JPH0377649B2 - - Google Patents

Info

Publication number
JPH0377649B2
JPH0377649B2 JP57112798A JP11279882A JPH0377649B2 JP H0377649 B2 JPH0377649 B2 JP H0377649B2 JP 57112798 A JP57112798 A JP 57112798A JP 11279882 A JP11279882 A JP 11279882A JP H0377649 B2 JPH0377649 B2 JP H0377649B2
Authority
JP
Japan
Prior art keywords
tcnq
case
capacitor element
salt
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57112798A
Other languages
Japanese (ja)
Other versions
JPS593916A (en
Inventor
Shinichi Niwa
Hirobumi Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP11279882A priority Critical patent/JPS593916A/en
Publication of JPS593916A publication Critical patent/JPS593916A/en
Publication of JPH0377649B2 publication Critical patent/JPH0377649B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Primary Cells (AREA)
  • Thermistors And Varistors (AREA)
  • Fuel Cell (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は固体電解コンデンサに関する。 固体電解コンデンサは陽極酸化皮膜を有するア
ルミニウムなどの金属に固体電解質を付着した構
造を有している。従来より量産化されているこの
種コンデンサにおいて、それを構成する固体電解
質はほとんど二酸化マンガンであるが、近年、二
酸化マンガンの弱点、即ち二酸化マンガン形成の
ための硝酸マンガンからの熱分解時に上記金属の
陽極酸化皮膜が損傷を受けること、又二酸化マン
ガンによる陽極酸化皮膜の修復性が乏しいことな
どを改善する固体電解質として有機半導体、主に
TCNQ塩を用いることが提案された。こゝに、
TCNQとは7,7,8,8テトラシアノキノジ
メタンを意味する。 しかし乍ら、TCNQ塩は通常粉末状の結晶で
あり、その結晶自体高い電導度や上記皮膜の良好
な修復性を示すものの、粉末状結晶であるがため
に加工性に難がある。即ち、弁作用のある金属に
TCNQ塩の結晶をどの様にして付着するかとい
う問題がある。特に固体電解コンデンサに用いる
弁作用のある金属は多孔質の場合が多いが、斯る
多孔質金属へのTCNQ塩の一様な含浸的付着は
困難を極める。更に重要なことは、TCNQ塩自
体がその付着作業時に常に変質などによる劣化の
危険性をはらんでいることである。 本発明者等は、上記の点に鑑み、TCNQ塩を
用いた全く新規な固体電解コンデンサを既に提案
した。その構造は、特願昭56−58816号に詳細に
説明されているが、要約すれば、コンデンサ素子
と、液化状態で前記素子に含浸されたTCNQ塩
からなる固体電解質とを含むことを特徴としてい
る。 斯る新規な固体電解コンデンサによれば、
TCNQ塩のコンデンサ素子への含浸率が高まり、
かつTCNQ塩本来の優れた性質を活かすことが
でき、コンデンサ特性の向上が図れる。 従来の一般的な固体電解コンデンサでは、粉末
状の弁作用のある金属を焼結し、それを化成処理
したものをコンデンサ素子とし、斯る素子に固体
電解質を含浸している。 第1図は斯る従来の典型的な固体電解コンデン
サを示し、1はアルミニウム粉末を円柱状に焼結
し、化成処理を施した多孔性のコンデンサ素子、
2は該素子に含浸された二酸化マンガンからなる
固体電解質、3及び4は固体電解質2外周に順次
被着されたグラフアイト層及び銀ペイント層、5
はアルミニウムケース、6はケース5の底部に充
填されたハンダ、7はケース開口を封止する樹
脂、8及び9は夫々素子1及びハンダ6に電気的
に連なる陽極リード及び陰極リードである。 本発明は、TCNQ塩を液化状態でコンデンサ
素子に含浸する上記の新規な技術を利用し、上記
従来のコンデンサの構造の簡易化を図つたもので
ある。即ち、本発明によれば第1図に示す如く、
従来必要であつたグラフアイト層3、銀ペイント
層4及びハンダ6が不要となる。更に本発明は、
この様な簡易構造を実現する際に伴う不所望な静
電容量低下の解決を図つたものである。 本発明の固体電解コンデンサの構成的特徴は、
粉末状の弁作用のある金属を焼結し、化成処理を
なした多孔性コンデンサ素子と、弁作用を有しな
い金属からなり、前記コンデンサ素子を収容する
ケースと、該ケース内に封入され、且つ加熱融解
して前記コンデンサ素子に含浸させた後、冷却固
化して前記コンデンサ素子内部及び該素子と前記
ケース内面との間に充填されたTCNQ塩からな
る固体電解質を具備せることにある。 この様に、本発明によれば、コンデンサ素子と
金属ケースとの間には固体電解質のみが存在する
から構造が極めて簡単になる。 この場合、金属ケースの材料を弁作用を有しな
いものに選択したことは重要である。従来技術に
従つて、金属ケースをアルミニウムで構成すれ
ば、アルミニウムの弁作用に起因する不所望な静
電容量の低下が認められる。即ち、本発明による
構成では、金属ケースに陰極リードが取着される
ことになるが、ケースが弁作用を有すると、自然
酸化等によりケース内面に形成された被膜によ
り、ケース内面で付加的静電容量が形成される。
斯る付加的静電容量はコンデンサ素子において形
成される本来の静電容量と直列関係にあり、しか
も上記本来の静電容量に比して十分大きくないた
め、上記両静電容量の直列結合として現われるコ
ンデンサ自体の静電容量が低下してしまうのであ
る。 本発明の如く、ケースが弁作用を有しない金属
からなる場合、ケースと固体電解質とは微小抵抗
を介してほとんど短絡状態となり、上記付加的静
電容量の影響は実質的に問題とならない。上記微
小抵抗には、ケース内面における接触抵抗等が含
まれる。 本発明において用いられるケース用の弁作用を
有しない金属としては、TCNQ塩の液化時の温
度(約300℃以下)に耐え得る。即ち、融点が300
℃以上の金属が用いられ、具体的には、金、白
金、銀、銅、鉄、ニツケル、亜鉛、又は、これら
の合金である黄銅、青銅、ステンレス、又はこれ
らをメツキ被膜した金属である。好ましくは、酸
化され難く、圧延性が良く、安価な点で銅、黄銅
が挙げられる。 本発明において用いられるコンデンサ素子用の
金属としては、アルミニウム、タンタル、ニオブ
等の弁作用を呈する通常のものが用いられる。 TCNQ及びその種々の塩、並びにその製法自
体は、例えば、J・Am.Chem.Soc.,Vol.84,
P3374−3387(1962)に開示されている。TCNQ
塩としては、Mn+(TCNQ-)nで表わされる単
塩と、Mn+(TCNQ-)n(TCNQ)mで表わされ
る錯塩とがある。尚上記Mは有機カチオン、nは
カチオンの価、mは1モルの錯塩に含まれる中性
TCNQのモル数に対応する正の数を夫々意味す
る。 本発明では、しかし乍ら、錯塩の使用がコンデ
ンサ特性にとつてより好ましい。そして、錯塩の
上記mは0.5〜1.5が好ましく、より好ましくは約
1である。 本発明で用いられるTCNQ塩の例としては、
N位を置換したキノリン及びイソキノリンの
TCNQ塩が挙げられる。尚、N位の置換体は、
C2〜C18(炭素数2〜18の)アルキル(例えばエチ
ル、プロピル、ブチル、ペンチル、オクチル、デ
シル、オクタデシル)、C5〜C8シクロアルキル
(例えばシクロペンチル、シクロヘキシル)、C3
〜C18アルケン(例えばアリル)、フエニル又はフ
エニル(C1〜C18)アルキル(例えばフエネチル)
の様な炭化水素基である。 本発明で用いられるTCNQ塩のより好ましい
例は、N−n−プロピルキノリンのTCNQ塩、
N−エチルイソキノリンのTCNQ塩、N−イソ
プロピルキノリンのTCNQ塩、N−n−ヘキシ
ルキノリンのTCNQ塩、N−n−プロピルイソ
キノリンのTCNQ塩、N−イソプロピルイソキ
ノリンのTCNQ塩、N−n−ブチルイソキノリ
ンのTCNQ塩である。 これらのTCNQ塩はその液化のために加熱融
解しても、熱分解するまでに短時間ではあるが、
コンデンサ素子への含浸付着作業にとつては十分
な時間的余裕を呈し、従つて斯る時間内に上記作
業をなしかつ冷却固化すれば高い電導度を保持す
るTCNQ塩からなる固体電解質を得ることがで
きる。 完全に融解後、絶縁化するまでの時間及びその
分解前に冷却固化して得られるTCNQ塩の電導
度の例を次表に示す。
The present invention relates to solid electrolytic capacitors. A solid electrolytic capacitor has a structure in which a solid electrolyte is attached to a metal such as aluminum having an anodized film. In this type of capacitor, which has been mass-produced for a long time, the solid electrolyte that makes up the capacitor is mostly manganese dioxide, but in recent years, the weak point of manganese dioxide has been discovered. Organic semiconductors, mainly organic semiconductors, are used as solid electrolytes to improve damage to the anodic oxide film and the poor repairability of the anodic oxide film with manganese dioxide.
It was proposed to use TCNQ salt. Here,
TCNQ means 7,7,8,8 tetracyanoquinodimethane. However, TCNQ salt is usually a powdered crystal, and although the crystal itself exhibits high electrical conductivity and good repairability of the above-mentioned film, it is difficult to process because it is a powdered crystal. In other words, metals with valve action
The problem is how to attach TCNQ salt crystals. In particular, valve-acting metals used in solid electrolytic capacitors are often porous, but it is extremely difficult to uniformly impregnate TCNQ salt onto such porous metals. What is more important is that TCNQ salt itself always carries the risk of deterioration due to alteration during the adhesion process. In view of the above points, the present inventors have already proposed a completely new solid electrolytic capacitor using TCNQ salt. Its structure is explained in detail in Japanese Patent Application No. 58816/1982, but in summary, it is characterized by comprising a capacitor element and a solid electrolyte consisting of TCNQ salt impregnated into the element in a liquefied state. There is. According to this new solid electrolytic capacitor,
The impregnation rate of TCNQ salt into the capacitor element increases,
Moreover, it is possible to take advantage of the original excellent properties of TCNQ salt, and improve capacitor characteristics. In conventional general solid electrolytic capacitors, a powdered valve metal is sintered and subjected to chemical conversion treatment to form a capacitor element, and the element is impregnated with a solid electrolyte. FIG. 1 shows a typical conventional solid electrolytic capacitor, in which 1 is a porous capacitor element made by sintering aluminum powder into a cylindrical shape and undergoing chemical conversion treatment;
2 is a solid electrolyte made of manganese dioxide impregnated into the element; 3 and 4 are a graphite layer and a silver paint layer which are successively deposited on the outer periphery of the solid electrolyte 2; 5
6 is an aluminum case, 6 is solder filled in the bottom of the case 5, 7 is a resin for sealing the case opening, and 8 and 9 are an anode lead and a cathode lead electrically connected to the element 1 and the solder 6, respectively. The present invention aims to simplify the structure of the conventional capacitor by utilizing the above-described novel technique of impregnating a capacitor element with TCNQ salt in a liquefied state. That is, according to the present invention, as shown in FIG.
The graphite layer 3, silver paint layer 4 and solder 6, which were conventionally necessary, are no longer necessary. Furthermore, the present invention
This is an attempt to solve the undesirable decrease in capacitance that occurs when realizing such a simple structure. The structural features of the solid electrolytic capacitor of the present invention are as follows:
A porous capacitor element made by sintering a powdered metal with a valve action and subjected to chemical conversion treatment; a case made of a metal without a valve action and accommodating the capacitor element; After being heated and melted to impregnate the capacitor element, the solid electrolyte is cooled and solidified to provide a solid electrolyte made of TCNQ salt filled inside the capacitor element and between the element and the inner surface of the case. As described above, according to the present invention, only the solid electrolyte is present between the capacitor element and the metal case, so the structure is extremely simple. In this case, it is important that the material of the metal case is selected to have no valve action. If the metal case is made of aluminum according to the prior art, an undesirable reduction in capacitance is observed due to the valve action of aluminum. That is, in the configuration according to the present invention, the cathode lead is attached to the metal case, but if the case has a valve action, additional static will be generated on the inside of the case due to the coating formed on the inner surface of the case due to natural oxidation. A capacitance is formed.
This additional capacitance is in a series relationship with the original capacitance formed in the capacitor element, and since it is not sufficiently large compared to the original capacitance, it can be expressed as a series combination of both capacitances. This results in a decrease in the capacitance of the capacitor itself. When the case is made of a metal without valve action as in the present invention, the case and the solid electrolyte are almost short-circuited through a small resistance, and the effect of the additional capacitance is not a substantial problem. The above-mentioned minute resistance includes contact resistance on the inner surface of the case and the like. The metal without valve action for the case used in the present invention can withstand the temperature at which TCNQ salt is liquefied (approximately 300° C. or less). That is, the melting point is 300
℃ or higher, specifically, gold, platinum, silver, copper, iron, nickel, zinc, alloys thereof such as brass, bronze, stainless steel, or metals coated with these metals. Preferably, copper and brass are used because they are resistant to oxidation, have good rollability, and are inexpensive. As the metal for the capacitor element used in the present invention, common metals exhibiting valve action, such as aluminum, tantalum, and niobium, are used. TCNQ and its various salts, as well as its production process, are described in, for example, J. Am. Chem. Soc., Vol. 84,
P3374-3387 (1962). TCNQ
Salts include a single salt represented by M n+ (TCNQ - )n and a complex salt represented by M n+ (TCNQ - )n (TCNQ)m. In addition, the above M is an organic cation, n is the value of the cation, and m is the neutrality contained in 1 mol of the complex salt.
Each term means a positive number corresponding to the number of moles of TCNQ. In the present invention, however, the use of complex salts is more preferred for capacitor properties. The above m of the complex salt is preferably 0.5 to 1.5, more preferably about 1. Examples of TCNQ salts used in the present invention include:
Quinoline and isoquinoline substituted at N-position
TCNQ salt is mentioned. In addition, the substituent at the N position is
C2 - C18 (2-18 carbon atoms) alkyl (e.g. ethyl, propyl, butyl, pentyl, octyl, decyl, octadecyl), C5 - C8 cycloalkyl (e.g. cyclopentyl, cyclohexyl), C3
~ C18 alkene (e.g. allyl), phenyl or phenyl( C1 - C18 )alkyl (e.g. phenethyl)
It is a hydrocarbon group such as. More preferred examples of the TCNQ salt used in the present invention include TCNQ salt of N-n-propylquinoline,
TCNQ salt of N-ethylisoquinoline, TCNQ salt of N-isopropylquinoline, TCNQ salt of N-hexylquinoline, TCNQ salt of N-n-propylisoquinoline, TCNQ salt of N-isopropylisoquinoline, N-n-butylisoquinoline of TCNQ salt. Even if these TCNQ salts are heated and melted to liquefy, it takes a short time to thermally decompose.
It is possible to obtain a solid electrolyte made of TCNQ salt that provides sufficient time for impregnation and adhesion to capacitor elements, and that maintains high conductivity if the above-mentioned work is not performed within such time and is cooled and solidified. I can do it. Examples of the electrical conductivity of TCNQ salt obtained by cooling and solidifying before decomposition and the time required to insulate after complete melting are shown in the table below.

【表】 P1:N−n−プロピルキノリン+(TCNQ-
(TCNQ) P2:N−イソプロピルキノリン+(TCNQ-
(TCNQ) P3:N−n−プロピルイソキノリン+
(TCNQ-)(TCNQ) P4:N−イソプロピルイソキノリン+
(TCNQ-)(TCNQ) P5:N−n−ブチルイソキノリン+(TCNQ-
(TCNQ) 上記各塩の製造は例えば次の通りである。N−
アルキルヨードとキノリン(又はイソキノリン)
とを反応させて得られるN−アルキルキノリン
(又はイソキノリン)ヨーダイドとTCNQとを適
当な溶媒(例えばアセトニトリル)中で、適当な
モル比(例えば3:4)で反応させてTCNQ塩
を作る。この塩は不純物が多いので、適当な溶媒
(例えばアセトニトリルにて82℃以下の温度)で
の加熱溶解−冷却−晶出からなる再結晶操作を繰
り返すことにより塩の純度が上げられる。得られ
る結晶は針状又はロツド状の粉末である。 以下本発明実施例を説明する。 第2図は本実施例固体電解コンデンサの構造を
示し、10は従来と同様に、アルミニウム粉末を
円柱状に焼結し、化成処理を施した多孔性のコン
デンサ素子、11は該素子に1部が埋設され、同
様に化成処理されたアルミニウム線、12は該ア
ルミニウム線に熔接接続されたCP線等のハンダ
付可能な陽極リード線、13は銅又は黄銅からな
り、コンデンサ素子10を収容せるケース、14
はコンデンサ素子10の内部及び該素子とケース
13の内面との間に充填されたTCNQ塩からな
る固体電解質、15はケース13の開口を封止す
る樹脂、16はケース13の外周に熔接固着され
たCP線からなる陰極リード線である。 上記TCNQ塩の充填方法は以下の通りである。 既述の方法で作成された粉末状のTCNQ塩
(本実施例では上記P5のものを使用)をケース1
3内に充填し、このケースを約290℃に加熱した
金属板上に載置することによりケース内の
TCNQ塩を融解液化する。 続く工程として、斯る融解液化後、直ちに、予
めアルミニウ線11及び陽極リード線12を有
し、かつ予熱されているコンデンサ素子10をケ
ース13内の液化状態のTCNQ塩に挿入し、次
いでこのケースを水中に浸漬して急冷する。これ
によりコンデンサ素子10内にTCNQ塩が含浸
した状態で固化し、そのTCNQ塩は高電導度を
示す固体電解質を形成する。同時に斯る固体電解
質は素子10とケース13内面との間を充填す
る。 下表に本実施例並びに比較のための参考例の各
固体電解コンデンサの特性を示す。尚参考例では
ケース13がアルミニウムからなる点において異
なり、他の構成は全て実施例と同一である。又、
実施例及び参考例共に、使用されたコンデンサ素
子には、二酸化マンガンを固体電解質とする従来
の固体電解コンデンサにおいて1.0μFの静電容量
を示すものが使用された。
[Table] P1: N-n-propylquinoline + (TCNQ - )
(TCNQ) P2: N-isopropylquinoline + (TCNQ - )
(TCNQ) P3: N-n-propylisoquinoline +
(TCNQ - ) (TCNQ) P4: N-isopropylisoquinoline +
(TCNQ - ) (TCNQ) P5: N-n-butylisoquinoline + (TCNQ - )
(TCNQ) The production of each of the above salts is, for example, as follows. N-
Alkyl iodo and quinoline (or isoquinoline)
A TCNQ salt is prepared by reacting N-alkylquinoline (or isoquinoline) iodide obtained by reacting with TCNQ in a suitable solvent (for example, acetonitrile) at a suitable molar ratio (for example, 3:4). Since this salt contains many impurities, the purity of the salt can be increased by repeating a recrystallization operation consisting of heating dissolution, cooling, and crystallization in an appropriate solvent (for example, acetonitrile at a temperature of 82° C. or lower). The resulting crystals are needle-shaped or rod-shaped powders. Examples of the present invention will be described below. FIG. 2 shows the structure of the solid electrolytic capacitor of this embodiment, where 10 is a porous capacitor element made by sintering aluminum powder into a cylindrical shape and subjected to chemical conversion treatment, and 11 is a part of the element. 12 is a solderable anode lead wire such as a CP wire that is welded to the aluminum wire, and 13 is a case made of copper or brass, in which the capacitor element 10 is housed. , 14
15 is a solid electrolyte made of TCNQ salt that is filled inside the capacitor element 10 and between the element and the inner surface of the case 13; 15 is a resin that seals the opening of the case 13; and 16 is a solid electrolyte that is welded to the outer periphery of the case 13. The cathode lead wire is made of CP wire. The method for filling the above TCNQ salt is as follows. Powdered TCNQ salt prepared by the method described above (in this example, the above P5 salt was used) was used in Case 1.
3 and place the case on a metal plate heated to approximately 290°C.
Melt and liquefy TCNQ salt. As a subsequent step, immediately after the melting and liquefaction, the preheated capacitor element 10, which has the aluminum wire 11 and the anode lead wire 12, is inserted into the liquefied TCNQ salt in the case 13, and then the case 13 is heated. immersed in water and cooled rapidly. This solidifies the TCNQ salt impregnated inside the capacitor element 10, and the TCNQ salt forms a solid electrolyte exhibiting high conductivity. At the same time, the solid electrolyte fills the space between the element 10 and the inner surface of the case 13. The table below shows the characteristics of each solid electrolytic capacitor of this example and a reference example for comparison. The reference example differs in that the case 13 is made of aluminum, and all other configurations are the same as the example. or,
In both Examples and Reference Examples, the capacitor elements used were conventional solid electrolytic capacitors using manganese dioxide as a solid electrolyte and exhibiting a capacitance of 1.0 μF.

【表】 表中、cap,tanδは夫々120Hzでの静電容量、
損失、LCは定格電圧(10V)印加後30秒後の漏
れ電流、ESRは100KHzでの等価直列抵抗を夫々
意味する。 以上の説明より明らかな如く、本発明によれ
ば、粉末状の弁作用のある金属を焼結し、化成処
理をなしたコンデンサ素子に固体電解質を含浸せ
る固体電解コンデンサにおいて、コンデンサ素子
とケースとの間にTCNQ塩からなる固体電解質
を充填したものであるから構成が極めて簡単なも
のとなると共に、コンデンサ素子に固体電解質層
を形成する工程及びコンデンサ素子とケース内側
に固体電解質層を充填する工程を同時に行うこと
ができるため、工程が削減され、更にケースと固
体電解質とが接触するにもかかわらず不所望な静
電容量の低下が現われない。
[Table] In the table, cap and tanδ are the capacitance at 120Hz, respectively.
Loss, LC means the leakage current 30 seconds after applying the rated voltage (10V), and ESR means the equivalent series resistance at 100KHz. As is clear from the above description, according to the present invention, in a solid electrolytic capacitor in which a solid electrolyte is impregnated into a capacitor element made by sintering a powdered valve metal and subjected to a chemical conversion treatment, the capacitor element and the case are bonded together. The structure is extremely simple because the solid electrolyte made of TCNQ salt is filled between the capacitor element and the capacitor element and the inside of the case. Since these steps can be carried out simultaneously, the number of steps can be reduced, and furthermore, an undesirable decrease in capacitance does not occur even though the case and the solid electrolyte are in contact with each other.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示す断面図、第2図は本発明
実施例を示す断面図である。
FIG. 1 is a sectional view showing a conventional example, and FIG. 2 is a sectional view showing an embodiment of the present invention.

Claims (1)

【特許請求の範囲】 1 粉末状の弁作用のある金属を焼結して化成処
理をなした多孔性コンデンサ素子と、弁作用を有
しない金属からなり前記コンデンサ素子を収容す
るケースと、該ケース内に封入され、且つ加熱融
解して前記コンデンサ素子に含浸させた後、冷却
固化して前記コンデンサ素子内部及び該素子と前
記ケース内面との間に充填されるTCNQ塩から
なる固体電解質とを具備する固体電解コンデン
サ。 2 特許請求の範囲第1項において、前記
TCNQ塩は液化状態で熱分解するまでに実質的
な時間を要するものであることを特徴とする固体
電解コンデンサ。 3 特許請求の範囲第1項又は第2項において、
前記ケースを構成する金属は銅又は黄銅であるこ
とを特徴とする固体電解コンデンサ。
[Scope of Claims] 1. A porous capacitor element obtained by sintering and chemically treating a powdered metal with a valve action, a case made of a metal without a valve action and accommodating the capacitor element, and the case. a solid electrolyte made of TCNQ salt that is sealed in the capacitor element and heated and melted to impregnate the capacitor element, and then cooled and solidified to fill the inside of the capacitor element and between the element and the inner surface of the case. solid electrolytic capacitor. 2 In claim 1, the above-mentioned
A solid electrolytic capacitor characterized in that TCNQ salt takes a substantial amount of time to thermally decompose in a liquefied state. 3 In claim 1 or 2,
A solid electrolytic capacitor characterized in that the metal constituting the case is copper or brass.
JP11279882A 1982-06-29 1982-06-29 Solid electrolytic condenser Granted JPS593916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11279882A JPS593916A (en) 1982-06-29 1982-06-29 Solid electrolytic condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11279882A JPS593916A (en) 1982-06-29 1982-06-29 Solid electrolytic condenser

Publications (2)

Publication Number Publication Date
JPS593916A JPS593916A (en) 1984-01-10
JPH0377649B2 true JPH0377649B2 (en) 1991-12-11

Family

ID=14595780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11279882A Granted JPS593916A (en) 1982-06-29 1982-06-29 Solid electrolytic condenser

Country Status (1)

Country Link
JP (1) JPS593916A (en)

Also Published As

Publication number Publication date
JPS593916A (en) 1984-01-10

Similar Documents

Publication Publication Date Title
JPH0794368A (en) Solid electrolytic capacitor and manufacture thereof
JPS6252939B2 (en)
KR920009178B1 (en) An organic semiconductor electrolyte capacitor and process for producing the same
JPH0376573B2 (en)
JPH0377649B2 (en)
JPH047086B2 (en)
JP3221889B2 (en) Method for manufacturing solid electrolytic capacitor
JPH0337854B2 (en)
JPH09260215A (en) Manufacture of solid electrolytic capacitor
JPS60171717A (en) Solid electrolytic condenser and method of producing same
JPH0423814B2 (en)
JPH0467331B2 (en)
JPS6251491B2 (en)
JPS61107716A (en) Solid electrolytic capacitor
JPS60171718A (en) Solid electrolytic condenser and method of producing same
JPS63239916A (en) Electrolytic capacitor
JPH02239609A (en) Solid electrolytic capacitor
JPH0744131B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6147624A (en) Solid electrolytic condenser
JPS62204514A (en) Solid electrolytic capacitor
JPS6147623A (en) Solid electrolytic condenser
JPS6147622A (en) Solid electrolytic condenser
JP2006024707A (en) Solid electrolytic capacitor and manufacturing method thereof
JPS617620A (en) Solid electrolytic condenser and method of producing same
JPS6065520A (en) Solid electrolytic condenser