JPH0551541B2 - - Google Patents

Info

Publication number
JPH0551541B2
JPH0551541B2 JP60143993A JP14399385A JPH0551541B2 JP H0551541 B2 JPH0551541 B2 JP H0551541B2 JP 60143993 A JP60143993 A JP 60143993A JP 14399385 A JP14399385 A JP 14399385A JP H0551541 B2 JPH0551541 B2 JP H0551541B2
Authority
JP
Japan
Prior art keywords
base material
glass
bulk density
glass porous
porous base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60143993A
Other languages
Japanese (ja)
Other versions
JPS627640A (en
Inventor
Akira Urano
Ichiro Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP14399385A priority Critical patent/JPS627640A/en
Publication of JPS627640A publication Critical patent/JPS627640A/en
Publication of JPH0551541B2 publication Critical patent/JPH0551541B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/01433Reactant delivery systems for delivering and depositing additional reactants as liquids or solutions, e.g. for solution doping of the porous glass preform
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/08Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant
    • C03B2201/10Doped silica-based glasses doped with boron or fluorine or other refractive index decreasing dopant doped with boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/50Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with alkali metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Surface Treatment Of Glass (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は火炎加水分解法により製造されたガラ
ス多孔質母材に添加剤を添加してガラスを製造す
る方法に関する。本発明の方法は、光フアイバ用
ガラス母材やレンズ等屈折率分布を有するガラス
の製造に用いて有利である。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing glass by adding additives to a glass porous matrix produced by a flame hydrolysis method. The method of the present invention is advantageously used for manufacturing glass having a refractive index distribution, such as glass base materials for optical fibers and lenses.

<従来の技術> 従来、例えば添加剤を含有する石英系のガラス
材を火炎加水分解法により製造する場合、火炎中
に加水分解可能な硅素化合物と添加剤化合物の混
合気体を噴出させ、火炎加水分解反応によつて添
加剤を含有する石英系ガラス微粒子を形成・堆積
させガラス多孔質母材とし、これを高温雰囲気中
で透明化することによつていた。この方法によれ
ばガラス原料及び添加剤原料として、火炎加水分
解法により加水分解可能な化合物が選択されるこ
とは明白である。従つて添加剤選択の自由度を更
に広げようとすれば他のプロセスによらなければ
ならない。
<Prior art> Conventionally, for example, when producing a quartz-based glass material containing additives by a flame hydrolysis method, a mixed gas of a hydrolyzable silicon compound and an additive compound is jetted into a flame, and flame hydration is performed. This was done by forming and depositing silica-based glass fine particles containing additives through a decomposition reaction to form a glass porous matrix, which was then made transparent in a high-temperature atmosphere. According to this method, it is clear that compounds that can be hydrolyzed by flame hydrolysis are selected as glass raw materials and additive raw materials. Therefore, in order to further expand the degree of freedom in selecting additives, other processes must be used.

これに対し、特公昭58−3980号公報によれば、
火炎加水分解法により生成されたガラス多孔質母
材に酸化物添加剤等を含浸し、該ガラス多孔質母
材を熱処理することによつて、酸化物添加剤を含
有するガラス体を製造する方法(この方法を以下
添加剤含浸法と称する)が示されている。また上
記公報では添加剤含浸法に用いるガラス多孔質母
材はガラス微粒子堆積時にその気孔率が60〜90%
の範囲内になるように調整することによつて、該
ガラス多孔質母材と該酸化物添加剤原料との接触
時に発生する該ガラス多孔質母材の崩壊を防止
し、また該ガラス多孔質母材に対する該酸化物添
加剤原料の含浸が十分に達成されることを実現す
るとしている。更に該ガラス多孔質母材の気孔率
を火炎加水分解法による該ガラス多孔質母材堆積
時に調整する具体的方法として、火炎温度の調
整、堆積されるガラス多孔質体の火炎に対する位
置ぎめ、又は該ガラス多孔質体の回転運動もしく
は直線移動等の速度の調整等が示されている。
On the other hand, according to Special Publication No. 58-3980,
A method for manufacturing a glass body containing an oxide additive by impregnating a glass porous base material produced by a flame hydrolysis method with an oxide additive, etc., and heat-treating the glass porous base material. (This method is hereinafter referred to as the additive impregnation method). Furthermore, the above publication states that the glass porous base material used in the additive impregnation method has a porosity of 60 to 90% when glass fine particles are deposited.
By adjusting the range to be within the range of It is said that the impregnation of the oxide additive raw material into the base material is achieved sufficiently. Furthermore, specific methods for adjusting the porosity of the glass porous base material during deposition of the glass porous base material by flame hydrolysis include adjusting the flame temperature, positioning the deposited glass porous body relative to the flame, or Adjustment of the speed of rotational movement or linear movement of the glass porous body is shown.

<発明が解決しようとする問題点> しかしながら上記のような添加剤含浸法では、
ガラス多孔質母材製造時に調整すべき要因が多
く、かつ微妙な調整を必要とするため、適当なガ
ラス多孔質母材を連続的に得るためには、繁雑な
作業と厳重な管理を要する。
<Problems to be solved by the invention> However, in the additive impregnation method as described above,
There are many factors that need to be adjusted during production of the glass porous base material, and delicate adjustments are required, so complicated work and strict management are required to continuously obtain a suitable glass porous base material.

ガラス多孔質母材のカサ密度をDSとすれば DS=W/V=(V−VH)Wg/V=(1−VH/V)Wg (1) と表わせる。上式でV及びWはそれぞれガラス多
孔質母材の体積及び重量を示し、Wgはこのガラ
ス多孔質母材の透明ガラス化時の比重、VHはガ
ラス多孔質母材内の気孔部分の総容積を示す。従
つて、(V−VH)はガラス微粒子がガラス多孔質
母材内で占める総容積となり、上記(1)式のような
変形が成立する。一方、ガラス多孔質母材の気孔
率(母材総容積に対する母材内の気孔部分総容積
の比)をρHとすると、その定義より下記(2)式で表
される。
If the bulk density of the glass porous base material is D S , it can be expressed as D S =W/V=(V-V H )Wg/V=(1-V H /V)Wg (1). In the above formula, V and W represent the volume and weight of the glass porous base material, respectively, Wg is the specific gravity of this glass porous base material when it is made into transparent vitrification, and V H is the total pore area in the glass porous base material. Indicates volume. Therefore, (V-V H ) is the total volume occupied by the glass fine particles in the glass porous matrix, and the transformation as shown in equation (1) above is established. On the other hand, if the porosity of the glass porous base material (the ratio of the total volume of the pores in the base material to the total volume of the base material) is ρ H , it is expressed by the following equation (2) based on the definition.

ρH=VH/V (2) (1)式及び(2)式より、DSとρHの関係は下記(3)式で
与えられる。
ρ H =V H /V (2) From equations (1) and (2), the relationship between D S and ρ H is given by equation (3) below.

DS=(1−ρH)Wg (3) 一例として純石英ガラス多孔質母材について考
えると、この場合Wg=2.2であり、前記公報の記
載に従えば気孔率60〜90%の範囲が好ましいこと
から、 ρH=60〜90% これを(3)式に代入すると下記(4)式 DS=0.88〜0.22g/cm3 (4) となり、この範囲の母材カサ密度が好ましいこと
となる。
D S = (1-ρ H ) Wg (3) As an example, considering the pure silica glass porous base material, in this case Wg = 2.2, and according to the description in the above publication, the porosity ranges from 60 to 90%. Since it is preferable, ρ H = 60 to 90% Substituting this into equation (3) gives the following equation (4) D S = 0.88 to 0.22 g/cm 3 (4), which indicates that the bulk density of the base material in this range is preferable. becomes.

これに対し、本発明者らが検討したところ、平
均のカサ密度が0.35g/cm3であるガラス多孔質母
材をVAD法で製造し、硼酸水溶液に浸漬したと
ころ、母材表面部分の崩壊が見られた。この現象
は、通常VAD法で製造したガラス多孔質体がそ
の径方向のカサ密度分布を有するために発生する
ものである。すなわち、VAD法において、ガラ
ス微粒子堆積面の温度を完全に均一にすることが
困難であるため、ガラス多孔質母材の径方向のカ
サ密度分布が生じ、該母材の最外部のカサ密度が
非常に小さくなる傾向があるためである。したが
つてガラス多孔質母材全体の平均カサ密度が
0.35g/cm3であつても、表面付近のカサ密度は(4)
式に示した下限値0.22g/cm3以下の場合もありう
る。
On the other hand, the inventors studied this and found that when a glass porous base material with an average bulk density of 0.35 g/cm 3 was manufactured using the VAD method and immersed in a boric acid aqueous solution, the surface portion of the base material collapsed. It was observed. This phenomenon occurs because the glass porous body normally produced by the VAD method has a bulk density distribution in its radial direction. In other words, in the VAD method, it is difficult to make the temperature of the glass particle deposition surface completely uniform, so a bulk density distribution occurs in the radial direction of the glass porous base material, and the bulk density at the outermost part of the base material increases. This is because it tends to become very small. Therefore, the average bulk density of the entire glass porous matrix is
Even if it is 0.35g/ cm3 , the bulk density near the surface is (4)
It may be less than the lower limit of 0.22 g/cm 3 shown in the formula.

これに対しガラス多孔質母材製造時に複数本の
バーナーを使用することによつて、該ガラス多孔
質母材の径方向のカサ密度分布をある程度均一に
することは可能である。しかし、この場合、各々
のバーナーから噴出する火炎が相互に干渉し合
い、局部的なカサ密度或いは添加物濃度の変動を
起し易く調整が容易でない場合がある。
On the other hand, by using a plurality of burners during production of the glass porous base material, it is possible to make the bulk density distribution of the glass porous base material uniform to some extent in the radial direction. However, in this case, the flames ejected from each burner interfere with each other, which tends to cause local fluctuations in bulk density or additive concentration, and adjustment may not be easy.

また、該ガラス多孔質母材に添加物含浸法によ
つて、適当な量の添加剤を含浸する際には該ガラ
ス多孔質母材のカサ密度によつて、添加量を制御
しなければならない場合も考えられるが、そのよ
うな、精密なカサ密度制御をガラス多孔質母材製
造時に行うことは困難である。さらに溶液浸漬に
耐えうるガラス多孔質母材をVAD法の条件調整
だけで製造しようとすれば、母材合成速度の低下
を招くこともあり好ましくない。
Furthermore, when impregnating the glass porous base material with an appropriate amount of additive by the additive impregnation method, the amount added must be controlled depending on the bulk density of the glass porous base material. However, it is difficult to perform such precise bulk density control during production of the glass porous base material. Furthermore, if a glass porous base material that can withstand immersion in a solution is attempted to be produced only by adjusting the conditions of the VAD method, this may lead to a decrease in the base material synthesis rate, which is undesirable.

また、特開昭54−24919号公報には本発明と同
様に、火炎加水分解法などで作成したガラス多孔
質体をいつたん予備焼結し気孔率を10〜90%(本
発明の定義によればカサ密度0.22〜1.98g/cm3
相当する)とした後、該多孔質体の屈折率を変化
せしめるドーパントを添加せしめる方法について
記載されているが、その際ドーパントとしては1
価又は2価の元素のドーパントに限定されるとい
う問題があつた。
Furthermore, similar to the present invention, Japanese Patent Application Laid-Open No. 54-24919 discloses that a glass porous body prepared by a flame hydrolysis method is pre-sintered to have a porosity of 10 to 90% (according to the definition of the present invention). A method is described in which a dopant that changes the refractive index of the porous body is added after the porous body has a bulk density of 0.22 to 1.98 g/cm 3 , which corresponds to a bulk density of 0.22 to 1.98 g/cm 3 .
There was a problem that the dopants were limited to valent or divalent element dopants.

本発明は添加剤含浸法における以上のような
種々の問題点を解決し容易にかつ安定したガラス
の製造方法を提供するものである。
The present invention solves the various problems mentioned above in the additive impregnation method and provides an easy and stable method for producing glass.

<問題点を解決するための手段> 本発明は、火炎加水分解法で製造したガラス多
孔質母材に3価の酸化物添加剤を含浸せしめる前
に、該ガラス多孔質母材を1100℃以上の高温雰囲
気中に保持し適当なカサ密度を有する収縮したガ
ラス多孔質母材(仮収縮母材)とすることを特徴
とする。
<Means for Solving the Problems> The present invention provides a method for heating a glass porous base material produced by a flame hydrolysis method to a temperature of 1100°C or higher before impregnating the glass porous base material with a trivalent oxide additive. It is characterized in that it is kept in a high-temperature atmosphere and is made into a shrunk glass porous base material (temporary shrunken base material) having an appropriate bulk density.

すなわち本発明は火炎加水分解法によつて得た
ガラス多孔質母材を温度1100℃以上の高温雰囲気
中で加熱処理してカサ密度が0.3g/cm3以上1.0g/
cm3以下である仮収縮母材とし、該仮収縮母材に、
3価の元素を含みその酸化物に変換しうる液状化
合物又は化合物溶液を含浸せしめた後、該仮収縮
母材を高温雰囲気中にて加熱処理し透明ガラス化
することを特徴とするガラスの製造方法である。
That is, the present invention heat-treats a glass porous base material obtained by a flame hydrolysis method in a high-temperature atmosphere at a temperature of 1100°C or higher to obtain a bulk density of 0.3 g/cm 3 or higher and 1.0 g/cm 3 or higher.
cm 3 or less, a temporarily contracted base material, and the temporarily contracted base material,
Production of glass characterized by impregnating a liquid compound or a compound solution containing a trivalent element and converting it into its oxide, and then heat-treating the temporary shrink base material in a high-temperature atmosphere to turn it into transparent glass. It's a method.

また本発明の特に好ましい実施態様としては、
VAD法(Vapour Phase Axial Deposition
Method 気相軸付法)で製造したガラス多孔質
母材を用いる上記方法が挙げられる。
Furthermore, particularly preferred embodiments of the present invention include:
VAD method (Vapour Phase Axial Deposition
The above-mentioned method uses a glass porous base material manufactured by the vapor phase axial method.

本発明における仮収縮とは、VAD法で製造し
たガラス多孔質母材を熱処理し、そのカサ密度が
少くとも0.3g/cm3以上1.0g/cm3以下になるように
調整された状態をいう。またそのための熱処理条
件としては温度範囲1100℃以上1500℃以下であ
る。仮収縮母材はこのように調整され、溶液に浸
漬した際に崩壊することなく、所定量の3価の元
素を含む添加剤の添加を行うことができるガラス
多孔質母材のことをいう。このような限定の根拠
を次に示す。3価の元素を含む添加剤の添加量は
溶液の濃度や後処理の方法にも依存するが、特公
昭58−3980号公報に示されるように多多孔質体の
気孔率やその分布によつて調整される。また多孔
質母材中のガラス微粒子の固着力は、そのガラス
微粒子同志の接触面積に関係があり、従つて多孔
質体の気孔率とも関係する。以上のことから仮収
縮については気孔率、或いはカサ率度の値で規定
するのが妥当である。本発明者らが検討した結
果、ガラス多孔質母材を溶液に浸漬する際、その
崩壊を避けるためには、そのガラス多孔質母材中
のカサ密度の最低値が少くとも0.3g/cm3以上であ
る必要があるとの結論を得た。この値が仮収縮母
材のカサ密度の下限値である。一方、上限値につ
いては、例えば3価の元素を含む添加剤の添加量
にある分布をもたせて部分的に零にする必要があ
る場合も考慮し3価の元素を含む添加剤の浸透が
十分に起こらない程度のカサ密度で規定する。こ
のようなカサ密度としては1.0g/cm3以下が好まし
い。また、カサ密度がこの範囲であれば、3価の
添加剤を含浸した場合にも特開昭54−24919号公
報に記述されているような濃度ゆらぎに起因する
散乱損失の増加が見られず、良好なガラス母材を
得ることができる。また、以上のようなカサ密度
を得るための加熱処理の温度条件としては、1100
℃以上1500℃以下の範囲であるべきである。この
温度範囲の下限値はガラス多孔質母材が収縮を開
始する温度であり、上限値は良好な透明ガラス体
が数時間の熱処理で得られる温度である。高温で
短時間の熱処理を施すと母材外周部の収縮率は母
材中心部の収縮率に比べて大きくカサ密度分布が
均一に近くなり、一方、低温で長時間の熱処理を
施すと母材外周部の収縮率と母材中心部の収縮率
はほぼ等しくなり、カサ密度分布を保存したまま
仮収縮する傾向がある。
Temporary shrinkage in the present invention refers to a state in which a glass porous base material manufactured by the VAD method is heat-treated so that its bulk density is at least 0.3 g/cm 3 or more and 1.0 g/cm 3 or less. . Further, the heat treatment conditions for this purpose are a temperature range of 1100°C or more and 1500°C or less. The temporary shrinkage base material is a glass porous base material that has been adjusted in this way and can be added with a predetermined amount of an additive containing a trivalent element without collapsing when immersed in a solution. The basis for such limitation is as follows. The amount of additives containing trivalent elements depends on the concentration of the solution and the method of post-treatment, but as shown in Japanese Patent Publication No. 58-3980, it depends on the porosity of the porous material and its distribution. It will be adjusted accordingly. Furthermore, the adhesion force of glass fine particles in a porous base material is related to the contact area between the glass fine particles, and therefore also to the porosity of the porous body. From the above, it is appropriate to define temporary shrinkage by the value of porosity or bulkiness. As a result of studies conducted by the present inventors, in order to avoid collapse of the glass porous base material when immersing it in a solution, the minimum value of the bulk density in the glass porous base material must be at least 0.3 g/cm 3 It was concluded that it is necessary to meet the above requirements. This value is the lower limit value of the bulk density of the temporary shrinkage base material. On the other hand, regarding the upper limit value, for example, it is necessary to have a certain distribution in the amount of additives containing trivalent elements and partially reduce the amount to zero, so that the penetration of additives containing trivalent elements is sufficient. Specify a bulk density that does not occur. The bulk density is preferably 1.0 g/cm 3 or less. Furthermore, if the bulk density is within this range, there will be no increase in scattering loss due to concentration fluctuations as described in JP-A-54-24919 even when a trivalent additive is impregnated. , a good glass base material can be obtained. In addition, the temperature conditions for heat treatment to obtain the above bulk density are 1100
It should be in the range of 1500℃ or above. The lower limit of this temperature range is the temperature at which the glass porous matrix starts to shrink, and the upper limit is the temperature at which a good transparent glass body can be obtained after several hours of heat treatment. When heat treatment is performed at a high temperature for a short time, the shrinkage rate at the outer periphery of the base material is larger than that at the center of the base material, and the bulk density distribution becomes nearly uniform.On the other hand, when heat treatment is performed at a low temperature for a long time, the shrinkage rate of the base material The shrinkage rate at the outer periphery and the shrinkage rate at the center of the base material are almost equal, and there is a tendency for temporary shrinkage to occur while preserving the bulk density distribution.

さらに、仮収縮母材のカサ密度と処理温度又は
処理時間の関係は、該仮収縮母材の成分によつて
異なるが、これらの関係はあらかじめ実験してお
くことにより容易に知り得る。
Furthermore, the relationship between the bulk density of the temporary shrink base material and the processing temperature or treatment time varies depending on the components of the temporary shrink base material, but these relationships can be easily known by conducting experiments in advance.

具体的な実験方法を説明するとあらかじめ径、
長さ、重量より平均のカサ密度を算出しておいた
多孔質母材を一定温度一定時間で仮収縮させる。
更に処理温度、処理時間をかえて実験することに
よりそれらをパラメータとする初期カサ密度と処
理後のカサ密度の関係を知ることができる。この
関係を前もつて知つておくことによつて、所要の
カサ密度を有する仮収縮母材を得るための条件を
決定することができる。
To explain the specific experimental method, the diameter,
The porous base material, whose average bulk density has been calculated from the length and weight, is temporarily contracted at a constant temperature for a constant time.
Furthermore, by experimenting with different processing temperatures and processing times, it is possible to find out the relationship between the initial bulk density and the post-processing bulk density using these as parameters. By knowing this relationship in advance, it is possible to determine the conditions for obtaining a temporarily contracted base material having the required bulk density.

仮収縮母材でカサ密度分布が正確に調整できる
のはコントロールすべきパラメータが少いという
理由による。前記特公昭58−3980号公報の場合に
しても、本発明においても、母材のカサ密度に影
響する最大の要因は母材の温度である。VAD法
の場合、母材表面の温度を左右するのは焼ガス及
び原料ガス等の流量、母材とバーナの位置関係、
母材先端の形状、母材の移動速度及び排気系の圧
力など数多くのパラメータが絡み合つており、ま
た同時に母材を合成するという制約があるためこ
れらのパラメータの組み合せの中から最適の条件
を見出し所要のカサ密度に調整しなければならな
い。更に一定のカサ密度のものを大量に生産する
場合だけでなく、品種によつては要求されるカサ
密度が大きく違う場合もあるだろう。そのような
ものにも対応するには複数な調整が必要である。
The reason why the bulk density distribution can be adjusted accurately with the temporarily contracted base material is because there are fewer parameters to control. In the case of the above-mentioned Japanese Patent Publication No. 58-3980 as well as in the present invention, the biggest factor influencing the bulk density of the base material is the temperature of the base material. In the case of the VAD method, the temperature of the base metal surface is influenced by the flow rate of the burning gas and raw material gas, the positional relationship between the base metal and the burner, etc.
Many parameters such as the shape of the tip of the base material, the moving speed of the base material, and the pressure of the exhaust system are intertwined, and there is also a constraint that the base materials must be synthesized at the same time, so it is necessary to find the optimal conditions from a combination of these parameters. The heading must be adjusted to the required bulk density. Furthermore, in addition to producing large quantities of products with a fixed bulk density, there may be cases in which the required bulk density varies greatly depending on the variety. Multiple adjustments are required to accommodate such situations.

一方、本発明においては母材の合成とカサ密度
調整の工程を分離しているため、収縮のための熱
源として高精度な温度調整が可能な装置を選択
し、高温で処理することができる。また母材の温
度を左右するパラメータは熱源の温度のみである
し、その他に母材のカサ密度に影響する要因とし
て処理時間があるが、いづれも簡単かつ正確に制
御できる。したがつて母材カサ密度の初期値と処
理後の値の関係を知つていれば再現性よくかつ
様々なカサ密度の要求に対応できる。
On the other hand, in the present invention, since the steps of synthesizing the base material and adjusting the bulk density are separated, it is possible to select an apparatus capable of highly accurate temperature control as a heat source for shrinkage, and perform processing at high temperatures. Furthermore, the only parameter that affects the temperature of the base material is the temperature of the heat source, and processing time is another factor that affects the bulk density of the base material, but both can be easily and accurately controlled. Therefore, if the relationship between the initial value of the bulk density of the base material and the value after treatment is known, it is possible to meet various bulk density requirements with good reproducibility.

本発明者らの以上詳記したような検討の結果、
仮収縮母材のカサ密度は処理温度及び処理時間に
よつてきわめて正確に調整できるうえに、仮収縮
母材の全体にわたつてほぼ均一なカサ密度分布を
得ることも可能であることが判明した。
As a result of the studies detailed above by the inventors,
It has been found that the bulk density of the pre-shrinked base material can be adjusted extremely accurately by controlling the processing temperature and time, and that it is also possible to obtain a nearly uniform bulk density distribution over the entire pre-shrinked base material. .

本発明によれば3価の元素を含む酸化物添加剤
を含浸させるガラス多孔質母材を火炎加水分解
法、特にVAD法で製造する場合、特別な操作や
調整を施す必要はなく、通常のガラス多孔質母材
製造と同等の状態で、製造すればよい。当然該ガ
ラス多孔質母材は多少のカサ密度の不均一は許容
される。
According to the present invention, when a glass porous matrix impregnated with an oxide additive containing a trivalent element is produced by a flame hydrolysis method, particularly a VAD method, there is no need for any special operation or adjustment. It may be manufactured under the same conditions as the glass porous base material. Naturally, some degree of non-uniformity in bulk density is allowed in the glass porous base material.

このようにして得たガラス多孔質母材を熱処理
し0.3g/cm3以上1.0g/cm3以下の範囲内の適当なカ
サ密度を有する仮収縮母材とする。この熱処理に
は電気抵抗炉のように温度制御が正確かつ容易に
行えるものを使用するとよい。
The glass porous base material thus obtained is heat-treated to obtain a temporary shrinkage base material having an appropriate bulk density within the range of 0.3 g/cm 3 to 1.0 g/cm 3 . For this heat treatment, it is preferable to use a furnace such as an electric resistance furnace whose temperature can be accurately and easily controlled.

次に添加しようとする3価の元素を含む化合物
を液状ならそのまま、あるいは固体等の場合には
化合物溶液として得られた仮収縮母材に含浸す
る。
Next, the compound containing the trivalent element to be added is impregnated into the obtained temporarily contracted matrix, either as it is if it is liquid, or as a compound solution if it is solid.

本発明において添加する3価の元素を含む化合
物は酸化物に変換し得るものが好ましく、酸化物
に変換する手段としては、例えばO2を含む雰
囲気中にて加熱する、熱分解する、加水分解
する、等の手段を用いることができる。具体的な
化合物の例を示すと、ホウ酸(水溶液、アルコー
ル溶液を含浸し熱分解する)等であるが、勿論こ
れらの例示に限定されるところは何らない。
The compound containing a trivalent element added in the present invention is preferably one that can be converted into an oxide, and examples of methods for converting it into an oxide include heating in an atmosphere containing O2 , thermal decomposition, and hydrolysis. It is possible to use methods such as Specific examples of compounds include boric acid (which is impregnated with an aqueous solution or an alcohol solution and then thermally decomposed), but the compound is of course not limited to these examples.

<実施例> 以下、本発明を実施例により詳細に説明する。<Example> Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例 酸水素火炎中に四塩化硅素ガスを導き加水分解
反応によつて二酸化硅素粒子を生成させ、該二酸
化硅素粒子を回転する出発材の先端に堆積させる
所謂気相軸付法によつて製造した外径90mm、長さ
265mm、重量335gの純粋石英ガラス多孔質母材を
第1図に示すように、精密な温度制御が可能な抵
抗炉2の中に保持し1350℃の高温雰囲気中にて2
時間加熱処理を施し、カサ密度0.71g/cm3の仮収
縮母材1とした。次に第2図に示すように、該仮
収縮母材1を2.4mol%の硼酸水溶液3中に12時
間浸漬した後自然乾燥させた。次に乾燥した仮収
縮母材を、1500℃の高温ヘリウム雰囲気中で熱処
理し、透明ガラス母材とした。得られた透明ガラ
ス母材の純粋石英に対する比屈折率差を測定した
ところ0.13%であつた。このことから得られた透
明ガラス母材中には約4重量%のB2O3が含まれ
ていることが明らかになつた。
Example Manufactured by the so-called gas-phase axial method in which silicon tetrachloride gas is introduced into an oxyhydrogen flame to generate silicon dioxide particles through a hydrolysis reaction, and the silicon dioxide particles are deposited on the tip of a rotating starting material. Outer diameter 90mm, length
As shown in Figure 1, a pure silica glass porous base material measuring 265 mm and weighing 335 g is held in a resistance furnace 2 that allows precise temperature control and heated in a high temperature atmosphere of 1350°C.
A heat treatment was performed for a period of time to obtain a temporary shrinkage base material 1 having a bulk density of 0.71 g/cm 3 . Next, as shown in FIG. 2, the temporarily contracted base material 1 was immersed in a 2.4 mol % boric acid aqueous solution 3 for 12 hours, and then air-dried. Next, the dried temporary shrink base material was heat-treated in a high-temperature helium atmosphere at 1500°C to obtain a transparent glass base material. The relative refractive index difference of the obtained transparent glass base material with respect to pure quartz was measured and found to be 0.13%. This revealed that the obtained transparent glass base material contained about 4% by weight of B 2 O 3 .

以上の実施例では添加物を含浸させるガラス多
孔質母材の成分を純粋石英としたが、この代りに
1種類又はそれ以上の添加剤を含んだ石英ガラス
多孔質母材又はその他の酸化物ガラス多孔質母材
であつてもよい。また含浸する3価の元素を含む
添加剤が硼酸水溶液に限らないのはいうまでもな
い。更に、熱処理を施す際抵抗炉以外に温度制御
可能な他の電気炉及び誘導炉と使用してもよい。
In the above examples, the component of the glass porous base material impregnated with additives was pure quartz, but instead of this, a silica glass porous base material containing one or more types of additives or other oxide glass may be used. It may be a porous matrix. Further, it goes without saying that the additive containing a trivalent element to be impregnated is not limited to an aqueous boric acid solution. Furthermore, when performing heat treatment, other electric furnaces and induction furnaces that can control the temperature may be used in addition to the resistance furnace.

比較例 バーナ位置やガス流量等を調節して、通常の場
合より火炎温度を高くしたVAD法で製造した、
平均カサ密度0.45g/cm3の純粋石英ガラス多孔質
母材を、熱処理を施さないまま、2.4mol%の硼
酸水溶液に浸したところ、該ガラス多孔質母材の
最外層が崩れた。これは該ガラス多孔質母材の最
外部のカサ密度が0.25g/cm3と低くこのため粒子
の固着力が弱かつたことによると考えられる。
Comparative example: Manufactured using the VAD method, which adjusts the burner position, gas flow rate, etc. to raise the flame temperature higher than usual.
When a pure silica glass porous base material with an average bulk density of 0.45 g/cm 3 was immersed in a 2.4 mol % boric acid aqueous solution without being heat-treated, the outermost layer of the glass porous base material collapsed. This is thought to be due to the fact that the bulk density of the outermost part of the glass porous matrix was as low as 0.25 g/cm 3 and therefore the adhesion of the particles was weak.

<発明の効果> 以上、説明したように、本発明による熱処理を
施した仮収縮母材に3価の元素を含む添加剤化合
物を含浸する方法では従来の方法に比べ容易にか
つ安定して3価の元素を含む添加剤を添加したガ
ラス材を得ることができる。したがつてガラス原
料中に添加物を加え加炎加水分解反応に供する方
法によるよりも、添加物の選択範囲が広がるに加
え、溶液含浸の際の母材の崩壊も防止できる。簡
単でかつ経済的効率の高い有利な方法である。
<Effects of the Invention> As explained above, the method of impregnating the heat-treated temporary shrinkage base material with an additive compound containing a trivalent element according to the present invention can easily and stably reduce the It is possible to obtain a glass material to which an additive containing a valent element is added. Therefore, the range of additives that can be selected is expanded compared to the method in which additives are added to the glass raw material and subjected to a flaming hydrolysis reaction, and the base material can be prevented from collapsing during impregnation with a solution. This is a simple, economically efficient and advantageous method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の実施態様を簡単に
説明する図である。第1図、ガラス多孔質母材を
仮収縮させ仮収縮母材とする工程の説明図。第2
図、添加する化合物を含浸する工程の説明図。
FIGS. 1 and 2 are diagrams briefly explaining embodiments of the present invention. FIG. 1 is an explanatory diagram of the process of temporarily shrinking a glass porous base material to obtain a temporarily shrinked base material. Second
Figure: An explanatory diagram of the step of impregnating the compound to be added.

Claims (1)

【特許請求の範囲】 1 火炎加水分解法によつて得たガラス多孔質母
材を温度1100℃以上の高温雰囲気中で加熱処理し
てカサ密度が0.3g/cm3以上1.0g/cm3以下である仮
収縮母材とし、該仮収縮母材に、3価の元素を含
みその酸化物に変換しうる液状化合物又は化合物
溶液を含浸せしめた後、該仮収縮母材を高温雰囲
気中にて加熱処理し透明ガラス化することを特徴
とするガラスの製造方法。 2 ガラス多孔質母材が、VAD法により製造し
たものである特許請求の範囲第1項に記載される
ガラスの製造方法。
[Claims] 1 A glass porous base material obtained by a flame hydrolysis method is heat-treated in a high-temperature atmosphere at a temperature of 1100°C or higher to have a bulk density of 0.3 g/cm 3 or more and 1.0 g/cm 3 or less After impregnating the temporarily shrinking base material with a liquid compound or compound solution containing a trivalent element and converting it into its oxide, the temporarily shrinking base material is placed in a high temperature atmosphere. A method for producing glass, characterized by heat treatment to make it transparent. 2. The method for producing glass according to claim 1, wherein the glass porous base material is produced by a VAD method.
JP14399385A 1985-07-02 1985-07-02 Production of glass Granted JPS627640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14399385A JPS627640A (en) 1985-07-02 1985-07-02 Production of glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14399385A JPS627640A (en) 1985-07-02 1985-07-02 Production of glass

Publications (2)

Publication Number Publication Date
JPS627640A JPS627640A (en) 1987-01-14
JPH0551541B2 true JPH0551541B2 (en) 1993-08-02

Family

ID=15351812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14399385A Granted JPS627640A (en) 1985-07-02 1985-07-02 Production of glass

Country Status (1)

Country Link
JP (1) JPS627640A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0328135A (en) * 1989-06-22 1991-02-06 Fujikura Ltd Production of glass doped with rare earth element
JPH085684B2 (en) * 1990-02-28 1996-01-24 株式会社フジクラ Quartz glass manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424919A (en) * 1977-07-27 1979-02-24 Sumitomo Electric Industries Method of making glass member
JPS5692134A (en) * 1979-12-25 1981-07-25 Nippon Telegr & Teleph Corp <Ntt> Production of base material for optical fiber
JPS583980A (en) * 1981-06-30 1983-01-10 エリス・テイ−・クレイトン Portable mechanical plating device and plating method thereby
JPS5973446A (en) * 1982-10-19 1984-04-25 Furukawa Electric Co Ltd:The Method for doping in preparation of optical glass
JPS606294A (en) * 1983-06-23 1985-01-12 Sanyo Electric Co Ltd Joining method of metallic member
JPS6024057A (en) * 1983-07-19 1985-02-06 Hitachi Maxell Ltd Hybrid element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5424919A (en) * 1977-07-27 1979-02-24 Sumitomo Electric Industries Method of making glass member
JPS5692134A (en) * 1979-12-25 1981-07-25 Nippon Telegr & Teleph Corp <Ntt> Production of base material for optical fiber
JPS583980A (en) * 1981-06-30 1983-01-10 エリス・テイ−・クレイトン Portable mechanical plating device and plating method thereby
JPS5973446A (en) * 1982-10-19 1984-04-25 Furukawa Electric Co Ltd:The Method for doping in preparation of optical glass
JPS606294A (en) * 1983-06-23 1985-01-12 Sanyo Electric Co Ltd Joining method of metallic member
JPS6024057A (en) * 1983-07-19 1985-02-06 Hitachi Maxell Ltd Hybrid element

Also Published As

Publication number Publication date
JPS627640A (en) 1987-01-14

Similar Documents

Publication Publication Date Title
US6467313B1 (en) Method for controlling dopant profiles
EP0443781A1 (en) Method for doping optical fibers
RU2235071C2 (en) Method for preparing optical fiber blank
JPS5844619B2 (en) Manufacturing method of optical fiber base material
GB2307908A (en) Making an optical fibre preform
KR20060132674A (en) Method of making an optical fiber preform
JPH0551541B2 (en)
JPH0764578B2 (en) Manufacturing method of base material for single mode optical fiber
JPS59146947A (en) Manufacture of preform for light conductive body
JP2003261336A (en) Method for manufacturing transparent glass preform
JPS60251142A (en) Manufacture of base material for optical fiber
JP7332559B2 (en) Manufacturing method of glass base material for optical fiber
JP4234389B2 (en) Manufacturing method of rare earth element added glass
JPH0426523A (en) Production of optical fiber
JP3748910B2 (en) Heat treatment method for glass base material
JP4048753B2 (en) Manufacturing method of glass preform for optical fiber
JPS599497B2 (en) Optical glass manufacturing method
JP4081713B2 (en) Manufacturing method of glass base material and drawing method of glass base material
JP3754844B2 (en) Manufacturing method and manufacturing apparatus for optical fiber preform
JP4252871B2 (en) Optical fiber preform manufacturing method
JP2023015689A (en) Method for manufacturing optical fiber preform
JPS61168544A (en) Production of glass tube mainly composed of quartz
JPS5924097B2 (en) Glass body manufacturing method
JP2000264649A (en) Apparatus for sintering porous glass preform and sintering
JP2004262719A (en) Method of manufacturing fluorine added glass article

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees