if it is heated, the solute is limited to 1095. This means that it is necessary to apply and dry the solid electrolyte many times in order to adhere the necessary thickness of the solid electrolyte to the metal covered with foil, or to apply the solid electrolyte to the porous metal in a sufficient impregnation manner. It means something. For example, rating I
In the case of porous metals for jIF, the impregnation rate that can be achieved by applying 5 to 10 times and drying is at most 5 Qll, assuming that the impregnation rate when manganese dioxide is used as the solid electrolyte is 100 or more. With such a low impregnation rate, the capacitance value of the capacitor cannot be increased even though the metal is porous.The metal coated with a solvent is exposed to high temperature during the above-mentioned drying process. , At this time, the TCNQ salt more or less degrades, leading to deterioration of the conductivity of the solid electrolyte. In addition, the solid electrolyte thus deposited on the metal is TCNQ.
Since it consists of fine crystals of salt, a coagulating resin such as polyvinylpyrrolidone is actually added to 1 g of the coating solution to strengthen the adhesion strength of the fine crystals. Due to this, the conductivity of the solid electrolyte becomes even lower (approximately 800Ω (at 25° C.)) due to the deterioration of the conductivity described above.

上記(2+の方法では、’I’CNQ塩の嶺細化にも限
界があり、上記金属への付着強度が特に弱いので、コン
デンサの寿命試験に詔いて、TCNQNからなる固体電
解質が上記金属よりはがれたりして。
In the above method (2+), there is a limit to the thinning of the 'I'CNQ salt, and the adhesion strength to the above metal is particularly weak. It might peel off.

特性の劣化1例えば、tarlδの増加や容量減少が見
られる。上記付着強度の強化は、上に述べた様に凝固用
樹脂の採用によりある程度改善されるが。
Deterioration of characteristics 1 For example, an increase in tarlδ and a decrease in capacity are observed. The above-mentioned bond strength can be improved to some extent by employing a coagulating resin as described above.

同様に固体電解質の電導間の低下を招く。又、TCNQ
fiからなる微細結晶の分散溶液を用いるので、特に多
孔質金網への含浸率が悪(、超音波拡散含浸法を用いた
としてもその含浸率は高々上記+11の方法と同程度で
ある。
Similarly, this leads to a decrease in the conductivity of the solid electrolyte. Also, TCNQ
Since a dispersion solution of microcrystals consisting of fi is used, the impregnation rate into the porous wire mesh is particularly poor (even if an ultrasonic diffusion impregnation method is used, the impregnation rate is at most the same as the method +11 above.

上記(31の方法では、真空蒸着作業の煩雑さはもとよ
り、特に多孔質金属への付着には全く不向きである。
The above method (31) is not only complicated in vacuum evaporation work but also completely unsuitable for adhesion to porous metals.

本発明は、全(新規な固体電解コンデンサ及びその製造
方法、より異体的には、陽極酸化皮膜を有する皮膜形成
性金属に!c*q*からなる固体電解質を付着する際に
、YOMQ樵のみからなる液体を作り出し、斯る液体に
上記金属を接触させ。
The present invention relates to a novel solid electrolytic capacitor and a method for manufacturing the same, and more specifically, to a novel solid electrolytic capacitor and a method for manufacturing the same. Create a liquid consisting of and bring the metal into contact with the liquid.

その後上記液体を冷却固化してなる固体電解コンデンサ
及びその製造方法を提供するものである。
The present invention provides a solid electrolytic capacitor obtained by cooling and solidifying the above liquid, and a method for manufacturing the same.

IC)IC樵のみからなる液体を得る最も実際的な方法
は、当初の形頗である粉末状TCNQ樵を加熱融解によ
り液化することである。しかし乍ら。
IC) The most practical way to obtain a liquid consisting only of IC wood is to liquefy the powdered TCNQ wood in its original form by heating and melting it. But still.

単なるIC)IC箇の加熱融解は、テC)IC樵を熱分
解してほとんど電気的絶縁物と化し、コンデンサ用固体
電解質の機能を全(無くしてしまう。
Simply heating and melting the IC will thermally decompose the IC and turn it into almost an electrical insulator, completely eliminating the function of the solid electrolyte for the capacitor.

本発明は、ある種のTCMQ樵、具体的には。The present invention is applicable to certain TCMQ managers, specifically.

Nイソプロピルキノリン、M−n−プロピルキノリン、
N−n−プロピルイソキノリン、Nイソプロピルイソキ
ノリンのT CN QI!!iは加熱融解しても、熱分
解する葦でに短時間ではあるが、付着作業にとっては十
分な時間的余裕を呈し、従って斯る時間内に冷却固化す
れば高い電導度を保持するICNQ墳からなる固体電解
質を得られるという全く新しい知見に基いている。
N-isopropylquinoline, M-n-propylquinoline,
T CN QI of N-n-propylisoquinoline, N-isopropylisoquinoline! ! Even if it is heated and melted, it will take a short time for reeds to decompose thermally, but it will provide enough time for attachment work, so if it is cooled and solidified within that time, it will be possible to make an ICNQ tomb that maintains high conductivity. This is based on the completely new knowledge that it is possible to obtain a solid electrolyte consisting of

更に本発明は、上記テCNQ塩のうち、N−n−プロピ
ルイソキノリン又は、Nイソプロピルインキノリンの’
!’ CN Q樵を選択したことを特徴としている。
Furthermore, the present invention provides that, among the above TeCNQ salts, N-n-propylisoquinoline or N-isopropylinquinoline'
! 'CN Q Woodcutter is selected.

即ち、N−n−プロピルイソキノリンやNイソプロピル
イソキノリンのTCNQ複の融点は210〜220℃で
あるが、これを融点以上かつ約280℃以下で液化保持
し、熱分解する前、即ち液化完了後約4分以内に冷却開
始すれば再度結晶化し、20〜50Ω−(25℃)の高
い電導度を示す固体電解質を形成する。
That is, the melting point of N-n-propylisoquinoline and TCNQ complex of N-isopropylisoquinoline is 210 to 220°C, but it is liquefied and maintained at a temperature above the melting point and below about 280°C, and before thermal decomposition, that is, after the completion of liquefaction. If cooling is started within 4 minutes, it will crystallize again and form a solid electrolyte that exhibits a high electrical conductivity of 20 to 50 Ω-(25°C).

約280℃以上の温度で、又はそれ以下の温度でも約1
分以上、i<でも4分以上の間、上記TCHQ樵を液体
状態に保持すれば、TCNQ埴は激しく発煙し、はり電
気的絶縁物となる。
At temperatures above about 280℃, or even at temperatures below about 1
If the TCHQ clay is kept in a liquid state for more than 4 minutes, i<4 minutes, the TCNQ clay will smoke violently and become an electrical insulator.

本発明により得られる固体電解質は上記従来法11)や
(2)の場合の如−%TC1iQjJlの微細結晶の集
りではなく、はゾ非晶質状態に近い。又本発明により得
られる固体電解質は、IC)IQ塩本来の性質。
The solid electrolyte obtained by the present invention is not a collection of fine crystals of -%TC1iQjJl as in the case of the conventional methods 11) and (2), but is close to an amorphous state. Furthermore, the solid electrolyte obtained by the present invention has properties inherent to IC) IQ salt.

例えば皮膜形成性金属表面の酸化皮膜に対する優れた修
復性を維持している。
For example, it maintains excellent repairability against oxide films on film-forming metal surfaces.

本発明によれば、IC)iQ樵を100優溶解した溶液
により皮膜形成性金属へのTCNQ樵の付着をなすのと
同じ仁とであるから、上記従来方法(1)とは全(興な
り、はとんど1回の付着作業で。
According to the present invention, since the solution in which 100% of IC) iQ is dissolved is the same as that used to attach TCNQ to the film-forming metal, it is different from the conventional method (1) described above. , with only one adhesion operation.

の向上はもとより、乾燥の度にTQNQ樵が劣化すると
いった従来の欠点が克服される。更に1本発明によれば
、固体電解質は非晶質状頗に近いから、上記金属への付
着力が十分大きく、従って。
In addition to improving the quality, the conventional drawbacks such as deterioration of TQNQ wood every time it is dried are overcome. Furthermore, according to the present invention, since the solid electrolyte is close to an amorphous body, the adhesion force to the metal is sufficiently large.

従来の如き凝固用梅脂を用いる必要がなく、固体電解質
の不所望な電導度の低下を避けることができる。
There is no need to use plum fat for coagulation as in the past, and an undesirable decrease in the electrical conductivity of the solid electrolyte can be avoided.

更に本発明の如(、N−n−プロピル(又はNイソプロ
ピル)イソキノリンのT CN Q樵を用いた電解コン
デンサは、他のTCNQ塩、即ちNイソプロピル(又は
N −n−プロピル)キノリンのテCNQ塩を用いた場
合に較べて、静電容量値(即ち含浸率)をより大きくな
し、又高温(+85℃)での静電容量変化率をより小さ
くするという改善効果を示す。
Further, the electrolytic capacitor according to the present invention using TCNQ of N-propyl (or N-isopropyl) isoquinoline can be prepared using other TCNQ salts, namely, TCNQ of N-isopropyl (or N-n-propyl) quinoline. Compared to the case where salt is used, this shows an improvement effect of making the capacitance value (ie, impregnation rate) larger and making the capacitance change rate smaller at high temperature (+85° C.).

以下本発明実施例を説明する。Examples of the present invention will be described below.

まずN −n−プロピルイソキノリンのTCNQ堆が準
備される。斯る〒CIIQ樵の作成自体は。
First, a TCNQ layer of N-n-propylisoquinoline is prepared. The creation of CIIQ woodcutter itself.

J、Am、Chew、Soo、、Vol、aa、PP5
574−5587(1962)の記載に基いて行えるが
、簡単に述べれば、n−プロピルヨードとインキノリン
とを1・ 反応させて得られるn−プロピルイソキノリンヨーダイ
トとテCNQとをアセトニトリル中でほり等モル反応さ
せることにより粉末結晶状のN −n−プロピルイソキ
ノリンのT CM Q樵が作られる。
J, Am, Chew, Soo,, Vol, aa, PP5
574-5587 (1962), but briefly, n-propylisoquinoline iodite obtained by reacting n-propyliodo and inquinoline with TECNQ is excavated in acetonitrile. A powder crystalline N-n-propyl isoquinoline TCMQ is produced by equimolar reaction.

以後この塩を単に? CN Q*と称す。From now on, just use this salt? It is called CN Q*.

一方1通常のアル電焼結型固体電解コンデンサの製造方
法に従って、第1図に示す如く、アルミニウム粉末の焼
結体を陽極酸化処理し、酸化皮膜を有する皮膜形成性金
属としての多孔質コンデンサ素子(1)が作成される。
On the other hand, 1. In accordance with the usual manufacturing method of an aluminum sintered solid electrolytic capacitor, a sintered body of aluminum powder is anodized as shown in FIG. 1, and a porous capacitor element as a film-forming metal having an oxide film is produced (1) is created.

上記準備の後、実行される工程は、コンデンサ素子(1
)にテC)IC樵からなる固体電解質を含浸付着するこ
とである。卸ち、準備されている粉末杖のTCHQ複を
第2図に示す如くアルミニウム容器(2;に適度の加圧
下で収納し、容器(2)を加熱することにより融解液化
した’1’CPIQ樵浴(31が設けられる。Cの浴の
温度は250℃〜260℃に保持される。尚、アルミニ
ウム容器(2)への? CN Q塩収納時の加圧は本質
的なものではない。
After the above preparation, the steps to be performed include the capacitor element (1
) is impregnated with a solid electrolyte made of IC. As shown in Figure 2, the prepared powder cane TCHQ was stored in an aluminum container (2) under moderate pressure, and the container (2) was heated to melt and liquefy it. A bath (31) is provided. The temperature of the C bath is maintained at 250° C. to 260° C. It should be noted that the pressure applied to the aluminum container (2) during storage of the CNQ salt is not essential.

続(工程では、第6図に示す如く、予め250℃〜26
0℃に加熱保持されているコンデンサ素子(1)を?C
NQ塩浴(31に浸漬し、直ちに、容器(2)全体を室
温にて自然冷却する。これにより、多孔質のコンデンサ
素子(1;に含浸したTCNQ塩が冷却固化し、目的の
固体電解質となる。上記’f’cNQ塩の液化から冷却
開始までの所要時間は約5秒である。尚冷却開始から融
点以下になるまでの所要時間は数秒(例えば4秒〕以内
である。
(In the process, as shown in Figure 6, the temperature is 250℃~26℃)
What about the capacitor element (1) that is heated and maintained at 0℃? C
Immerse it in the NQ salt bath (31) and immediately cool the entire container (2) naturally at room temperature. As a result, the TCNQ salt impregnated into the porous capacitor element (1) cools and solidifies, forming the desired solid electrolyte. The time required from the liquefaction of the 'f'cNQ salt to the start of cooling is about 5 seconds.The time required from the start of cooling to the temperature below the melting point is within several seconds (for example, 4 seconds).

残りの工程では、1ei1体電解質を含浸したコンデン
サ素子(1)から容器121を剥がし、その後通常行な
われている様に、第4図に示す如く、含浸済みのコンデ
ンサ素子…表面にグラファイト層(4)、鍜塗料1fj
 151が順次被着され、最後に斯る素子+11が陰極
リード#!(61と共にアルミニウム容器(7)内に収
納され、半田(8)及びエポキシ樹脂19+にて固定さ
れる。
In the remaining steps, the container 121 is peeled off from the capacitor element (1) impregnated with the 1ei1 electrolyte, and then a graphite layer (4 ), paint 1fj
151 are sequentially deposited, and finally such element +11 is the cathode lead #! (It is housed in an aluminum container (7) together with 61 and fixed with solder (8) and epoxy resin 19+.

上記素子(1)として、従来の二酸化マンガンを固体電
解質とするコンデンサでは1μFの容1゛を示す′もの
を用いたところ、完成されたコンデンサの容量は約1μ
Fであった。これは二酸化マンガンの場合の含浸率を1
00%として、それと同程度の含浸率を意味する。
When a conventional capacitor using manganese dioxide as a solid electrolyte has a capacitance of 1 μF as the element (1), the capacitance of the completed capacitor was approximately 1 μF.
It was F. This means that the impregnation rate for manganese dioxide is 1
00% means the same degree of impregnation.

u51表及び+ig2表に本笑施例コンデンサの温度特
性及び高温負荷特性を7F+ T o又、同表−ごて比
較のための参考例として、上記実施例の固体電解質のみ
をN−n−プロピルキノリンのTCNQ樵に斐更して得
られたコンデンサの特性をも示す。尚。
Table u51 and Table +ig2 show the temperature characteristics and high temperature load characteristics of the capacitors of this example. The characteristics of the capacitor obtained by modifying quinoline TCNQ are also shown. still.

N −n−プロピルキノリンのf CN Q樵の作成は
同様にして行なわれるが、液化保持温度は260℃〜2
70℃であり、液化から冷却までの時間は10秒程度で
ある。
N-n-propyl quinoline fCNQ was prepared in the same manner, but the liquefaction holding temperature was 260°C to 2.
The temperature is 70° C., and the time from liquefaction to cooling is about 10 seconds.

第1表温度特性 第2表高温負荷特性 定格10v印加 たゾし C: 容量値(nF) ΔC: 容量変化率− 4anJ :損失 − LC150’ :  定格電圧印加50秒後の漏れ電流
(sA) 上記表より参考例の場合、その容量値は約0.8μF(
20℃)であるから二酸化マンガンでの含浸率を100
%として、80%の含浸率となり。
Table 1 Temperature Characteristics Table 2 High Temperature Load Characteristics Ratings at 10V applied According to the table, in the case of the reference example, the capacitance value is approximately 0.8 μF (
20℃), so the impregnation rate with manganese dioxide is 100
%, the impregnation rate is 80%.

本実施例の含浸率(100%)の優れていることが判る
。又温度特性においても高温側で本実施例の優位性が明
らかである。
It can be seen that the impregnation rate (100%) of this example is excellent. Also, in terms of temperature characteristics, the superiority of this example is clear on the high temperature side.

本発明は上記実施例の如き粉末焼結型の素子(1)を用
いる代りに、アルミニウムのエツチング箔を陰極とし、
同じ(その□化成箔を陽極とし、これらをセパレータ紙
をはさんで巻取った巻取り素子を用いた場合でも有効に
適用される。即ち上記実施例と同じ操作でTCNQ樵か
らなる固体電解質を巻zり素子c含浸し、樹脂封口する
ことによすIF)未焼結型とはり同様の温度特性、高温
負荷特性を有する電解コンデンサを作成することができ
る。
In the present invention, instead of using the powder sintered element (1) as in the above embodiment, an etched aluminum foil is used as the cathode,
The same method can also be effectively applied when using a winding element in which chemically formed foil is used as an anode and these are wound up with separator paper in between. In other words, a solid electrolyte made of TCNQ wood is used in the same manner as in the above example. By impregnating the wound element c and sealing it with resin, it is possible to create an electrolytic capacitor having temperature characteristics and high temperature load characteristics similar to those of the unsintered type (IF).

尚、この場合、化成箔のカット部、陽極リード等の未化
成部は予め含浸前に化成しておく必要があるが、容器1
21をそのま一コンデンサ外皮ケースとすることができ
l又グラファイト層や銀塗料層は不要となる。
In this case, it is necessary to chemically convert the cut part of the chemically formed foil, the anode lead, etc. before impregnation, but the container 1
21 can be used as it is as a capacitor outer case, and a graphite layer or a silver paint layer is not required.

上記巻敗り素子(従来の乾式電解コンデンサ50V、2
.2JIFに使用されるのと同等物)にTCNq樵を含
浸し、完成したコンデンサの特性は1.4 5  s 
 P、  j  a  n  a  1,89に、 L
C/30替 0.04sムである。
The above unwinding element (conventional dry electrolytic capacitor 50V, 2
.. The characteristics of the completed capacitor are 1.4 5 s.
P, j a na 1,89, L
C/30 replacement 0.04 sm.

上e実施例では、1g子(1)の金属はアルミニウムで
あったが、他の被膜形成性金属1例えばタンタルやニオ
ブでも良い。更に、固体電解質として。
In the above example e, the metal of the 1g element (1) was aluminum, but other film-forming metals 1, such as tantalum or niobium, may be used. Furthermore, as a solid electrolyte.

Nイソプロピルイソキノリンの? CM Q樵を用いて
も実施例と同様にしてコンデンサが製造され得る。
Of N-isopropylisoquinoline? A capacitor can be manufactured using a CM Q woodcutter in the same manner as in the embodiment.

以上の説明より明らかな如く1本発明によれば。As is clear from the above description, one aspect of the present invention is as follows.

育機半導体からなる固体電解質を用いた固体電解コンデ
ンサに射いて、固体電解質の皮膜形成性金属への付着が
簡単な作業で行なえ、かっ斯る作業時に固体電解質の劣
化も少vく、史にコンデンサとしての特性も容量値が大
きく、a度特件にも優れた十分実用的なものが得られる
In solid electrolytic capacitors using solid electrolytes made of organic semiconductors, the solid electrolyte can be attached to film-forming metals with a simple process, and there is little deterioration of the solid electrolyte during such operations, making it an unprecedented technology. As for the characteristics as a capacitor, a sufficiently practical capacitor having a large capacitance value and excellent A degree characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第4図は本発明実施例方法を説明する工程別
図であり、@1図は側面図、第2図乃至第4図は断面図
である。 (1)・・・コンデンサ素子、(3ト・・T CN Q
fi浴。 手  続  補  正  書(自発) 昭和57年5月tF3日 特許庁長官殿 1、事件の表示 昭和56年特許願第 116861号 2、発明の名称 固体電解コンデンサ及びその製造方法 3、補正をする者 特許出願人 住所 守口市京阪本通2丁目18番地 名称(188)三洋電機株式会社 代表者 井 植   薫 4、代理人 住所 守口市京阪本通2丁目18番地 連絡先:電話(東京) 835−1111特許大ンター
駐在鎌田4、補正の対欧 発明の詳細な説明の欄 5、補正の内容 (2)明細書第13頁第10行において、rAJとある
のを、rA(25V印加)」と補正する。
1 to 4 are step-by-step diagrams illustrating a method according to an embodiment of the present invention, where FIG. 1 is a side view and FIGS. 2 to 4 are sectional views. (1)...Capacitor element, (3...T CN Q
Fi bath. Procedural amendment (spontaneous) May tF3, 1980 Mr. Commissioner of the Japan Patent Office1, Indication of the case, 1982 Patent Application No. 1168612, Name of the invention Solid electrolytic capacitor and its manufacturing method3, Person making the amendment Patent applicant address 2-18 Keihan Hondori, Moriguchi City Name (188) Sanyo Electric Co., Ltd. Representative Kaoru Iue 4, agent address 2-18 Keihan Hondori, Moriguchi City Contact information: Telephone (Tokyo) 835-1111 Kamata 4, resident at Patent University, amended column 5 of detailed explanation of the European invention, contents of the amendment (2) In the 10th line of page 13 of the specification, amended rAJ to ``rA (25V applied)''. do.

Claims (1)

【特許請求の範囲】 111N−n−プロピル(又はN−イソ−プロピル)イ
ソキノリンと?CNQとからなる有機半導体を固体電解
質とする固体電解コンデンサ。 121)i−n−プロピル(又はN−イソ−プロピル)
イソキノリンと?CIQとからなる有機半導体を融解液
化し冷却固化したものを固体電解質とすることを特徴と
する固体電解コンデンサの製造方法。
[Claims] 111N-n-propyl (or N-iso-propyl) isoquinoline? A solid electrolytic capacitor whose solid electrolyte is an organic semiconductor composed of CNQ. 121) i-n-propyl (or N-iso-propyl)
With isoquinoline? A method for manufacturing a solid electrolytic capacitor, characterized in that an organic semiconductor consisting of CIQ is melted and liquefied, solidified by cooling, and used as a solid electrolyte.
JP11686181A 1981-04-17 1981-07-24 Solid electrolytic condenser and method of pruducing same Granted JPS5817609A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP11686181A JPS5817609A (en) 1981-07-24 1981-07-24 Solid electrolytic condenser and method of pruducing same
US06/368,001 US4580855A (en) 1981-04-17 1982-04-13 Solid electrolyte capacitor
DE19823214355 DE3214355A1 (en) 1981-04-17 1982-04-19 Electrolytic capacitor containing solid-state electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11686181A JPS5817609A (en) 1981-07-24 1981-07-24 Solid electrolytic condenser and method of pruducing same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP20222888A Division JPH01138709A (en) 1988-08-12 1988-08-12 Solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS5817609A true JPS5817609A (en) 1983-02-01
JPS6252939B2 JPS6252939B2 (en) 1987-11-07

Family

ID=14697438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11686181A Granted JPS5817609A (en) 1981-04-17 1981-07-24 Solid electrolytic condenser and method of pruducing same

Country Status (1)

Country Link
JP (1) JPS5817609A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100551A (en) * 1983-09-30 1985-06-04 バイエル・アクチエンゲゼルシヤフト Manufacture of tcnq complexes
JPS61163625A (en) * 1985-01-14 1986-07-24 松下電器産業株式会社 Manufacture of solid electrolytic capacitor
JPS62116552A (en) * 1985-11-18 1987-05-28 Japan Carlit Co Ltd:The Charge-transfer complex
JPS6370544A (en) * 1986-09-12 1988-03-30 Canon Inc Organic conductive medium and manufacture thereof
US4780796A (en) * 1987-01-13 1988-10-25 The Japan Carlit Co., Ltd. Solid electrolytic capacitor
JPS6413721U (en) * 1987-07-16 1989-01-24
US4943892A (en) * 1988-03-31 1990-07-24 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
US4982312A (en) * 1988-10-31 1991-01-01 The Japan Carlit Co., Ltd. Charge transfer complex and solid electrolytic capacitor employing the same
EP0421487A2 (en) 1986-05-20 1991-04-10 Showa Denko Kabushiki Kaisha Solid electrolytic capacitor
US5117332A (en) * 1990-05-25 1992-05-26 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors and method for manufacturing the same
US5140502A (en) * 1990-03-12 1992-08-18 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors and method for manufacturing the same
US5223120A (en) * 1990-11-22 1993-06-29 Matsushita Electric Industrial Co., Ltd. Method for fabricating solid electrolytic capacitors using an organic conductive layer
US5424907A (en) * 1992-02-21 1995-06-13 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors and method for manufacturing the same
US6288889B1 (en) 1998-12-01 2001-09-11 Rubycon Corporation Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP2008156636A (en) * 1999-04-06 2008-07-10 Cambridge Display Technol Ltd Method for doping polymer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251491A (en) * 1985-08-30 1987-03-06 Mita Ind Co Ltd Copy method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251491A (en) * 1985-08-30 1987-03-06 Mita Ind Co Ltd Copy method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60100551A (en) * 1983-09-30 1985-06-04 バイエル・アクチエンゲゼルシヤフト Manufacture of tcnq complexes
JPS61163625A (en) * 1985-01-14 1986-07-24 松下電器産業株式会社 Manufacture of solid electrolytic capacitor
JPH0552659B2 (en) * 1985-01-14 1993-08-06 Matsushita Electric Ind Co Ltd
JPS62116552A (en) * 1985-11-18 1987-05-28 Japan Carlit Co Ltd:The Charge-transfer complex
EP0421487A2 (en) 1986-05-20 1991-04-10 Showa Denko Kabushiki Kaisha Solid electrolytic capacitor
JPS6370544A (en) * 1986-09-12 1988-03-30 Canon Inc Organic conductive medium and manufacture thereof
JPH0638415B2 (en) * 1986-09-12 1994-05-18 キヤノン株式会社 Organic conductive medium and manufacturing method thereof
US4780796A (en) * 1987-01-13 1988-10-25 The Japan Carlit Co., Ltd. Solid electrolytic capacitor
JPS6413721U (en) * 1987-07-16 1989-01-24
US4943892A (en) * 1988-03-31 1990-07-24 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitor and method for manufacturing the same
US4982312A (en) * 1988-10-31 1991-01-01 The Japan Carlit Co., Ltd. Charge transfer complex and solid electrolytic capacitor employing the same
US5140502A (en) * 1990-03-12 1992-08-18 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors and method for manufacturing the same
US5117332A (en) * 1990-05-25 1992-05-26 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors and method for manufacturing the same
US5223120A (en) * 1990-11-22 1993-06-29 Matsushita Electric Industrial Co., Ltd. Method for fabricating solid electrolytic capacitors using an organic conductive layer
US5424907A (en) * 1992-02-21 1995-06-13 Matsushita Electric Industrial Co., Ltd. Solid electrolytic capacitors and method for manufacturing the same
US6288889B1 (en) 1998-12-01 2001-09-11 Rubycon Corporation Electrolytic solution for electrolytic capacitor and electrolytic capacitor using the same
JP2008156636A (en) * 1999-04-06 2008-07-10 Cambridge Display Technol Ltd Method for doping polymer

Also Published As

Publication number Publication date
JPS6252939B2 (en) 1987-11-07

Similar Documents

Publication Publication Date Title
JPS5817609A (en) Solid electrolytic condenser and method of pruducing same
JPH0376573B2 (en)
JPS6251491B2 (en)
JPH0373961B2 (en)
JPH0466373B2 (en)
JPH0466374B2 (en)
JPH0477451B2 (en)
JPS6337609A (en) Manufacture of solid electrolytic capacitor
JPS60206127A (en) Method of producing solid electrolytic condenser
JPS61107716A (en) Solid electrolytic capacitor
JPH0423814B2 (en)
JPS617620A (en) Solid electrolytic condenser and method of producing same
JPH047086B2 (en)
JPS60171717A (en) Solid electrolytic condenser and method of producing same
JPH0381282B2 (en)
JPS617618A (en) Solid electrolytic condenser and method of producing same
JPS61244012A (en) Manufacture of solid electrolytic capacitor
JPS617619A (en) Solid electrolytic condenser and method of producing same
JPS6151910A (en) Solid electrolytic condenser
JPS6147622A (en) Solid electrolytic condenser
JPH0552659B2 (en)
JPS6065520A (en) Solid electrolytic condenser
JPS58175819A (en) Method of producing solid electrolytic condenser
JPS6151907A (en) Solid electrolytic condenser
JPH0255928B2 (en)