JP3748910B2 - Heat treatment method for glass base material - Google Patents

Heat treatment method for glass base material Download PDF

Info

Publication number
JP3748910B2
JP3748910B2 JP30543194A JP30543194A JP3748910B2 JP 3748910 B2 JP3748910 B2 JP 3748910B2 JP 30543194 A JP30543194 A JP 30543194A JP 30543194 A JP30543194 A JP 30543194A JP 3748910 B2 JP3748910 B2 JP 3748910B2
Authority
JP
Japan
Prior art keywords
glass body
porous glass
heat treatment
traverse
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30543194A
Other languages
Japanese (ja)
Other versions
JPH08143324A (en
Inventor
孝和 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP30543194A priority Critical patent/JP3748910B2/en
Publication of JPH08143324A publication Critical patent/JPH08143324A/en
Application granted granted Critical
Publication of JP3748910B2 publication Critical patent/JP3748910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • C03B37/0146Furnaces therefor, e.g. muffle tubes, furnace linings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、VAD法や外付け法などで光ファイバ母材を製造する工程において、多孔質ガラス体を加熱することによりその焼結(透明ガラス化)処理の工程を行なうガラス母材の加熱処理方法に関する。
【0002】
【従来の技術】
VAD法や外付け法などで光ファイバ母材を製造するとき、バーナより酸水素火炎を生じさせてその中に四塩化珪素などのガラスの原料ガス及びドーパント材のガスを送り込み、加水分解反応及び熱酸化反応によってガラス微粒子(二酸化珪素)を生成させ、このガラス微粒子をターゲットに堆積させて円柱状の多孔質のガラス体を形成する。そして、この多孔質のガラス体を加熱することによって、透明ガラス化(焼結)処理する。あるいは、この焼結処理の工程で、OH基を除去(脱水)する工程も同時に行なうこともある。こうして透明なガラス体を作り、これを溶融して線引き紡糸することによって細い光ファイバを作る。
【0003】
このガラス母材の加熱処理工程は、多孔質ガラス体をトラバース装置でつり下げ、加熱炉のヒーターで加熱された炉心管中を下方に移動(トラバース)させていくことにより、行なわれる。すなわち、加熱処理装置は、炉心管と、これを加熱するヒーターとを備える加熱炉と、この加熱炉の上方に配置されたトラバース装置とから構成される。
【0004】
【発明が解決しようとする課題】
しかしながら、従来のガラス母材の加熱処理装置によると、大型(長尺)のガラス母材を加熱処理する場合、できあがった透明ガラス体の外径変動が大きいという問題がある。
【0005】
この問題は、被処理ガラス母材である多孔質ガラス体が、光ファイバの製造コストの低減のために、近年、ますます大型化しつつあるという事情のもとで生じているものである。すなわち、加熱処理装置が予定している多孔質ガラス体のサイズをオーバーするような長いものをどうしても処理せざるを得ないため、多孔質ガラス体の先端がヒーターによって加熱される領域に最初から入り込んでいるような位置関係に、多孔質ガラス体を配置した状態で、ヒーターの加熱を行ない、焼結温度に到達したときに、下方へのトラバースを開始するというようにしている。そのため、最初から加熱領域に入れられた先端(下端)部分が、過度に熱せられてしまい、表面張力によって球体になろうとすることによって、図3に示すように、加熱処理後の透明ガラス体6の下端がふくらみ、直径が他の部分(上方の部分)よりも大きくなってしまう。
【0006】
そして、外径が均一な部分でしか良好な光ファイバをつくれないため、このような外径変動があると、せっかく大型の多孔質ガラス体を作っても、有効に利用できる部分が少なくなって、製造コストの低減に寄与できないことになる。
【0007】
もちろん、このような問題を避けるためには、長尺の多孔質ガラス体に合わせて加熱処理装置を大型化すればよいのであるが、そうすると加熱処理装置についてのコスト増加の問題が生じる。また、たとえ加熱処理装置を大型化したとしても、それが予定しているようなサイズをオーバーする多孔質ガラス体の処理をしなければならなくなったときは、ふたたび同じ問題に遭遇することになるのであるから、安易に加熱処理装置を大型化すればよいというものでもない。
【0008】
この発明は、上記に鑑み、小型の加熱処理装置でも、長尺の多孔質ガラス体を、焼結後の透明ガラス体の外径変動を生じることなく、加熱処理することができるように改善した、ガラス母材の加熱処理方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するため、この発明によれば、多孔質ガラス体を上からつり下げて、加熱炉の炉心管中に下方にトラバースさせることにより、加熱炉のヒーターにより加熱される領域内に、該多孔質ガラス体の下端から上端へと順次通過させて加熱処理する方法において、多孔質ガラス体長さが炉心管との関係で長くてトラバースの始点で該多孔質ガラス体の下端が上記加熱領域に入り込んでしまうようにしか該多孔質ガラス体をつり下げられない場合にそのように下端が加熱領域に入り込んだ状態で多孔質ガラス体を保持した上で、ヒーターにより加熱領域の温度を上昇させ、該温度が該多孔質ガラス体の焼結温度に到達する以前の時点で下方へのトラバースを開始させることが特徴となっている。
【0010】
【作用】
ガラス母材の加熱処理装置が本来予定しているより長尺の多孔質ガラス体の場合、これをトラバース手段によってつり下げたとき、この多孔質ガラス体の下端部が最初からヒーター内に入り込んでしまう。そこで、この状態でヒーター温度を上昇させていって焼結温度に到達したときに下方へのトラバースを開始させるならば、その最初からヒーター内に入っていた下端部は過度に加熱を受け、その結果、外径変動が生じることになってしまうのであるが、焼結温度に到達する以前の時点でトラバースを開始させるようにしているので、この下端部にも、他の部分と同じように、適正な加熱量が加わるようになって、下端部での外径変動を抑えることができる。その結果、有効長の大きな透明ガラス体を得ることができるので、光ファイバの製造コストを下げることに寄与できる。
【0011】
【実施例】
以下、この発明の好ましい一実施例について図面を参照しながら詳細に説明する。図1に示すように、この発明の一実施例にかかるガラス母材の加熱処理装置は、加熱炉1と、トラバース装置7と、これらを制御するコントローラ8とからなる。加熱炉1はその中央部に石英ガラスの炉心管2を有しており、その周囲にヒーター3が設けられている。トラバース装置7は、出発部材4の下端に形成された多孔質ガラス体5を、出発部材4を上からつり下げることにより保持するものである。多孔質ガラス体5はトラバース装置7によってつり下げられた状態で、炉心管2の中を、回転させられながら、下方にトラバースさせられる。この炉心管2中には、焼結工程と同時に脱水工程をも行なうとき、炉心管2の下部より送り込まれたヘリウムと塩素ガスなどの脱水剤のプロセスガスが充満させられている。
【0012】
こうしてヒーター3によって加熱された領域を上方から下方へと、多孔質ガラス体5が通過していくことによって、多孔質ガラス体5はその下端から上端に向かって熱せられていき、下端部分から上端に向かって徐々に透明ガラス化がなされる。つまり、多孔質ガラス体5が下方にトラバースさせられることにより、下端部分から透明ガラス体ができあがっていく。点線は、この加熱処理工程が終わりに近づいた状態での多孔質ガラス体5を示しており、その下端に透明ガラス体6が形成されている。嵩密度の低い多孔質ガラス体5が焼結されて透明ガラス体6となるため、透明ガラス体6の外径は多孔質ガラス体5の外径よりも小さいものとなる。
【0013】
このようにして加熱処理を行なっていく場合、多孔質ガラス体5が長いものであると、図1に示すように、多孔質ガラス体5は、その下端が最初からヒーター3により加熱される領域内に入った状態となっている。そのため、仮に従来と同様に、この状態でヒーター3の温度を図2に示すように上昇させていって、焼結温度(たとえば1500℃)に達したとき(たとえば50分)に図2の点線のように下方へのトラバースを開始させるならば、下端部分が過度に熱せられ、図3のように膨らんだ部分ができてしまう。
【0014】
これを避けるためには、上でも述べたが、トラバース装置7の位置をさらに上方とするとともに炉心管2も長いものとし、多孔質ガラス体5が長いものであってもその下端がヒーター3より十分に離れて上方に位置するようにし、この状態で温度を上昇させていき、焼結温度に到達したとき、多孔質ガラス体5の下方へのトラバースを開始させればよい。しかし、このような構成をとると、加熱処理装置の全体の高さ方向のサイズを大きくしなければならず、大型化してコスト増を招く。
【0015】
そこで、この実施例では、焼結温度に達する前のたとえば1300℃に到達した時点(たとえば44分)で、図2の実線のように下方へのトラバースを開始させるよう、コントローラ8で制御するようにしている。これによると、最初からヒーター3により加熱される領域内に入った多孔質ガラス体5の下端部分も、それより上方の他の部分と同じ程度に加熱されることになるので、下端部の膨らみが生じることをなくすことができる。また、加熱炉1が焼結温度に到達する以前にトラバースを開始するため、焼結時間も短縮できる。
【0016】
実際に、内径が200mmの炉心管2と、長さが390mmのヒーター3を有する加熱炉1を用いて、VAD法により作製した外径が140mm、長さが1000mmの多孔質ガラス体5を焼結処理してみた。この多孔質ガラス体5はトラバース装置7によりつり下げているが、最上位に上げている状態でも、多孔質ガラス体5の下端は、ヒーター3の上端よりも140mm下方となるため、この状態に保持してヒーター3の加熱によって温度を上昇させることとした。そして、焼結温度は1500℃とし、その焼結温度に上昇するまで50分かかったが、その焼結温度に到達する前の44分の時点で1300℃になったので、この時点でトラバースを開始させた。このトラバース速度は、150mm/時としている。
【0017】
このような加熱処理の結果、透明ガラス体6の下端部を除く定常部分では外径は70.1mmとなり、下端部ではその外径の最大値を示したところで70.7mmとなった。これは、外径変動が定常部分の0.08%に抑えられていることを示している。ちなみに、比較例として、上記とまったく同じ条件で、トラバース開始時点のみを従来のように1500℃に達した50分とした場合、透明ガラス体6の下端部を除く定常部分では外径は71.7mmとなり、下端部の最大外径部で74.1mmとなり、外径変動は定常部分の3.3%に達するものとなった。
【0018】
なお、上記においてトラバースを開始させる時間、温度は一つの例であり、各種の条件に応じて適宜定めることとする。すなわち、多孔質ガラス体5の各部に加わる熱量は、温度の時間積分に相当するものであるから、各部のヒーター3内での滞在時間と滞在中の温度とによって基本的には定まり、これが各部で同じになるようにすればよいのであるが、実際は、理論通りにはいかないため、実際の条件に応じて試行錯誤して定めるのが望ましい。ただ、必ずしも最適値が見出せなくても、トラバースの開始時点を焼結温度に到達する時点より適当に早めるだけで、外径変動を上記の例のように抑えることは容易である。
【0019】
【発明の効果】
以上実施例について説明したように、この発明のガラス母材の加熱処理方法によれば、小型で高さのない加熱処理装置であっても、長尺の多孔質ガラス体を、焼結後の透明ガラス体の外径変動を生じることなく、加熱処理することができる。そのため、多孔質ガラス体が長いものとなったからといって、それに合わせてガラス母材の加熱処理装置を大きなものとする必要がなくなり、光ファイバの製造コスト低減に寄与できる。
【図面の簡単な説明】
【図1】この発明の一実施例にかかるガラス母材の加熱処理装置の模式図。
【図2】同実施例の温度変化とトラバースとの関係を示すタイムチャート。
【図3】従来例における外径変動を示す斜視図。
【符号の説明】
1 加熱炉
2 炉心管
3 ヒーター
4 出発部材
5 多孔質ガラス体
6 透明ガラス体
7 トラバース装置
8 コントローラ
[0001]
[Industrial application fields]
The present invention relates to a heat treatment of a glass base material that performs a sintering (transparent vitrification) treatment step by heating a porous glass body in a step of producing an optical fiber preform by a VAD method or an external method. Regarding the method.
[0002]
[Prior art]
When an optical fiber preform is manufactured by the VAD method or the external method, an oxyhydrogen flame is produced from a burner, and glass source gas such as silicon tetrachloride and dopant material gas are fed into the oxyhydrogen flame, and hydrolysis reaction and Glass fine particles (silicon dioxide) are generated by a thermal oxidation reaction, and the glass fine particles are deposited on a target to form a cylindrical porous glass body. Then, the porous glass body is heated to be transparent vitrified (sintered). Alternatively, the step of removing (dehydrating) OH groups may be performed at the same time as this sintering process. In this way, a transparent glass body is made, and a thin optical fiber is made by melting and drawing and spinning.
[0003]
This heat treatment process for the glass base material is performed by suspending the porous glass body with a traverse device and moving (traverse) the furnace core tube heated by the heater of the heating furnace downward. That is, the heat treatment apparatus includes a heating furnace including a furnace core tube and a heater that heats the furnace tube, and a traverse apparatus disposed above the heating furnace.
[0004]
[Problems to be solved by the invention]
However, according to the conventional heat treatment apparatus for a glass base material, when a large (long) glass base material is heat-treated, there is a problem that a variation in the outer diameter of the resulting transparent glass body is large.
[0005]
This problem arises under the circumstances that the porous glass body, which is the glass base material to be processed, is becoming larger and larger in recent years in order to reduce the manufacturing cost of the optical fiber. In other words, since the heat treatment apparatus inevitably treats a long one that exceeds the size of the porous glass body planned, the tip of the porous glass body enters the area heated by the heater from the beginning. In such a positional relationship, the heater is heated in a state where the porous glass body is disposed, and when the sintering temperature is reached, the downward traverse is started. Therefore, the tip (lower end) portion put into the heating region from the beginning is excessively heated and tries to become a sphere due to the surface tension, so that the transparent glass body 6 after the heat treatment as shown in FIG. The lower end of the swells and the diameter becomes larger than other parts (upper part).
[0006]
And since a good optical fiber can only be made at a part with a uniform outer diameter, if there is such a change in the outer diameter, even if a large porous glass body is made, there are fewer parts that can be used effectively. Therefore, it cannot contribute to the reduction of the manufacturing cost.
[0007]
Of course, in order to avoid such a problem, it is only necessary to increase the size of the heat treatment apparatus in accordance with the long porous glass body, but this causes a problem of an increase in cost of the heat treatment apparatus. Moreover, even if the heat treatment apparatus is enlarged, when the porous glass body that exceeds the size that it is supposed to be processed has to be processed, the same problem will be encountered again. Therefore, it does not mean that the heat treatment apparatus should be easily enlarged.
[0008]
In view of the above, the present invention has improved so that a long porous glass body can be heat-treated without causing fluctuations in the outer diameter of the sintered transparent glass body even in a small heat treatment apparatus. It aims at providing the heat processing method of a glass base material.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, the porous glass body is suspended from above and traversed downward into the furnace core tube of the heating furnace, so that the region is heated by the heater of the heating furnace. In the method of sequentially passing the heat from the lower end to the upper end of the porous glass body, the length of the porous glass body is long in relation to the core tube, and the lower end of the porous glass body is heated at the starting point of the traverse. When the porous glass body can only be suspended so as to enter the region, the temperature of the heating region is increased by the heater while holding the porous glass body with the lower end entering the heating region. The traverse downward is started at a time before the temperature reaches the sintering temperature of the porous glass body.
[0010]
[Action]
In the case of a porous glass body longer than originally planned by the heat treatment apparatus for the glass base material, when this is suspended by the traverse means, the lower end portion of the porous glass body enters the heater from the beginning. End up. Therefore, if the heater temperature is raised in this state and the traverse downward is started when the sintering temperature is reached, the lower end portion that has been in the heater from the beginning is excessively heated, As a result, fluctuations in the outer diameter will occur, but since the traverse is started at a time before reaching the sintering temperature, the lower end is also the same as the other parts, Appropriate amount of heating is applied, and fluctuations in the outer diameter at the lower end can be suppressed. As a result, a transparent glass body having a large effective length can be obtained, which can contribute to reducing the manufacturing cost of the optical fiber.
[0011]
【Example】
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings. As shown in FIG. 1, the heat treatment apparatus for glass base material according to one embodiment of the present invention includes a heating furnace 1, a traverse apparatus 7, and a controller 8 for controlling them. The heating furnace 1 has a quartz glass core tube 2 at its center, and a heater 3 is provided around it. The traverse device 7 holds the porous glass body 5 formed at the lower end of the starting member 4 by hanging the starting member 4 from above. The porous glass body 5 is traversed downward while being rotated in the core tube 2 while being suspended by the traverse device 7. The core tube 2 is filled with a process gas of a dehydrating agent such as helium and chlorine gas fed from the lower part of the core tube 2 when the dehydration process is performed simultaneously with the sintering process.
[0012]
Thus, the porous glass body 5 is heated from the lower end to the upper end by passing through the region heated by the heater 3 from the upper side to the lower side, and from the lower end portion to the upper end. The glass is gradually made into transparent glass. That is, when the porous glass body 5 is traversed downward, a transparent glass body is completed from the lower end portion. The dotted line shows the porous glass body 5 in a state where this heat treatment step is nearing the end, and the transparent glass body 6 is formed at the lower end thereof. Since the porous glass body 5 having a low bulk density is sintered into the transparent glass body 6, the outer diameter of the transparent glass body 6 is smaller than the outer diameter of the porous glass body 5.
[0013]
When the heat treatment is performed in this manner, if the porous glass body 5 is long, the lower end of the porous glass body 5 is heated from the beginning by the heater 3 as shown in FIG. It has entered the state. Therefore, as in the conventional case, the temperature of the heater 3 is raised as shown in FIG. 2 in this state, and when the sintering temperature (for example, 1500 ° C.) is reached (for example, 50 minutes), the dotted line in FIG. If the downward traverse is started as in FIG. 3, the lower end portion is excessively heated, and a swollen portion is formed as shown in FIG.
[0014]
In order to avoid this, as described above, the position of the traverse device 7 is further upward, the furnace tube 2 is also long, and even if the porous glass body 5 is long, its lower end is sufficiently higher than the heater 3. In this state, the temperature is increased, and when the sintering temperature is reached, the downward traverse of the porous glass body 5 may be started. However, if such a configuration is adopted, the overall size of the heat treatment apparatus must be increased, resulting in an increase in size and an increase in cost.
[0015]
Therefore, in this embodiment, when the temperature reaches 1300 ° C. (for example, 44 minutes) before reaching the sintering temperature, the controller 8 controls to start the downward traverse as shown by the solid line in FIG. I have to. According to this, since the lower end portion of the porous glass body 5 that has entered the region heated from the beginning by the heater 3 is also heated to the same extent as the other portions above it, the swelling of the lower end portion is increased. Can be eliminated. Further, since the traverse is started before the heating furnace 1 reaches the sintering temperature, the sintering time can be shortened.
[0016]
Actually, a porous glass body 5 having an outer diameter of 140 mm and a length of 1000 mm manufactured by the VAD method is baked using a furnace core 2 having a furnace core tube 2 having an inner diameter of 200 mm and a heater 3 having a length of 390 mm. I tried to finish. The porous glass body 5 is suspended by the traverse device 7. Even when the porous glass body 5 is raised to the uppermost position, the lower end of the porous glass body 5 is 140 mm below the upper end of the heater 3. The temperature was increased by holding and heating the heater 3. The sintering temperature was set to 1500 ° C., and it took 50 minutes to rise to the sintering temperature. However, the temperature reached 1300 ° C. at 44 minutes before reaching the sintering temperature. Started. The traverse speed is 150 mm / hour.
[0017]
As a result of such heat treatment, the outer diameter of the transparent glass body 6 excluding the lower end portion was 70.1 mm, and the lower end portion was 70.7 mm when the maximum value of the outer diameter was shown. This indicates that the outer diameter fluctuation is suppressed to 0.08% of the steady portion. Incidentally, as a comparative example, when the traverse start time is 50 minutes when the temperature reaches 1500 ° C. as in the conventional case under exactly the same conditions as described above, the outer diameter of the transparent glass body 6 excluding the lower end is 71. 7 mm at the maximum outer diameter portion at the lower end, and the outer diameter fluctuation reached 3.3% of the steady portion.
[0018]
In the above, the time and temperature for starting the traverse are only examples, and are appropriately determined according to various conditions. That is, since the amount of heat applied to each part of the porous glass body 5 corresponds to the time integration of the temperature, it is basically determined by the residence time of each part in the heater 3 and the temperature during the stay. However, since it does not actually work as expected, it is desirable to determine it by trial and error according to actual conditions. However, even if the optimum value cannot always be found, it is easy to suppress the variation in the outer diameter as in the above example only by appropriately bringing the traverse start time earlier than the time when it reaches the sintering temperature.
[0019]
【The invention's effect】
As described above with respect to the examples, according to the heat treatment method for a glass base material of the present invention, a long porous glass body can be obtained after sintering even in a small heat treatment apparatus having no height. Heat treatment can be performed without causing a variation in the outer diameter of the transparent glass body. Therefore, even if the porous glass body is long, it is not necessary to make the glass base material heat treatment apparatus large in accordance with this, and it can contribute to the reduction of the manufacturing cost of the optical fiber.
[Brief description of the drawings]
FIG. 1 is a schematic view of a glass base material heat treatment apparatus according to an embodiment of the present invention.
FIG. 2 is a time chart showing a relationship between a temperature change and a traverse in the embodiment.
FIG. 3 is a perspective view showing an outer diameter variation in a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heating furnace 2 Core tube 3 Heater 4 Starting member 5 Porous glass body 6 Transparent glass body 7 Traverse apparatus 8 Controller

Claims (1)

多孔質ガラス体を上からつり下げて、加熱炉の炉心管中に下方にトラバースさせることにより、加熱炉のヒーターにより加熱される領域内に、該多孔質ガラス体の下端から上端へと順次通過させて加熱処理する方法において、多孔質ガラス体長さが炉心管との関係で長くてトラバースの始点で該多孔質ガラス体の下端が上記加熱領域に入り込んでしまうようにしか該多孔質ガラス体をつり下げられない場合にそのように下端が加熱領域に入り込んだ状態で多孔質ガラス体を保持した上で、ヒーターにより加熱領域の温度を上昇させ、該温度が該多孔質ガラス体の焼結温度に到達する以前の時点で下方へのトラバースを開始させることを特徴とするガラス母材の加熱処理方法。  By suspending the porous glass body from above and traversing downward into the furnace core tube of the heating furnace, the porous glass body sequentially passes from the lower end to the upper end in the region heated by the heater of the heating furnace. In the method of heat treatment, the porous glass body is long so that the length of the porous glass body is long in relation to the core tube and the lower end of the porous glass body enters the heating region at the starting point of the traverse. If the porous glass body is held in such a state that the lower end has entered the heating area when it cannot be suspended, the temperature of the heating area is raised by a heater, and the temperature is the sintering temperature of the porous glass body. A glass substrate heat treatment method, characterized in that a downward traverse is started at a time before reaching the point.
JP30543194A 1994-11-15 1994-11-15 Heat treatment method for glass base material Expired - Fee Related JP3748910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30543194A JP3748910B2 (en) 1994-11-15 1994-11-15 Heat treatment method for glass base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30543194A JP3748910B2 (en) 1994-11-15 1994-11-15 Heat treatment method for glass base material

Publications (2)

Publication Number Publication Date
JPH08143324A JPH08143324A (en) 1996-06-04
JP3748910B2 true JP3748910B2 (en) 2006-02-22

Family

ID=17945057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30543194A Expired - Fee Related JP3748910B2 (en) 1994-11-15 1994-11-15 Heat treatment method for glass base material

Country Status (1)

Country Link
JP (1) JP3748910B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6442978B1 (en) 1999-03-10 2002-09-03 Shin-Etsu Chemical Co. Ltd. Apparatus for sintering a porous glass base material and a method therefor
KR100323821B1 (en) * 1999-08-26 2002-02-19 윤종용 Manufacture method for silica glass of tube type

Also Published As

Publication number Publication date
JPH08143324A (en) 1996-06-04

Similar Documents

Publication Publication Date Title
CA1120727A (en) Method of producing glass optical filaments
JPS5844619B2 (en) Manufacturing method of optical fiber base material
JPH04270132A (en) Production of glass matrix for optical fiber
US6827883B2 (en) Optical fiber preform and the method of producing the same
JP3748910B2 (en) Heat treatment method for glass base material
JP2013056808A (en) Method for producing glass preform
JP2003261336A (en) Method for manufacturing transparent glass preform
JP7332559B2 (en) Manufacturing method of glass base material for optical fiber
JP2003081657A (en) Vitrification method and vitrification apparatus for porous soot body of optical fiber preform
JP2023009420A (en) Method for manufacturing optical fiber preform
JPH05339012A (en) Heating treatment device for glass preform
JPH08333129A (en) Method for drying and sintering porous glass optical waveguide preform
JP6597177B2 (en) Manufacturing method of optical fiber preform
JP7024489B2 (en) Manufacturing method of base material for optical fiber
JP4071348B2 (en) Optical fiber preform dehydration method
JP4403623B2 (en) Optical fiber preform manufacturing method
JP2003277095A (en) Method for sintering optical fiber porous preform
WO2004101457A1 (en) Process for producing glass parent material of optical fiber
JP2000128558A (en) Production of quartz glass preform for optical fiber
KR20230010578A (en) Method for manufacturing glass preform for optical fiber
JP2004307281A (en) Method of manufacturing fluorine added quartz glass article
JPH0627011B2 (en) Heat treatment method for doped quartz porous glass preform
JPS61168544A (en) Production of glass tube mainly composed of quartz
JPS63315531A (en) Production of optical fiber preform
JP2003300749A (en) Glass preform and method for fabricating glass preform

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050406

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051130

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081209

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees