JPH0552563B2 - - Google Patents

Info

Publication number
JPH0552563B2
JPH0552563B2 JP58095357A JP9535783A JPH0552563B2 JP H0552563 B2 JPH0552563 B2 JP H0552563B2 JP 58095357 A JP58095357 A JP 58095357A JP 9535783 A JP9535783 A JP 9535783A JP H0552563 B2 JPH0552563 B2 JP H0552563B2
Authority
JP
Japan
Prior art keywords
magnetic
thin film
metal
film layer
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58095357A
Other languages
Japanese (ja)
Other versions
JPS59221817A (en
Inventor
Tomio Kobayashi
Heikichi Sato
Shoichi Kano
Makoto Kubota
Yoshimi Takahashi
Tatsuo Hisamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9535783A priority Critical patent/JPS59221817A/en
Publication of JPS59221817A publication Critical patent/JPS59221817A/en
Publication of JPH0552563B2 publication Critical patent/JPH0552563B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気ヘツド、特にVTR用等の磁気ヘ
ツドの製法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a magnetic head, particularly for a VTR or the like.

背景技術とその問題点 近年の磁気記録技術の発展に伴ないVTR用の
磁気ヘツドとしては高磁束密度、高抗磁力の磁気
テープへの記録再生が可能であること又磁気テー
プの面内での記録密度を向上させるためにできる
だけ狭トラツク化が可能であることが要求されて
いる。前者の要求に対しては飽和磁束密度の大き
い金属磁性材料(アモルフアス、センダスト、パ
ーマロイ等)がフエライトに代つて用いられてい
る。又、後者の要求に対しても数十μ以下のトラ
ツク幅を実現するためにスパツタリング、蒸着、
イオンプレーテイング等の真空薄膜形成技術によ
る金属磁性薄膜が適しているが、真空薄膜形成技
術によつて作成する金属磁性薄膜は膜成長速度が
数μ/hrと極めて遅い。
BACKGROUND TECHNOLOGY AND PROBLEMS With the development of magnetic recording technology in recent years, magnetic heads for VTRs have become capable of recording and reproducing information on magnetic tapes with high magnetic flux density and high coercive force. In order to improve the recording density, it is required to make the track as narrow as possible. To meet the former requirement, metal magnetic materials with high saturation magnetic flux density (amorphous, sendust, permalloy, etc.) are used in place of ferrite. In addition, to meet the latter requirement, sputtering, vapor deposition,
Metal magnetic thin films formed by vacuum thin film forming techniques such as ion plating are suitable, but metal magnetic thin films formed by vacuum thin film forming techniques have an extremely slow film growth rate of several μ/hr.

ビデオヘツドはヘツド構造自体の強度やテープ
との接触に対する耐衝撃性の観点から100〜200μ
厚程度の厚さが要求されるが真空薄膜形成技術で
その厚さを得ようとすると5μ/hrの速度としても
30hrsぐらいの時間を要してしまい生産性が悪い。
The video head has a thickness of 100 to 200 μm from the viewpoint of the strength of the head structure itself and impact resistance against contact with the tape.
However, if you try to obtain that thickness using vacuum thin film formation technology, even at a speed of 5μ/ hr ,
It takes about 30 hours rs , which is bad for productivity.

そのため特開昭57−141011や特開昭57−55526
に見られ、第1図に示すごとく、磁気ヘツド構体
1の大部分を非磁性基板2で構成し、金属強磁性
薄膜3はギヤツプ近傍もしくはトラツク幅に該当
するヘツドの中心部分領域近傍に限定しているの
が普通である。
Therefore, JP-A-57-141011 and JP-A-57-55526
As shown in FIG. 1, most of the magnetic head structure 1 is composed of a non-magnetic substrate 2, and the metal ferromagnetic thin film 3 is limited to the vicinity of the gap or the central region of the head corresponding to the track width. It is normal to have

しかしながら狭トラツク化すればするほど磁気
コアの磁路を非磁性基板2上に形成された金属強
磁性薄膜3によることは従来の強磁性酸化物基板
4をガラス5により融着してなる第2図の様な磁
気ヘツド構造体1に比べて磁気抵抗が大きくなる
ため再生効率的に不利である。一方、実開昭56−
152929や特開昭53−50815のごとく即ち第3図の
様に金属磁性体コア1のテープ摺接部からギヤツ
プgの近傍にかけての金属強磁性箔3を非磁性耐
摩耗性材2により挾みそれ以外を強磁性酸化物板
4で挾んでバツクの磁気抵抗を小さくする方法が
提案されているが、金属強磁性箔3と強磁性酸化
物基板4との間の接合はガラス無機接着材、有機
接着材いずれを使うにせよ必ず接着層が介在する
ため両磁性体間の磁束伝達が困難となる。
However, the narrower the track becomes, the more the magnetic path of the magnetic core is formed by the metal ferromagnetic thin film 3 formed on the non-magnetic substrate 2. Compared to the magnetic head structure 1 shown in the figure, the magnetic resistance is larger, which is disadvantageous in terms of reproduction efficiency. On the other hand, Utsukai Showa 56-
152929 and Japanese Patent Application Laid-Open No. 53-50815, as shown in FIG. A method has been proposed in which the other parts are sandwiched between ferromagnetic oxide plates 4 to reduce the magnetic resistance of the back. No matter which organic adhesive is used, an adhesive layer is always present, making it difficult to transmit magnetic flux between the two magnetic materials.

更にこの方法の不都合な点は高周波特性を向上
させるため及び狭トラツク化の観点から数μ以下
の厚さの金属強磁性箔を積層する時のハンドリン
グの難しさがある。即ちいかに習熟した作業者で
あつても数μの金属強磁性箔どうしを隙間なく積
層するのは難しく、第4図に示す如く金属強磁性
箔3,3間に隙間aが生じ、隙間aがあると箔3
間に非磁性帯が存在してしまいトラツク幅も広く
なるし、トラツクの中間に記録できない領域がで
きてしまう。この様な状況の中にあつて強磁性酸
化物自体を基板としてその上に真空薄膜形成技術
により金属強磁性薄膜を直接形成する方法でビデ
オヘツド等が作成できれば強磁性酸化物と金属磁
性薄膜間の密着性が高く又高帯域における渦電流
損を避けるためにどんな薄い膜の積層体にしよう
とも絶縁膜と金属磁性体薄膜との交互積層が隙間
なく完全にできるため非常に好ましい。
A further disadvantage of this method is that it is difficult to handle when laminating metal ferromagnetic foils with a thickness of several microns or less from the viewpoint of improving high frequency characteristics and narrowing the track. In other words, no matter how skilled an operator is, it is difficult to laminate metal ferromagnetic foils of several micrometers without gaps, and as shown in FIG. Aruto Haku3
A non-magnetic band exists between the tracks, which widens the track width, and creates an unrecordable area in the middle of the track. Under these circumstances, if a video head etc. could be created by using the ferromagnetic oxide itself as a substrate and directly forming a metal ferromagnetic thin film on it using vacuum thin film formation technology, it would be possible to create a video head etc. by using the ferromagnetic oxide itself as a substrate and directly forming a metal ferromagnetic thin film on it using vacuum thin film formation technology. It is very preferable because the insulating film and the metal magnetic thin film can be alternately laminated completely without gaps, no matter how thin the film laminate is, in order to avoid eddy current loss in high frequency bands.

ところがそれが現実に不可能であつたのは次の
2つの大きな理由によつていた。その1つは強磁
性酸化物、例えばMn−Znフエライトは約100×
10-7-1の熱膨脹係数を、金属強磁性薄膜例えば
センダストは約150×10-7-1の熱膨脹係数を
夫々持ち50%程度も熱膨脹係数が異なり、且つフ
エライトがへき開性を持つた結晶であるため、金
属強磁性材料を数μ以上の厚さで真空薄膜形成技
術によりフエライト上に形成させると形成途中に
おける熱歪によりフエライトの破壊や割れを招来
させてしまう。又、熱歪は後のガラス接合等の工
程においても避けられないので増々割れを拡大し
てしまう。
However, this was actually impossible for two major reasons. One is ferromagnetic oxides, such as Mn-Zn ferrite, which is approximately 100×
A metal ferromagnetic thin film, such as Sendust, has a coefficient of thermal expansion of approximately 150×10 -7 °C -1 , and the coefficient of thermal expansion differs by about 50 %, and ferrite has cleavability . Since it is a crystal, if a metal ferromagnetic material is formed on ferrite to a thickness of several microns or more using vacuum thin film formation technology, the ferrite will break or crack due to thermal strain during the formation. Moreover, since thermal distortion cannot be avoided in subsequent processes such as glass bonding, cracks will become more and more enlarged.

従来、強磁性酸化物上に直接金属磁性薄膜を形
成したヘツドとしては第5図に示すごとく、金属
磁性薄膜3をヘツドコア1を構成する強磁性酸化
物基板4のギヤツプgにのみ形成するものがある
が、その場合は膜厚も薄く又面積も小さい領域に
形成するため強磁性酸化物の割れはほとんど発生
しない。即ち、第5図の場合はギヤツプg対向面
にのみ金属磁性薄膜3を形成すればよいので約
50μ(トラツク幅)×50μ(ギヤツプ深さ)の平面上
に安定に形成できればよいのであるが、第1図、
第3図、第4図に示した例においては約3000μ
(ヘツド長さ)×1500μ(ヘツド幅の半分)の平面
上であり且つ、厚さも合計で10μ〜30μ程度の厚
さが実際上必要となるので熱歪のレベルは比べも
のにならない程大きくなつてしまう。
Conventionally, as shown in FIG. 5, there is a head in which a metal magnetic thin film is formed directly on a ferromagnetic oxide, in which the metal magnetic thin film 3 is formed only on the gap g of the ferromagnetic oxide substrate 4 constituting the head core 1. However, in this case, since the film is thin and formed in a small area, cracks in the ferromagnetic oxide hardly occur. In other words, in the case of FIG. 5, it is only necessary to form the metal magnetic thin film 3 on the surface facing the gap g, so the amount of time required is approx.
It would be good if it could be stably formed on a plane of 50μ (track width) x 50μ (gap depth), but as shown in Fig.
Approximately 3000μ in the examples shown in Figures 3 and 4
(head length) x 1500μ (half the head width), and the total thickness is actually required to be about 10μ to 30μ, so the level of thermal strain is incomparably greater. Put it away.

また、他の1つの理由は、第1図に示した非磁
性基板2を強磁性酸化物に変えるとトラツク幅規
制が不可能になるという事情がある。
Another reason is that if the non-magnetic substrate 2 shown in FIG. 1 is replaced with a ferromagnetic oxide, it becomes impossible to regulate the track width.

従つて真空薄膜形成技術により強磁性酸化物基
板に金属磁性薄膜を直接形成し磁気ヘツドを得る
ことは不可能であつた。
Therefore, it has been impossible to obtain a magnetic head by directly forming a metal magnetic thin film on a ferromagnetic oxide substrate using vacuum thin film forming technology.

発明の目的 本発明は以上の様な状況に鑑み各問題点を解決
し磁性体と非磁性材より成る複合基板上に屈曲又
は厚みの変化をもたせた状態で金属磁性薄膜を真
空薄膜形成した信頼性の高い磁気ヘツドを提供す
るものである。
Purpose of the Invention In view of the above-mentioned circumstances, the present invention solves various problems and provides a reliable method for forming a thin metal magnetic thin film in vacuum on a composite substrate made of magnetic and non-magnetic materials with bending or thickness changes. The present invention provides a magnetic head with high performance.

発明の概要 本発明は、強磁性体酸化物面上に、金属磁性膜
を真空薄膜形成技術を用いて成膜することを特徴
とし、少なくとも磁気記録媒体対向面の有効ギヤ
ツプ近傍を非磁性材料で形成した一対の磁性体基
板の間に、真空薄膜形成技術により積層形成され
た金属磁性薄膜層を保持したコア半体対より成
り、このコア半体対の金属磁性薄膜層間に有効ギ
ヤツプが形成された磁気ヘツドにおいて、金属磁
性薄膜層を屈曲又は厚みの変化をもたせた状態で
成膜することを特徴とする磁気ヘツドの製法であ
る。
Summary of the Invention The present invention is characterized in that a metal magnetic film is formed on a ferromagnetic oxide surface using vacuum thin film formation technology, and at least the vicinity of the effective gap on the surface facing the magnetic recording medium is made of a non-magnetic material. It consists of a pair of core halves holding metal magnetic thin film layers laminated by vacuum thin film forming technology between a pair of magnetic substrates, and an effective gap is formed between the metal magnetic thin film layers of this core half pair. This method of manufacturing a magnetic head is characterized in that the metal magnetic thin film layer is formed in a bent state or with a change in thickness.

この発明によれば金属磁性薄膜層の総厚が10μ
〜数十μの厚さとなつても磁性体基板としての強
磁性酸化物基板に亀裂や割れの生じることがなく
且つ、トラツク幅が金属強磁性薄膜層により規制
され、再生効率の大きな磁気ヘツドが得られる。
According to this invention, the total thickness of the metal magnetic thin film layer is 10 μm.
The ferromagnetic oxide substrate used as the magnetic substrate does not crack or break even when the thickness is several tens of microns, and the track width is regulated by the metal ferromagnetic thin film layer, making it possible to create a magnetic head with high reproduction efficiency. can get.

実施例 以下、本発明の実施例を説明する。Example Examples of the present invention will be described below.

先ず、本発明の説明に先立つて本発明の前提で
ある磁気ヘツドの製造工程例を第6図〜第11図
を参照して説明する。
First, prior to explaining the present invention, an example of the manufacturing process of a magnetic head, which is the premise of the present invention, will be explained with reference to FIGS. 6 to 11.

第6図に示す如く強磁性酸化物の平板12に電
解エツチング、超音波加工、回転砥石等の方法で
溝12aを形成し、この溝12aにガラス等の非
磁性材13を溶融充填し、更に平面研磨加工をな
す。この様に形成された強磁性酸化物とガラス等
の非磁性材との複合基板11上にスパツタリング
等によりセンダスト合金等の金属磁性薄膜層14
を成長させる(第7図参照)。
As shown in FIG. 6, a groove 12a is formed in a flat plate 12 of ferromagnetic oxide by a method such as electrolytic etching, ultrasonic machining, or a rotary grindstone. A flat surface is polished. A metal magnetic thin film layer 14 of sendust alloy or the like is formed by sputtering or the like on the thus formed composite substrate 11 of ferromagnetic oxide and non-magnetic material such as glass.
(See Figure 7).

次に第8図に示す様に第6図に示す基板11と
同様に形成した複合基板11′を金属磁性薄膜層
14の上に高融点ガラスで接着してコア半体ブロ
ツク10を形成する。このコア半体ブロツク10
に第9図に示すごとく巻線用等の溝10aを非磁
性材13の充填部にかかるように形成する。そし
てこの一方のコア半体ブロツク10と同様に形成
した他方のコア半体ブロツク10′を一方のコア
半体ブロツク10に対して低融点ガラスを用いて
ギヤツプ接合した後切断する(第10図参照)。
Next, as shown in FIG. 8, a composite substrate 11' formed in the same manner as the substrate 11 shown in FIG. 6 is bonded onto the metal magnetic thin film layer 14 with high melting point glass to form a core half block 10. This core half block 10
Next, as shown in FIG. 9, a groove 10a for winding, etc., is formed so as to span the filling portion of the non-magnetic material 13. Then, the other core half block 10' formed in the same manner as this one core half block 10 is gap-bonded to the one core half block 10 using low melting point glass and then cut (see FIG. 10). ).

更にこれを両側面及びテープ摺接面の研磨加工
を施すことにより第11図に示すごとくギヤツプ
g近傍はガラス等の非磁性材13が充填されてお
り、トラツク幅が金属磁性薄膜層14で規制され
且つ、テープ摺接面に強磁性酸化物12が露出し
た磁気ヘツド1が得られる。
Furthermore, by polishing both sides and the tape sliding surface, as shown in FIG. 11, the area near the gap g is filled with a non-magnetic material 13 such as glass, and the track width is regulated by the metal magnetic thin film layer 14. A magnetic head 1 is obtained in which the ferromagnetic oxide 12 is exposed on the tape sliding surface.

この様に形成された磁気ヘツド1は強磁性酸化
物平板12に亀裂や割れが生じることなく又、ト
ラツク幅が金属強磁性薄膜層14により規制され
且つ、耐摩耗性を有し、再生効率が大きい効果が
ある。
The magnetic head 1 formed in this manner has no cracks or cracks in the ferromagnetic oxide flat plate 12, has a track width regulated by the metal ferromagnetic thin film layer 14, has wear resistance, and has high playback efficiency. It has a big effect.

本発明は以上のように製造される磁気ヘツドに
おいて、コア半体を形成する磁性体ブロツクの磁
性体基板と金属磁性薄膜層間の熱歪を分散させる
ように構成したもので、この各実施例を第12図
〜第14図を参照して説明する。
The present invention is a magnetic head manufactured as described above, which is configured to disperse thermal strain between the magnetic substrate of the magnetic block forming the core half and the metal magnetic thin film layer. This will be explained with reference to FIGS. 12 to 14.

先ず、第12図に示す第1の実施例は、強磁性
酸化物の平板12に幅方向にわたつて溝12bを
形成し、この溝12bに高耐摩耗性材のセラミツ
クブロツク15を挿入し、ガラス等の非磁性材1
3により固着して複合基板11を形成し、更に後
工程で切削除去される部分に細溝12cを設け
(同図A参照)、この複合基板11上にスパツタリ
ング等によりセンダスト合金等の金属磁性薄膜層
14を成長させて形成したものである(同図B参
照)。
First, in the first embodiment shown in FIG. 12, a groove 12b is formed in a flat plate 12 made of ferromagnetic oxide in the width direction, and a ceramic block 15 made of a highly wear-resistant material is inserted into this groove 12b. Non-magnetic material such as glass 1
3 to form a composite substrate 11, and furthermore, a thin groove 12c is provided in a portion that will be cut and removed in a later process (see A in the same figure), and a metal magnetic thin film such as a sendust alloy is formed on this composite substrate 11 by sputtering or the like. It is formed by growing the layer 14 (see B in the same figure).

また、第13図に示す第2の実施例は、第1の
実施例と同様に形成した複合基板11の切削除去
される部分に予め蒸着とホトエツチングにより
Crの帯16を形成し(同図A参照)、この複合基
板11上に第1の実施例と同様に金属磁性薄膜層
14を成長させて形成したものである(同図B参
照)。
In addition, in the second embodiment shown in FIG. 13, the parts of the composite substrate 11 formed in the same manner as in the first embodiment are preliminarily deposited by vapor deposition and photoetching.
A band 16 of Cr is formed (see A in the same figure), and a metal magnetic thin film layer 14 is grown on this composite substrate 11 in the same manner as in the first embodiment (see B in the same figure).

更に、第14図に示す第3の実施例は、第1の
実施例と同様に形成した複合基板11の切削除去
される部分に、センダスト合金等のスパツタリン
グを行なう時にステンレスワイヤ17の細線によ
るマスクを設け(同図A参照)、この状態で複合
基板11上に金属磁性薄膜層14を成長させた
後、ステンレスワイヤ17のマスクを取りのぞい
て形成したものである(同図B参照)。
Furthermore, in the third embodiment shown in FIG. 14, a thin stainless steel wire 17 is used as a mask when sputtering sendust alloy or the like on a portion of the composite substrate 11 formed in the same manner as in the first embodiment. (see A of the same figure), and after growing a metal magnetic thin film layer 14 on the composite substrate 11 in this state, the mask of the stainless steel wire 17 was removed (see B of the same figure).

この様に本発明の各実施例においては、金属磁
性薄膜層14に屈曲又は厚みの変化をもたせた状
態でスパツタが進行するため、膨張特性の異なつ
たガラス等の非磁性材を複合させることのみの場
合より更に熱歪を分散させることができフエライ
ト等の強磁性酸化物平板12とセンダスト等の金
属磁性薄膜層14との間の熱歪の分散が良好とな
り強磁性酸化物(フエライト)平板12に亀裂や
割れがほとんど生じることなく、トラツク幅が金
属磁性薄膜層14により規制され且つ、高耐摩耗
性であつて再生効率の大きな磁気ヘツドが得られ
る。
As described above, in each embodiment of the present invention, since the spatter progresses while the metal magnetic thin film layer 14 is bent or has a thickness change, it is only necessary to combine non-magnetic materials such as glass with different expansion characteristics. Thermal strain can be further dispersed than in the case of the above case, and the thermal strain can be better dispersed between the ferromagnetic oxide flat plate 12 such as ferrite and the metal magnetic thin film layer 14 such as sendust, and the ferromagnetic oxide (ferrite) flat plate 12 A magnetic head is obtained in which almost no cracks or fractures occur in the head, the track width is regulated by the metal magnetic thin film layer 14, and the magnetic head has high wear resistance and high reproduction efficiency.

尚、本例では金属磁性薄膜層14間に介在させ
る絶縁膜はSiO2としたがTa2O5,Al2O3,ZrO2
Si3N4等その他の高耐摩耗性絶縁膜であつてもよ
い。又、金属磁性薄膜層14もスパツタリングに
よるセンダストに限らずスパツタリングによるア
モルフアス磁性膜でもよく高飽和磁束密度の金属
磁性薄膜であれば良い。
In this example, the insulating film interposed between the metal magnetic thin film layers 14 was SiO 2 , but it could also be made of Ta 2 O 5 , Al 2 O 3 , ZrO 2 ,
Other highly wear-resistant insulating films such as Si 3 N 4 may also be used. Further, the metal magnetic thin film layer 14 is not limited to sendust formed by sputtering, but may also be an amorphous magnetic film formed by sputtering as long as it is a metal magnetic thin film having a high saturation magnetic flux density.

又、ガラスその他の非磁性材料を埋設して複合
基板とする酸化物磁性材料はNi−Znフエライト、
フエロクスプレーナその他の高周波用酸化物磁性
材料であつてもよいことは言うまでもない。
In addition, oxide magnetic materials that can be used as composite substrates by embedding glass or other non-magnetic materials include Ni-Zn ferrite,
Needless to say, it may be made of ferroxplanar or other high frequency oxide magnetic material.

以上のように各実施例によれば強磁性酸化物基
板の平面上に金属磁性薄膜層を大きな面積に亘つ
て部厚く形成でき、従来不可能であつた金属磁性
薄膜層と強磁性酸化物基板との間の薄膜間のすき
間を皆無に近い状態で一体化が可能となり高周波
特性の優れた高磁束密度の記録再生が可能な高耐
摩耗性磁気ヘツドを得ることができる。
As described above, according to each of the embodiments, a metal magnetic thin film layer can be formed thickly over a large area on a flat surface of a ferromagnetic oxide substrate, and a metal magnetic thin film layer and a ferromagnetic oxide substrate can be formed thickly over a large area. It is possible to integrate the thin film with almost no gap between the two, and it is possible to obtain a highly wear-resistant magnetic head capable of recording and reproducing at a high magnetic flux density with excellent high frequency characteristics.

発明の効果 以上の様に本発明によれば磁気ギヤツプ近傍は
非磁性材料により形成され且つ、磁気ギヤツプ近
傍から離れた領域においては磁性体と非磁性材の
複合基板の平面上にまたがつて連続的に真空薄膜
形成技術により屈曲又は厚みの変化を有した状態
で金属磁性薄膜層が形成されるので磁性体基板と
金属磁性薄膜層との間の熱歪が分散され研磨加工
を行なつても磁性体金基板に亀裂や割れが生じる
ことなく且つトラツク幅が金属強磁性薄膜層によ
り規制され又高耐摩耗性であつて再生効率の大き
な信頼性の高い磁気ヘツドが提供できる。
Effects of the Invention As described above, according to the present invention, the vicinity of the magnetic gap is formed of a non-magnetic material, and the area away from the vicinity of the magnetic gap is continuous across the plane of the composite substrate of magnetic and non-magnetic materials. Because the metal magnetic thin film layer is formed with bending or thickness changes using vacuum thin film formation technology, thermal strain between the magnetic substrate and the metal magnetic thin film layer is dispersed, and even when polishing is performed. It is possible to provide a highly reliable magnetic head that does not cause cracks or cracks in the magnetic gold substrate, has a track width regulated by the metal ferromagnetic thin film layer, has high wear resistance, and has high playback efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図は従来のVTR用の磁気ヘツド
の各例の斜視図、第4図は第3図に示す磁気ヘツ
ドのギヤツプ部分の拡大斜視図、第5図は従来の
VTR用磁気ヘツドの更に他例の斜視図、第6図
〜第10図は本発明による磁気ヘツドの説明に供
する磁気ヘツドの製造工程を示す斜視図、第11
図は同工程により製造される磁気ヘツドの斜視
図、第12図〜第14図のA及びBは本発明によ
る磁気ヘツドに用いる磁性体ブロツクの各例の斜
視図及び端面図である。 1は磁気ヘツド、10,10′はコア半体ブロ
ツク、10aは巻線溝、gは磁気ギヤツプ、11
は複合基板、12は強磁性酸化物平板、12cは
細溝、13は非磁性材、14は金属磁性薄膜層、
15はセラミツクブロツク、16はCrの帯、1
7はステンレスワイヤである。
Figures 1 to 3 are perspective views of examples of conventional magnetic heads for VTRs, Figure 4 is an enlarged perspective view of the gap portion of the magnetic head shown in Figure 3, and Figure 5 is a perspective view of conventional magnetic heads for VTRs.
FIGS. 6 to 10 are perspective views of still another example of a magnetic head for a VTR, and FIGS.
The figure is a perspective view of a magnetic head manufactured by the same process, and A and B in FIGS. 12 to 14 are perspective views and end views of examples of magnetic material blocks used in the magnetic head according to the present invention. 1 is a magnetic head, 10 and 10' are core half blocks, 10a is a winding groove, g is a magnetic gap, 11
12 is a composite substrate, 12 is a ferromagnetic oxide flat plate, 12c is a thin groove, 13 is a non-magnetic material, 14 is a metal magnetic thin film layer,
15 is a ceramic block, 16 is a Cr band, 1
7 is a stainless steel wire.

Claims (1)

【特許請求の範囲】 1 少なくとも磁気記録媒体対向面の有効ギヤツ
プ近傍を非磁性材料で形成した一対の磁性体基板
の間に、真空薄膜形成技術により積層形成された
金属磁性薄膜層を保持したコア半体対より成り、
該コア半体対の金属磁性薄膜層間に有効ギヤツプ
が形成された磁気ヘツドにおいて、 上記金属磁性薄膜層を屈曲又は厚みの変化をも
たせた状態で成膜することを特徴とする磁気ヘツ
ドの製法。
[Scope of Claims] 1. A core holding a metal magnetic thin film layer laminated by vacuum thin film forming technology between a pair of magnetic substrates in which at least the vicinity of the effective gap of the surface facing the magnetic recording medium is formed of a non-magnetic material. Consists of a pair of halves,
1. A method for manufacturing a magnetic head in which an effective gap is formed between the metal magnetic thin film layers of the pair of core halves, characterized in that the metal magnetic thin film layer is formed with bending or a change in thickness.
JP9535783A 1983-05-30 1983-05-30 Magnetic head Granted JPS59221817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9535783A JPS59221817A (en) 1983-05-30 1983-05-30 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9535783A JPS59221817A (en) 1983-05-30 1983-05-30 Magnetic head

Publications (2)

Publication Number Publication Date
JPS59221817A JPS59221817A (en) 1984-12-13
JPH0552563B2 true JPH0552563B2 (en) 1993-08-05

Family

ID=14135392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9535783A Granted JPS59221817A (en) 1983-05-30 1983-05-30 Magnetic head

Country Status (1)

Country Link
JP (1) JPS59221817A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551673A (en) * 1978-06-20 1980-01-08 Matsushita Electric Ind Co Ltd Manufacture for magnetic head

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138119U (en) * 1981-02-20 1982-08-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS551673A (en) * 1978-06-20 1980-01-08 Matsushita Electric Ind Co Ltd Manufacture for magnetic head

Also Published As

Publication number Publication date
JPS59221817A (en) 1984-12-13

Similar Documents

Publication Publication Date Title
JPH0542726B2 (en)
JPH0477370B2 (en)
JPH0546010B2 (en)
JPH0552563B2 (en)
JPS6214313A (en) Magnetic head
JPH0235609A (en) Magnetic head and its manufacture
JP2648057B2 (en) Manufacturing method of magnetic head
KR0152601B1 (en) Core of composite magnetic head and the manufacturing method
JPS62140225A (en) Floating type magnetic head
JPH045046Y2 (en)
JP2887204B2 (en) Method of manufacturing narrow track magnetic head
JPS62246112A (en) Production of magnetic head
JPH05114113A (en) Magnetic head and production thereof
JPS62183012A (en) Magnetic head and its manufacture
JPS6320705A (en) Magnetic erasion head
JPS61280009A (en) Magnetic head
JPH10241111A (en) Magnetic head
JPH01118206A (en) Magnetic head
JPS61144715A (en) Thin film magnetic head and its production
JPS6394418A (en) Magnetic head
JPS63288407A (en) Production of magnetic head
JPS6251009A (en) Magnetic core and its production
JPH01208711A (en) Manufacture of magnetic head
JPH06119611A (en) Magnetic head
JPS6187212A (en) Thin-film magnetic head