JPH0423814B2 - - Google Patents

Info

Publication number
JPH0423814B2
JPH0423814B2 JP57172063A JP17206382A JPH0423814B2 JP H0423814 B2 JPH0423814 B2 JP H0423814B2 JP 57172063 A JP57172063 A JP 57172063A JP 17206382 A JP17206382 A JP 17206382A JP H0423814 B2 JPH0423814 B2 JP H0423814B2
Authority
JP
Japan
Prior art keywords
tcnq
salt
solid electrolyte
tcnq salt
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57172063A
Other languages
Japanese (ja)
Other versions
JPS5961026A (en
Inventor
Shinichi Niwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP57172063A priority Critical patent/JPS5961026A/en
Publication of JPS5961026A publication Critical patent/JPS5961026A/en
Publication of JPH0423814B2 publication Critical patent/JPH0423814B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Primary Cells (AREA)
  • Thermistors And Varistors (AREA)
  • Fuel Cell (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は固体電解コンデンサ用固体電解質の製
造方法に関する。 固体電解コンデンサは陽極酸化皮膜を有するア
ルミニウムなどの皮膜形成性金属に固体電解質を
付着した構造を有している。従来により量産化さ
れているこの種コンデンサにおいて、それを構成
する固体電解質はほとんど二酸化マンガンである
が、近年、二酸化マンガンの弱点、即ち二酸化マ
ンガン形成のための硝酸マンガンからの熱分解時
に皮膜形成性金属の陽極酸化皮膜が損傷を受ける
こと、又二酸化マンガンによる陽極酸化皮膜の修
復性が乏しいことなどを改善する固体電解質とし
て有機半導体、主にTCNQ塩を用いることが提
案された。こゝに、TCNQとは7,7,8,8
テトラシアノキノジメタンを意味する。 しかし乍ら、TCNQ塩は通常粉末状の結晶で
あり、その結晶自体高い電導度や上記皮膜の良好
な修復性を示すものの、粉末状結晶であるがため
に加工性に難がある。即ち、皮膜形成性金属に
TCNQ塩の結晶をどの様にして付着するかとい
う問題がある。特に固体電解コンデンサに用いる
皮膜形成性金属は多孔質の場合が多いが、斯る多
孔質金属へのTCNQ塩の一様な含浸的付着は困
難を極める。更に重要なことは、TCNQ塩自体
がその付着作業時に常に変質などによる劣化の危
険性をはらんでいることである。 従来、提案されたTCNQ塩の付着方法は次の
3つに分類できる。 (1) DMF(ジメチルホルムアミド)などの溶媒に
TCNQ塩を溶かした溶液を上記金属に塗布し、
その後乾燥させて溶媒を飛散除去する方法。 (2) TCNQ塩をボールミル等により微細化した
結晶をアルコール等に分散せしめ、それを上記
金属に塗布し乾燥する方法。 (3) TCNQ塩を上記金属に真空蒸着する方法。 上記(1)の方法では、TCNQ塩に対する溶解度
の高いDMFを溶媒に用い、斯る溶媒を例えば100
℃に加熱したとしても、その溶解度は10%が限度
である。このことは箔状の上記金属に必要なだけ
の厚みの固体電解質を付着したり、あるいは多孔
質の上記金属に固体電解質を十分含浸的に付着す
るには何度も塗布、乾燥を繰り返す必要のあるこ
とを意味している。例えば定格1μF用の多孔質金
属の場合、5〜10回の塗布、乾燥で達せられる含
浸率は、二酸化マンガンを固体電解質に用いた場
合の含浸率を100%として、高々30%である。こ
の様な低い含浸率では、金属が多孔質であるにも
拘らずコンデンサの容量値を大きくできない。更
に溶媒を塗布した金属は上記乾燥の度に高温中に
放置されるが、このとき多かれ少なかれTCNQ
塩の変質が起こり、固体電解質の電導度劣化を招
く。加えて、この様にして上記金属に付着形成さ
れる固体電解質はTCNQ塩の微細結晶からなる
ため、実際には塗布溶液中にポリビニルピロリド
ンなどの凝固用樹脂が添加されて上記微細結晶の
付着強度の強化が図られるが、斯る凝固用樹脂は
電気的縁物であるため、上記電導度劣化と相俟つ
て固体電解質の電導度を更に低いもの(800Ωcm
程度(25℃))になす。 上記(2)の方法では、TCNQ塩の微細化にも限
界があり、上記金属への付着強度が特に弱いの
で、コンデンサの寿命試験において、TCNQ塩
からなる固体電解質が上記金属よりはがれたりし
て、特性の劣化、例えば、tanδの増加や容量減少
が見られる。上記付着強度の強化は、上に述べた
様に凝固用樹脂の採用によりある程度改善される
が、同様に固体電解質の電導度の低下を招く。
又、TCNQ塩からなる微細結晶の分散溶液を用
いるので、特に多孔質金属への含浸率が悪く、超
音波拡散含浸法を用いたとしてもその含浸率は
高々上記(1)の方法と同程度である。 上記(3)の方法では、真空蒸着作業の煩雑さはも
とより、特に多孔質金属への付着には全く不向き
である。 本発明は、全く新規な固体電解コンデンサ、よ
り具体的には、コンデンサ素子と、液化状態で前
記素子に含浸されたTCNQ錯塩からなる固体電
解質とを含む固体電解コンデンサを提供するもの
である。本発明を実施する際には、TCNQ塩を
液化することが必要であるが、固体電解質層形成
のためにこの様にTCNQ塩を液化することは従
来全く考えられていなかつた。 TCNQ塩のみからなる液体を得る最も実際的
な方法は、当初の形態である粉末状TCNQ塩を
加熱融解により液化することである。しかし乍
ら、単なるTCNQ塩の加熱融解は、TCNQ塩を
熱分解してほとんど電気的絶縁物と化し、コンデ
ンサ用固体電解質の機能を全く無くしてしまう。 本発明は、ある種のTCNQ塩は加熱融解して
も、熱分解するまでに短時間ではあるが、付着作
業にとつては十分な時間的余裕を呈し、従つて斯
る時間内に冷却固化すれば高い電導度を保持する
TCNQ塩からなる固体電解質を得られるという
全く新しい知見に基いている。 TCNQ及びその種々の塩、並びにその製法自
体は、例えば、J.Am.Chem.Soc.,Vol.84,
p3374−3387(1962)に開示されている。TCNQ
塩としては、Mn+(TCNQ-)nで表わされる単
塩と、Mn+(TCNQ-)n(TCNQ)mで表わされ
る錯塩とがある。尚上記Mは有機カチオン、nは
カチオンの価、mは1モルの錯塩に含まれる中性
TCNQのモル数に対応する正の数を夫々意味す
る。 本発明では、しかし乍ら、錯塩の使用がコンデ
ンサ特性にとつてより好ましい。そして、錯塩の
上記mは0.5〜1.5が好ましく、より好ましくは約
1である。 本発明で用いられるTCNQ塩の例としては、
N位を置換したピリジンのTCNQ塩が挙げられ
る。尚、N位の置換体は、尚、N位の置換体は
種々考えられるが、融解、冷却、固化を行うこと
ができ、汎用性のあるものが好ましく、例えば
C2〜C18(炭素数2〜18の)アルキル、(例えばエ
リル、プロピル、ブチル、ベンチル、オクチル、
デシル、オクタデシル)、C5〜C8シクロアルキル
(例えばシクロベンチル、シクロヘキシル)、C3
〜C18アルケン(例えばアリル)、フエニル又は
フエニル(C7〜C18)アルキル(例えばフエネチ
ル)の様な炭化水素基である。 本発明で用いられるTCNQ塩のより好ましい
例は、N−n−プロピルピリジンのTCNQ塩、
N−n−ブチルピリジンのTCNQ塩である。 上記各塩の製造は例えば次の通りである。N−
アルキルヨードとピリジンとを反応させて得られ
るN−アルキルピリジンヨ−ダイドとTCNQと
を適当な溶媒(例えばアセトニトリル)中で、適
当なモル比(例えば3:4)で反応させて
TCNQ塩を作る。この塩は不純物が多いので、
適当な溶媒(例えばアセトニトリル)にて加熱融
解−冷却−晶出からなる再結晶操作を繰り返すこ
とにより塩の純度が上げられる。得られる結晶は
針状又はロツド状の粉末である。 上記反応又は高純度化で用いられる溶媒の種類
により、ピリジン部とTCNQ部とのモル比は若
干変化する。 本発明に含まれないTCNQ塩、例えばH・ピ
リジンのTCNQ塩やN−メチルピリジンの
TCNQ塩は加熱すると融解せずに分解するかあ
るいは融解と同時に分解してしまう。 これに対して上記の如き本発明の対象とする
TCNQ塩は加熱すると融解して液化状態を呈す
るがその状態で熱分解するまでに実質的な時間を
要する。この場合の熱分解は突然起こり、塩は電
気的絶縁物と化す。完全に溶解後絶縁化するまで
の時間はN−n−ブチルピリジンのTCNQ塩で
19秒(290℃)、60秒(260℃)である。但し加熱
はアルミケースにTCNQ塩の結晶粉末を詰め上
記温度の金属板上に接触させて行なつた。 従つて、液化状態のTCNQ塩はその分解前に
冷却固化させねばならない。それにより、高電導
度を有する固体電解質が得られる。例えば、n−
ブチルピリジンのTCNQ塩の場合、融点以上で
約300℃以下の温度に加熱され、そして液化完了
後約30秒以内、好ましくは10秒以内に室温での冷
却又は水等の冷却中での冷却が開始される。この
様に分解前に冷却固化して得られるTCNQ塩の
電導度は次の通りであつた。 N−n−プロピル・ピリジン(TCNQ−)・
TCNQ 1500Ωcm(25℃) N−n−ブチル・ピリジン(TCNQ−)・
TCNQ 330Ωcm(25℃) 本発明により得られる固体電解質は上記従来法
(1)や(2)の場合の如きTCNQ塩の微細結晶の集り
でなく、ほぼ多結晶塊状態に近い。又本発明によ
り得られる固体電解質は、TCNQ塩本来の性質、
例えば皮膜形成性金属表面の酸化皮膜に対する優
れた修復性を維持している。 本発明によれば、TCNQ塩を100%溶解した溶
液により皮膜形成性金属へのTCNQ塩の付着を
なすのと同じことであるから、上記従来方法(1)と
は全く異なり、ほとんど1回の付着作業で、上記
金属が箔状のみならず多孔質の場合でも、必要な
量の固体電解質を形成することができ、量産性の
向上はもとより、乾燥の度にTCNQ塩が劣化す
るといつた従来の欠点が克服される。更に本発明
によれば、固体電解質は多結晶状態に近いから、
上記金属への付着力が十分大きく、従つて従来の
如き凝固用樹脂を用いる必要がなく、固体電解質
の不所望な電導度の低下を避けることができる。 以下本発明実施例を説明する。 アルミニウム化成箔を陽極箔とし、アルミニウ
ムエツチング箔を陰極箔としてこれらをマニラ紙
からなるセパレーターと共に巻き取つたコンデン
サ素子を準備する。この素子は次いで切り口化成
処理の後、250℃の恒温槽中に約4時間放置され
て、上記セパレータの炭化処理がなされる。尚こ
の処理は、素子への固体電解質の含浸度をより高
めるためのものであり、省略し得るものである。
その後上記素子を250℃程度に予熱しておく、一
方、既述の方法で作成された粉末状のTCNQ塩
(本実施例では、N−n−ブチルピリジンの
TCNQ塩)を有底円筒状のアルミニウムケース
内に充填し、このケースを加熱した金属板上に載
置することによりケース内のTCNQ塩を融解液
化する。 続く工程として斯る融解液化後、直ちに、上記
予熱保持されているコンデンサ素子をケース内の
液化状態のTCNQ塩に挿入し、次いでこのケー
スを、水中に浸漬して急冷する。これによりコン
デンサ素子のセパレータにTCNQ塩が、含浸し
た状態で固化し、そのTCNQ塩は高電導度を示
す固体電解質を形成する。最後に陽極リード及び
陰極リードの先端を露出した状態で上記ケースの
開口を樹脂封口し、エージングすることにより目
的とする固体電解コンデンサが完成する。 下表に本実施例固体電解コンデンサの特性を示
す。表中、cap,tanδは、夫々120Hzでの静電容
量、損失、ESRは、100KHzでの等価直列抵抗、
△capは、+25℃でのcapに対する静電容量変化
率、LCは25V印加15秒後の漏れ電流を夫々意味
する。比較のため従来品として、本発明に用いた
ものと同じ捲き取り素子を用いエチレングリコー
ル系の電解液を含浸したものを挙げる。
The present invention relates to a method for manufacturing a solid electrolyte for a solid electrolytic capacitor. A solid electrolytic capacitor has a structure in which a solid electrolyte is attached to a film-forming metal such as aluminum having an anodized film. In this type of capacitor, which has traditionally been mass-produced, the solid electrolyte that makes up the solid electrolyte is mostly manganese dioxide. However, in recent years, manganese dioxide's weak points, namely its film-forming properties during thermal decomposition from manganese nitrate to form manganese dioxide, have been discovered. It has been proposed to use organic semiconductors, mainly TCNQ salts, as solid electrolytes to improve the damage to metal anodic oxide films and the poor repairability of anodic oxide films with manganese dioxide. Here, TCNQ is 7, 7, 8, 8
means tetracyanoquinodimethane. However, TCNQ salt is usually a powdered crystal, and although the crystal itself exhibits high electrical conductivity and good repairability of the above-mentioned film, it is difficult to process because it is a powdered crystal. That is, film-forming metals
The problem is how to attach TCNQ salt crystals. In particular, film-forming metals used in solid electrolytic capacitors are often porous, but it is extremely difficult to uniformly impregnate TCNQ salt onto such porous metals. What is more important is that TCNQ salt itself always carries the risk of deterioration due to alteration during the adhesion process. Conventionally proposed methods for attaching TCNQ salt can be classified into the following three types. (1) In solvents such as DMF (dimethylformamide)
Apply a solution of TCNQ salt to the above metal,
The method is then dried to remove the solvent by scattering. (2) A method in which fine crystals of TCNQ salt are made using a ball mill or the like and dispersed in alcohol, etc., and then applied to the above metal and dried. (3) A method of vacuum evaporating TCNQ salt onto the above metal. In method (1) above, DMF, which has high solubility for TCNQ salt, is used as a solvent, and such a solvent is
Even when heated to ℃, its solubility is limited to 10%. This means that it is necessary to apply and dry the solid electrolyte many times in order to adhere the necessary thickness of solid electrolyte to the foil-shaped metal, or to adhere the solid electrolyte to the porous metal in a sufficient impregnation manner. It means something. For example, in the case of a porous metal with a rating of 1 μF, the impregnation rate achieved by applying 5 to 10 times and drying is at most 30%, assuming the impregnation rate when manganese dioxide is used as the solid electrolyte as 100%. At such a low impregnation rate, the capacitance value of the capacitor cannot be increased even though the metal is porous. Furthermore, the metal coated with a solvent is left in a high temperature during each drying process, and at this time more or less TCNQ
Deterioration of the salt occurs, leading to deterioration of the conductivity of the solid electrolyte. In addition, since the solid electrolyte that is formed on the metal in this way consists of fine crystals of TCNQ salt, a coagulating resin such as polyvinylpyrrolidone is actually added to the coating solution to increase the adhesion strength of the fine crystals. However, since the coagulating resin is an electrical material, it may cause the solid electrolyte to have an even lower conductivity (800 Ωcm
(25℃)). In method (2) above, there is a limit to the miniaturization of the TCNQ salt, and the adhesion strength to the above metal is particularly weak, so the solid electrolyte made of TCNQ salt may peel off from the above metal during the capacitor life test. , deterioration of characteristics, such as an increase in tanδ and a decrease in capacity, is observed. Although the reinforcement of the adhesion strength can be improved to some extent by employing the coagulating resin as described above, it also causes a decrease in the electrical conductivity of the solid electrolyte.
Furthermore, since a dispersion solution of microcrystals made of TCNQ salt is used, the impregnation rate is particularly poor for porous metals, and even if an ultrasonic diffusion impregnation method is used, the impregnation rate is at most the same as method (1) above. It is. In the method (3) above, not only is the vacuum evaporation work complicated, but it is also completely unsuitable for adhesion to porous metals. The present invention provides a completely new solid electrolytic capacitor, more specifically, a solid electrolytic capacitor including a capacitor element and a solid electrolyte made of a TCNQ complex salt impregnated into the element in a liquefied state. When carrying out the present invention, it is necessary to liquefy TCNQ salt, but liquefying TCNQ salt in this way for forming a solid electrolyte layer has not been considered at all in the past. The most practical way to obtain a liquid consisting only of TCNQ salt is to liquefy the powdered TCNQ salt in its original form by heating and melting it. However, simply heating and melting the TCNQ salt thermally decomposes the TCNQ salt and turns it into almost an electrical insulator, completely eliminating the function of a solid electrolyte for a capacitor. The present invention shows that even if some TCNQ salts are heated and melted, it takes a short time to thermally decompose, but there is sufficient time for adhesion, and therefore it is possible to cool and solidify within such a time. maintains high conductivity if
This is based on the completely new knowledge that a solid electrolyte made of TCNQ salt can be obtained. TCNQ and its various salts, as well as its production process, are described in, for example, J.Am.Chem.Soc., Vol.84,
Disclosed in p. 3374-3387 (1962). TCNQ
Salts include a single salt represented by M n+ (TCNQ - )n and a complex salt represented by M n+ (TCNQ - )n (TCNQ)m. In addition, the above M is an organic cation, n is the value of the cation, and m is the neutrality contained in 1 mol of the complex salt.
Each term means a positive number corresponding to the number of moles of TCNQ. In the present invention, however, the use of complex salts is more preferred for capacitor properties. The above m of the complex salt is preferably 0.5 to 1.5, more preferably about 1. Examples of TCNQ salts used in the present invention include:
Examples include TCNQ salts of pyridine substituted at the N-position. Although various N-position substituents can be considered, those that can be melted, cooled, and solidified and are versatile are preferable, such as
C2-C18 (2-18 carbon atoms) alkyl, such as eryl, propyl, butyl, bentyl, octyl,
decyl, octadecyl), C5-C8 cycloalkyl (e.g. cyclobentyl, cyclohexyl), C3
-A hydrocarbon group such as a C18 alkene (eg allyl), phenyl or phenyl(C7-C18) alkyl (eg phenethyl). More preferred examples of the TCNQ salt used in the present invention include TCNQ salt of N-n-propylpyridine,
It is TCNQ salt of N-n-butylpyridine. The production of each of the above salts is, for example, as follows. N-
N-alkylpyridine iodide obtained by reacting an alkyl iodo and pyridine is reacted with TCNQ in an appropriate molar ratio (e.g. 3:4) in an appropriate solvent (e.g. acetonitrile).
Make TCNQ salt. This salt has many impurities, so
The purity of the salt can be increased by repeating a recrystallization operation consisting of heating, melting, cooling, and crystallization in a suitable solvent (eg, acetonitrile). The resulting crystals are needle-shaped or rod-shaped powders. The molar ratio of the pyridine part and the TCNQ part changes slightly depending on the type of solvent used in the above reaction or high purification. TCNQ salts not included in the present invention, such as H.pyridine TCNQ salt and N-methylpyridine
When TCNQ salt is heated, it decomposes without melting or decomposes simultaneously with melting. In contrast, the object of the present invention as described above is
When TCNQ salt is heated, it melts and becomes liquefied, but it takes a substantial amount of time for it to thermally decompose in that state. Thermal decomposition in this case occurs suddenly and the salt becomes an electrical insulator. The time required for insulating after complete dissolution is
19 seconds (290℃) and 60 seconds (260℃). However, the heating was carried out by filling an aluminum case with TCNQ salt crystal powder and bringing it into contact with a metal plate at the above temperature. Therefore, TCNQ salt in a liquefied state must be cooled and solidified before its decomposition. Thereby, a solid electrolyte with high electrical conductivity is obtained. For example, n-
In the case of the TCNQ salt of butylpyridine, it is heated to a temperature above the melting point and below about 300°C, and then cooled at room temperature or in a cooling medium such as water within about 30 seconds, preferably within 10 seconds after completion of liquefaction. Begins. The electrical conductivity of the TCNQ salt obtained by cooling and solidifying before decomposition was as follows. N-n-propyl pyridine (TCNQ-)
TCNQ 1500Ωcm (25℃) N-n-butyl pyridine (TCNQ-)
TCNQ 330Ωcm (25℃) The solid electrolyte obtained by the present invention is
It is not a collection of microcrystals of TCNQ salt like in cases (1) and (2), but is almost in the state of a polycrystalline mass. In addition, the solid electrolyte obtained by the present invention has the inherent properties of TCNQ salt,
For example, it maintains excellent repairability against oxide films on film-forming metal surfaces. According to the present invention, it is the same as attaching TCNQ salt to a film-forming metal using a solution containing 100% TCNQ salt. During the adhesion process, the required amount of solid electrolyte can be formed not only when the metal is in the form of a foil but also when it is porous, which not only improves mass productivity but also eliminates the conventional problem of TCNQ salt deteriorating each time it is dried. disadvantages are overcome. Furthermore, according to the present invention, since the solid electrolyte is close to a polycrystalline state,
The adhesion force to the metal is sufficiently large, so there is no need to use a conventional coagulating resin, and an undesirable decrease in the electrical conductivity of the solid electrolyte can be avoided. Examples of the present invention will be described below. A capacitor element is prepared by winding up a chemically formed aluminum foil as an anode foil and an etched aluminum foil as a cathode foil together with a separator made of manila paper. This element is then subjected to a chemical conversion treatment at the cut end, and then left in a constant temperature bath at 250° C. for about 4 hours to carry out the carbonization treatment of the separator. Note that this treatment is for increasing the degree of impregnation of the solid electrolyte into the element, and can be omitted.
Thereafter, the above device was preheated to about 250°C. Meanwhile, powdered TCNQ salt (in this example, N-butylpyridine) prepared by the method described above was prepared.
TCNQ salt) is filled in a cylindrical aluminum case with a bottom, and the case is placed on a heated metal plate to melt and liquefy the TCNQ salt inside the case. As a subsequent step, immediately after such melting and liquefaction, the preheated capacitor element is inserted into the liquefied TCNQ salt in the case, and then the case is immersed in water to be rapidly cooled. As a result, the TCNQ salt impregnates the separator of the capacitor element and solidifies, and the TCNQ salt forms a solid electrolyte that exhibits high conductivity. Finally, the opening of the case is sealed with resin with the tips of the anode lead and cathode lead exposed, and aging is performed to complete the intended solid electrolytic capacitor. The table below shows the characteristics of the solid electrolytic capacitor of this example. In the table, cap and tanδ are capacitance and loss at 120Hz, ESR is equivalent series resistance at 100KHz, respectively.
△cap means the capacitance change rate with respect to cap at +25°C, and LC means the leakage current after 15 seconds of applying 25V. For comparison, as a conventional product, a product using the same winding element as used in the present invention and impregnated with an ethylene glycol-based electrolyte is listed.

【表】【table】

【表】 上記実施例では、コンデンサ素子を構成する箔
金属は、アルミニウムであつたが、他の被膜形成
性金属、例えばタンタルやニオブでも良い。 以上の説明より明らかな如く、本発明によれ
ば、有機半導体からなる固体電解質を用いた固体
電解コンデンサにおいて、固体電解質の皮膜形成
性金属への含浸付着が簡単な作業で行え、かつ斯
る作業時に固体電解質の劣化も少なく更に固体電
解質の電導度が高く、温度に対して安定している
ことから、温度特性、周波数特性において、従来
の捲き取り素子に電解液を含浸したものに比べ
て、著しく改善されている。
[Table] In the above embodiments, the foil metal constituting the capacitor element was aluminum, but other film-forming metals such as tantalum and niobium may be used. As is clear from the above description, according to the present invention, in a solid electrolytic capacitor using a solid electrolyte made of an organic semiconductor, impregnating and adhering the solid electrolyte to a film-forming metal can be performed with a simple operation, and Furthermore, the solid electrolyte has high conductivity and is stable against temperature, so it has better temperature and frequency characteristics than conventional winding elements impregnated with electrolyte. Significantly improved.

Claims (1)

【特許請求の範囲】 1 N位を炭化水素基で置換したピリジンの
TCNQコンプレツクス塩を加熱融解し、陽極酸
化皮膜の形成された皮膜形成性金属よりなるコン
デンサ素子に含浸させた後、冷却固化したことを
特徴とする固体電解コンデンサ用固体電解質の製
造方法。 2 特許請求の範囲第1項において、上記炭化水
素基はn−プロピル又はn−ブチルであることを
特徴とする固体電解コンデンサ用固体電解質の製
造方法。
[Claims] 1 Pyridine substituted with a hydrocarbon group at the N position
A method for producing a solid electrolyte for a solid electrolytic capacitor, characterized in that TCNQ complex salt is heated and melted, impregnated into a capacitor element made of a film-forming metal on which an anodized film is formed, and then cooled and solidified. 2. The method for producing a solid electrolyte for a solid electrolytic capacitor according to claim 1, wherein the hydrocarbon group is n-propyl or n-butyl.
JP57172063A 1982-09-29 1982-09-29 Solid electrolytic condenser Granted JPS5961026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57172063A JPS5961026A (en) 1982-09-29 1982-09-29 Solid electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57172063A JPS5961026A (en) 1982-09-29 1982-09-29 Solid electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS5961026A JPS5961026A (en) 1984-04-07
JPH0423814B2 true JPH0423814B2 (en) 1992-04-23

Family

ID=15934841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57172063A Granted JPS5961026A (en) 1982-09-29 1982-09-29 Solid electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS5961026A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916855A (en) * 1972-06-13 1974-02-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4916855A (en) * 1972-06-13 1974-02-14

Also Published As

Publication number Publication date
JPS5961026A (en) 1984-04-07

Similar Documents

Publication Publication Date Title
JPS6252939B2 (en)
JPH0376573B2 (en)
KR920009178B1 (en) An organic semiconductor electrolyte capacitor and process for producing the same
JPH0423814B2 (en)
JPH0373961B2 (en)
JPS6251491B2 (en)
JPH047086B2 (en)
JPS617618A (en) Solid electrolytic condenser and method of producing same
JPH0466374B2 (en)
JPS62139312A (en) Manufacture of solid electrolytic capacitor
JPH09260215A (en) Manufacture of solid electrolytic capacitor
JPS62252928A (en) Solid electrolytic capacitor
JPH01138709A (en) Solid electrolytic capacitor
JPS60167413A (en) Solid electrolytic condenser and method of producing same
JPS617619A (en) Solid electrolytic condenser and method of producing same
JPS63200514A (en) Solid electrolytic capacitor
JPH0252849B2 (en)
JPS60171717A (en) Solid electrolytic condenser and method of producing same
JPS6151910A (en) Solid electrolytic condenser
JPS6147623A (en) Solid electrolytic condenser
JPH02239609A (en) Solid electrolytic capacitor
JPH0377649B2 (en)
JPS6147624A (en) Solid electrolytic condenser
JPS63127522A (en) Solid electrolytic capacitor
JPS60206127A (en) Method of producing solid electrolytic condenser