JPH05503034A - 超薄フィルム複合体膜 - Google Patents

超薄フィルム複合体膜

Info

Publication number
JPH05503034A
JPH05503034A JP3503219A JP50321991A JPH05503034A JP H05503034 A JPH05503034 A JP H05503034A JP 3503219 A JP3503219 A JP 3503219A JP 50321991 A JP50321991 A JP 50321991A JP H05503034 A JPH05503034 A JP H05503034A
Authority
JP
Japan
Prior art keywords
membrane
monomers
composite membrane
layer
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3503219A
Other languages
English (en)
Inventor
マーチン,チャールズ アール
エスペンスシード,マーク ダブリュー
Original Assignee
ザ ダウ ケミカル カンパニー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザ ダウ ケミカル カンパニー filed Critical ザ ダウ ケミカル カンパニー
Publication of JPH05503034A publication Critical patent/JPH05503034A/ja
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • B01D67/00791Different components in separate layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02833Pore size more than 10 and up to 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • B01D2325/02834Pore size more than 0.1 and up to 1 µm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。

Description

【発明の詳細な説明】 超薄フィルム複合体膜 複合体膜系は逆浸透のような流体からの成分の分離について当業技術において知 られている。代表的な周知技術はCadot t eの米国特許第4゜277. 344号であり、そこには逆浸透によって水から塩を分離するのに有用な多孔質 支持体上のポリアミドフィルムのその場での製造か記載されている。ポリアミド フィルムは一般には多孔質支持体上のアミン水溶液と該アミン水溶液には実質的 に混和しない非極性溶液中のボリアノルハライドとの界面において生成する。ポ リアミド生成は実質的に界面においてのみ起る。
複合体膜の使用によるガス成分の分離も知られている。代表的なガス分離複合膜 の例としてChiaoの米国特許第4,717,395号かあげられ、そこには 多孔質支持体上に弁別層をもつ複合体膜を包含するガス成分の分離に有用な膜か 記載されている。弁別層は支持体層上に別個の生成され付着されるか、または弁 別材料の水溶液または分散液か支持体層上に塗布またはキャストされ、溶媒か除 去されて薄い密なスキンを生成すると記載されている。
Hexisらの米国特許第4,230,463号には多孔質支持体の表面を湿潤 する又は該表面に付着する傾向のある且つガス混合物の特定の成分に対して選択 浸透性を示すアモルファス材料被覆の多孔質膜を含むガス混合物分離用の多成分 膜か記載されている。
ガス相分離の複合体膜を通る物質移動の理論的説明はJ−YらのJournal  of Polymer 5cience、Vol、32゜pp4625−46 37 (+988)によって開発された。複合体膜を通るガス浸透率は複合体層 の厚さに逆比例すると述へられている。従って薄い複合体層が望ましい。
従来技術の方法は種々のハンディキャップに悩まされる。支持体に弁別層を被覆 することは被覆材料の厚さの変動をもたらすことかある。被覆の存在しない区域 において、膜は多孔質であり従って非分離性である。被覆か最適の厚さを越える と、ブラックスの不当な減少か生しる。弁別層か別に製造される場合、弁別層は 支持体から分離することかなく、バックフローか膜中に起るか又は弁別層付近に 乱流かある条件下では特にそうである。
電気化学的に開始される重合かいくつかの最終用途に利用された。たとえば金属 の腐食保護、ディスプレー装置の製造、粒状触媒の不動化、イオン特異性センサ なとの最終用途である。それぞれの場合に、電気化学開始重合の利用は不浸透性 支持体上で行なわれた。然し今までに電気化学開始ポリマーを多孔質基材上に適 用する用途は報告されなかった。
更に、電気化学開始ポリマーを膜分離の多孔質支持体上の弁別層として使用する 報告もなされなかった。
均一な厚さの薄い弁別層を多孔質支持体上に析出および付着させて成り、該弁別 層か支持体から分離性である、存用なガス分離特性を示す複合体を得ることは望 ましいことである。
本発明は薄くて実質的に均一な選択性ポリマー層を多孔質支持体上にもつ流体混 合物の分離に有用な複合体膜を提供する。本発明は多孔質支持体と電気化学的に 開始した重合弁別層を含む複合体膜である。
本発明はまた、1種以上のモノマーを含み該モノマーの重合か電気化学的に開始 されうる電気伝導性溶液中に第1電極としての伝導性多孔質膜支持体を浸漬し: 該溶液中に第2電極を与え、そして第一電極としての伝導性多孔質膜支持体と該 溶液中の第2電極との間に電圧を印可することを含む複合体膜の製造法を提供す る。
図1は金属被覆多孔質支持体のみの、及び本発明により製造したポリマー層をも つ金属被覆多孔質支持体の、低圧側の相対圧力を時間の関数としてプロットした グラフである。rAJ と呼ぶ線は002μmの細孔直径のアノボア基材上に3 50人の厚さの金被覆を生成させた膜の低圧側の酸素ガスの相対圧力を示す。膜 を横切る差圧は25cmHgである。rB+と呼ぶ線は金被覆アノボア基材上の ジビニルベンセン/エチルビニルベンゼン0.05μm厚さの膜の低圧側の酸素 ガスの相対圧力を示す。膜を横切る差圧は250cmHgである。
本発明により電気化学的に開始した重合から製造した弁別層をもつ複合体膜の製 造において、伝導性多孔質支持体は電源に電気的に接続される。
次いで伝導性多孔質支持体は重合性溶液と接触せしめられる。伝導性多孔質支持 体は電解槽の電極として働く。多孔質支持体は電気伝導性材料から作ったもの又 は多孔質支持体を金属または他の電気導体の伝導性層で被覆したものから作った ものでなければならない。伝導性層は多孔質支持体表面の細孔を閉塞しないよう に十分に薄くなければならない。
電解槽に、複合体膜の生成に有用な電気重合性モノマーまたは電気重合性モノマ ー類の混合物の重合性溶液を充てんする。
電解的に開始される重合について報告されている重合機構はイオン重合、カチオ ンおよびアニオンの双方、およびフリーラジカル重合である。米国ニューヨーク 州のジョン・ワイリイ・アンド・サン刊行のEncycl−opedia of  Polymer 5cience andEngineering、 Vol 、 5. p591 (1986)のElectrochemical In1 tiation参照。これらの重合開始の種は両電極間の電流として形成される 。
重合溶液の溶媒および該溶液の諸成分は如何なるカルブアニオン、アニオン性ま たはフリーラジカル開始重合についても注意深くえらばれ製造されなければなら ない。イオン重合反応の技術において知られている共通の予防策としてイオンま たはフリーラジカル(ケースに応じて)のスキャベンソング種(水のようなプロ トン種を含む)を除去するための精製試剤かあげられる。溶媒はまた使用する電 圧において電気化学的に不活性てなければならない。好適であると一般に見出さ れた溶媒としてN、 N−ジメチルホルムアミド、ジメチルスルホキサイド、ア セトニトリル、およびこのような溶媒の混合物かあげられる。
電気化学的開始の重合による複合体膜の弁別層の製造に使用可能なモノマー類と してビニル基および多環力ロマチソク種を含むモノマー類かあげられる。モノマ ーまたはモノマー混合物の選択および交差結合度は膜の弁別層の輸送性を習慣に する機会を提供する。
重合溶液中のモノマーの有効濃度はOMから純モノマーまでの範囲でありうる。
一般に、モノマー類は電気重合を有効に開始するに十分に電気伝導性ではない。
一般の場合、重合溶液に電解質を加えることか必要である。然しなから、電解質 は有効量てモノマーに可溶であるのはまれである。
それ故、多くの場合に溶媒を使用して有効量の電解質を重合溶液にとかすことか 必要である。溶媒の存在はそうでない場合の正味のモノマーを希釈する。従って モノマー濃度は正味のモノマー中での電解質の溶解度および電解質のためにえら ばれる溶媒によって限定を受ける。育利にはモノマー濃度はIM−10Mの範囲 にある。好ましくは電解質は正味のモノマー中に溶解せしめられる。
重合溶液中のモノマー濃度は生成する重合フィルムの性質に影響を及ぼす。イオ ン重合速度は重合溶液中のモノマー濃度に正比例することか知られている。米国 ニューヨーク州ジョン・ワイリイ・アンド・サンズ刊行のB111meyer、 F、W、ジュニア著Textbook ofまたはアニオンのいづれかのイオン 種を形成することかできる。ひとたびイオン開始種か電気化学的に形成されると 、重合はイオン重合に従う。その結果として重合溶液中のモノマー濃度も電気化 学的開始の重合速度に影響する。
同様に、フリーラジカル重合に・ついて、重合溶液のモノマー濃度も重合速度に 影響する。電気化学開始かフリーラジカルを生成させる場合、重合速度はまた重 合溶液中のモノマー濃度によって影響される。
モノマー濃度の第2の観察される効果はポリマーフィルムに関する。低濃度のモ ノマーまたはモノマー混合物を含むポリマー溶液から製造されるフィルムは不透 明で粉末状の外観をもち、多孔質であり、従って複合体膜の弁別層として使用す るのに不適切である。これとは対照的に、より高濃度のモノマー溶液からの膜は より透明であり、多孔性か小さい。1. 11の比のジビニルベンセンとエチル ビニルベンゼンのモノマー混合物について、好適な膜の生成は0.5Mより大き い合計モノマー濃度において起る。多孔質ポリマー層は1 l lの比において 0.45M未満のノビニルベンセンとエチルビニルベンセンの合計モノマー濃度 から生成する。
これより高濃度のモノマーも伝導性表面上により薄いポリマー層をもたらす。上 記で観察されるように、非多孔質の弁別層の厚さは膜の浸透性を直接に減少させ る。従って、複合体膜の目的にとって、モノマー濃度は電気化学的開始の系に薄 い非多孔性ポリマーを生ずるに十分であるへきである。
望ましい電解質はモノマーと溶媒との溶液に容易に可溶性である。好適な電解質 のイオンは高度の移動性をもち、これらのイオンは非常に高い放電能力をもつ。
しばしば使用される電解質としてテトラアルキルアンモニウム、ナトリウムおよ びリチウム、を含むバークロレート類、テトラブチルアンモニウムテトラフルオ ロボレート、ヘキサフルオロホスフェート、およびナイトレートたとえばテトラ ブチルアンモニウムナイトレートかあげられる。
スチレン系モノマーを使用する場合、電解質の濃度は生成するポリマーフィルム の厚さに影響を及ぼし、電解質の濃度か減少するにつれて生成するフィルムの厚 さは増大する。操作可能な電解質濃度はO,Mと溶媒モノマー系中の電解質の飽 和限度との間にある。飽和限度は代表的に0.5M未満である。それ故、有用な 電解質濃度限度は通常0.Mと5Mの間にある。一般に、できるだけ高い電解質 濃度をもつのが好ましい。高い電解質濃度は薄いポリマーフィルムを生成させる からである。
電気化学的開始膜弁別層を生成させるために用いる電圧は周知の電気化学反応の 電圧に一致し、通常の水素基準電極に関するゼロから5ボルトの絶対値の範囲に ある。電気重合に有用な基準電極は通常の水素電極、飽和キャロメル、銀/塩化 銀または他の好適な電極である。然しなからこれらの電極は重合溶液中に水を洩 らす水性電解質を使用する。この理由により、銀線擬似電極が好ましい。
電位か基準電極に対して正であるか負であるかは(すなわち作動性電極である多 孔質電気伝導性膜支持体か電解槽の陽極であるか陰極であるかは)原料の種かア ニオンまたはカチオンの重合機構によって有利に重合されるか否かに依存する。
たとえば、スチレンは電気化学的開始重合からアニオン、カチオンまたはフリー ラジカルの機構によって重合されることか知られている。電気化学的手段によっ て開始されるフリーラジカル重合にとって、操作電極は基準電極に対して正また は負のいずれかでありうる。
電圧は予め定めた水準で電解槽の電極に加えることかでき、または1つのサイク ルにわたって初期の電位から、ある範囲の電圧にわたってセロを含めて、セロを 含む最終値にまで変えることもてきる。多孔質膜支持体上に有効な弁別層を析出 させるのに必要な電極に加える電圧の持続時間は比較的に短い。この時間は数マ イクロ秒から数分(希釈モノマー溶液においては5秒でさえありうる)まで変わ りうる。本発明を具体的に示す以下の実施例かられかるように、膜の弁別層は短 い印可電圧の後に有効に生成される。
重合の電気化学的開始は広範囲の温度にわたって行なわれる。電気化学的開始の ポリマー層は室温および大気圧で生成させるのか便利である。重合の温度限界は 電解槽のモノマー溶媒か液体である温度である。電気化学的開始の重合の周囲条 件からの圧力および温度の偏動は操作可能ではあるけれとも有利ではない。
本発明により製造される複合体膜の弁別層は非常に薄い。弁別層は1μm〜00 1μmの範囲の厚さでありうる。弁別層は伝導性支持体の多孔質構造を架橋しう る。好都合には伝導性支持体の細孔直径は0.25μm未満である。有利には細 孔直径はO,1μmから10人程度の小さい直径の範囲である。050μm程度 の大きい細孔は電気重合した弁別性膜層によって架橋することかできる。然しな から、大きい細孔直径を架橋するのに必要な重合弁別層の厚さは生成する複合体 膜の全体のフラックスに悪影響を与えることかある。それ故、有利には支持体膜 の細孔直径は0.1μm〜IO人である。
以下の実施例によって本発明を更に具体的に説明するか、本発明はこれらの実施 例に限定されるものではない。
0.2μmの細孔直径をもつ多孔質アルミナの多孔質膜を使用する。英国オツク スホードシャイア0X16.7JU、バンバリーのアノ−チック・セパレーノヨ ンズ・リミテッドによって提供された膜を使用する。
Nature、Vol 137.p147−149 (1989年1月12号) に記載のR,Cらの電解質中のアルミニウムを陽極化する方法により円筒孔を含 む注目すべき均な気泡の多孔質酸化物の膜を製造する。アルミニウムの陽極化に よってアルミナ層を形成する過程において電圧を少しづつ減少させていって均一 なバリヤ一層薄層を生せしめることかできる。電圧の減少は孔を多くの小さい孔 に細分割させ、アルミニウム金属から膜を分離するに十分なバリヤ一層の減少を 生ぜしめた。
アルミナ膜は多孔質アルミナ基質に金の層を被覆することによって伝導性か付与 される。Techniques Hummerアルゴン・プラズマ・デボジッタ ーを使用してアルミナ支持体に500人の金の析出物を被覆する。アルミナ支持 体を、直径2cmの金のディスクより約2.5cm下の距離のアルミニウムステ ージに置く。アルゴンプラズマを発生する90〜125mHHのアルゴン雰囲気 中で、金ディスクとアルミニウムターゲットとの間に5〜IOVの電位を加える 。アルゴンプラズマは金ターゲツト表面から金原子をスパッターさせる。金原子 の均一層が毎分約100人の速度でアルミナ支持体膜上に集まる。
鋼線を銀エポキシによって金被覆多孔質支持体に取付け、次いて銀エポキシ接続 子に絶縁性エポキシを被覆して金被覆面のみを露出させる。
金被覆アルミナの作業用電極をガラス電解槽中に配置する。作業用電極の0.5 cm以内に配置した銀線は基準電極として働く。N、 N−ジメチルホルムアミ ド中の電解質としての0.3Mのテトラ−n−ブチルアンモニウムバークロレー トの溶液を含む電解槽中に金箔のカラター電極を配置する。
ジビニルベンゼンモノマー及びエチルビニルベンゼンモノマーをこの重合溶液中 に存在させる。固体電解質を正味のモノマーに加えることによって重合溶液を製 造する。次いでモノマー/電解質スラリをN、 N−ジメチルホルムアミドに加 え、攪拌しなから室温でとかして55%ジビニルベンゼンと45%エチルビニル ベンゼンの比の3.4Mの合計濃度をもつ重合溶液を製造する。予め精製した窒 素ガスを15分間スバージすることによって重合溶液から酸素を除去する。
通常のiR補償技術によって重合溶液と電解質の内部抵抗に必要な電圧を補正し た後に、作業用電極に電位を印可することによって重合を開始する。印可電位の 範囲はo、oovから出発して次いで連続的に−275Vまでの電位となしその 後に000Vに戻すことから成る。これはポテンショスタットを使用して200 mV/秒の走査速度で行なう。測定電位は銀の擬似基準電極に対してのものであ る。支持された膜一作業用電極は1つの完全な電位差サイクルの後に電解質−重 合溶液から除去する。
ポリマー層をもつ多孔質アルミナ支持体膜はアセトン中で洗浄してモノマー、低 分子量オリゴマーおよび過剰の電解質を除去する。複合体膜を空気中80°Cで 12時間乾燥する。
試料の断面積は、100人の金の被膜を被覆した後に、電子顛微鏡下て検査する 。電子ミクログラフの検査は約2000人の厚さのポリマー層を示す。
および5andersによって使用されたのと同様な単一ガス浸透装置中で試験 する。複合膜を電解槽中に配置してポリマー被覆を高圧ガス源に露出させる。圧 力測定および容積測定を行なう。複合体膜のポリマー面を0、 79 cm”の 孔をもつアルミニウム箔でマスクする。複合体膜の支持体面を多孔質濾紙で支持 して多孔質支持体か試験装置の焼結金属支持体から損傷を受けるのを保護する。
複合体膜のガス浸透性を表1に示す。
表1 2種のガスについての膜の分離係数はそれぞれのガスの膜浸透度の比である。実 施例1の複合体膜の酸素/窒素の分離係数は少なくともI 8である。
実施例2〜6 電気開始重合の複合体膜を実施例1により製造する。ただし重合溶液中のモノマ ー濃度を表■の僅のように変化させる。対応する膜の厚さをそれぞれのモノマー 濃度について決定する。電解質濃度は0.30Mである。
重合した膜の厚さを電子ミクログラフから測定する。
実施例1により製造した膜の試料のポリマー表面に米国特許第4,230.46 3号のヘネスらの方法により、Sylgard r84の商標名でダウ・コーニ ング・コーポレーション(米国ミシガン州48640”)から入手しつるポリシ ロキサン(n−ペンタン中5%)の層を均一に被覆する。このポリシロキサンは ハイドロシル化反応において白金触媒によって重合させたポリオルガノシラン組 成物の三部分混合物である。シロキサン処理した複合体を60°Cで24時間硬 化させる。処理した複合体膜のガス浸透性を表■に示す。
表■ ポリノロキサンによる処理は窒素に対する膜の浸透を一桁以上も減少させ、酸素 に対する浸透を約43たけ減少させる。従って、処理していない膜は多孔質であ ったと結論されうる。更に、表■に示すように、処理した膜の分離係数は6.2 に増大した。これは処理していない膜の分離係数よりも著しく大きい。この分離 係数の増大はまた、処理していない膜か多孔質であったこと及びポリノロキサン による処理か孔を閉塞することを示している。
それ故、多孔性の減少はガス分離用途の膜の選択性を増大させる。
比較例1 350人の厚さの金の層を被覆した0 02μmの細孔径をもつ多孔質アルミナ 膜のガス輸送に対する抵抗を酸素ガスを使用して25cmHgの圧力において試 験する。図1は膜の低圧側の酸素圧力を酸素圧力の適用後の時間の関数として示 すものである。
比較のために、このグラフはまた金被覆多孔質支持体上に本発明により製造した 厚さ0.05μmのDVB/EVBポリマーの弁別層をもつ複合体膜の相対下流 圧力を250cmHgという10倍高い圧力駆動力においいて示している。この グラフは、複合体膜の浸透か金属被覆多孔質支持体ではなくてポリマー被覆の性 質によって制御されることを示している。
実施例8 複合体膜を実施例1の方法により製造する。ただし多孔質支持体膜は0.2μm の細孔径をもつアルミナ支持体であり、その支持体膜の表面上に002μmの孔 の薄層をもつものである。電気化学的に開始される重合によって製造されるポリ DVB/EVBフィルムか固有に多孔質であるか、あるいはより小さい細孔をも つ支持体膜か非多孔質の電気化学的に開始されるポリマー層の生成をもたらすか 、を決定するために小さい支持体細孔径かえらばれる。
生成する膜を実施例1の方法により試験する。複合体膜のガス浸透性を表■に示 す。そこに示す減少した浸透性の値は生成する膜の減少した多孔度を示唆してい る。ポリマー層か同じ材料でできており、そして多孔質層かガス流量を限定しな ければ、実施例1およびこの実施例8の浸透度は同しであるべきである。然しな から、酸素/窒素の浸透度の比はl 8から約4.5に増大している。実施例8 の膜の増大した選択率および減少した浸透率は実施例8の膜の減少した多孔性に よるものと信ぜられる。この実施例における減少した多孔性の追加の証拠は、4 弗化炭素は実施例1の膜とは対照的に、この実施例8の膜を通る測定可能な浸透 度をもたないという事実である。
表■ FjG、f 国際調査報告

Claims (18)

    【特許請求の範囲】
  1. 1.多孔質支持体および電気化学的に重合開始された重合された弁別層を含むこ とを特徴とする複合体膜。
  2. 2.弁別層がビニル基または多環芳香族基を含むモノマー類のポリマーである請 求項1の複合体膜。
  3. 3.弁別層がジビニルベンゼンを含むポリマーである請求項1の複合体膜。
  4. 4.電気重合された弁別層が0.01μm〜1.0μmの厚さをもつ請求項1の 複合体膜。
  5. 5.多孔質支持体が析出された伝導性層によって伝導性を付与されている請求項 1の複合体膜。
  6. 6.多孔質支持体が0.01〜0.50μmの平均孔直径を含むものである請求 項1の複合体の膜。
  7. 7.1.8より大きい酸素/窒素分離係数によって特徴づけられる請求項1の複 合体膜。
  8. 8.次の諸工程を含むことを特徴とする複合体の膜製造方法:a)モノマーの重 合が電気化学的に開始されうる1種以上のモノマーを含む電気的に伝導性の溶液 中に伝導性多孔質膜支持体を第1電極として浸漬し、 b)この溶液中に第2電極を提供し、そしてc)電極としての伝導性多孔質膜支 持体と溶液中の第2電極との間に電圧を適用する。
  9. 9.電気伝導性溶液がテトラアルキルアンモニウムパークロレート、ナトリウム ・パークロレート、リチウム・パークロレート、テトラアルキルアンモニウム・ テトラフルオロボレート、テトラアルキルアンモニウム・ヘキサフルオロボレー ト、またはテトラアルキルアンモニウム・ヘキサフルオロナイトレートの電解質 を含む請求項8の方法。
  10. 10.伝導性多孔質膜が伝導性金属層を含む請求項8の方法。
  11. 11.適用する電圧が通常の水素電極に比べてゼロから5ボルトの絶対値までで ある請求項8の方法。
  12. 12.電気化学的に開始される重合用のモノマー類がビニル基、多環芳香族基ま たはそれらの混合物を含む請求項8の方法。
  13. 13.電気重合性モノマー類がジビニルベンゼン、エチルビニルベンゼン、スチ レンまたはそれらの混合物を含む請求項8の方法。
  14. 14.電気伝導性溶液が0.1Mから電気伝導性溶液の飽和限界までの濃度で存 在する電解質を含む請求項8の方法。
  15. 15.電気化学的開始によって重合されうるモノマー類が0.5Mの濃度から正 味のモノマー類の濃度までの濃度で電気伝導性溶液中に存在する請求項8の方法 。
  16. 16.アルキル基の1種以上がメチル、エチル、n−プロピル、n−ブチル、n −ペンチル、n−ヘキシル、n−セブチル、n−オクチル、およびn−プロピル 、n−ブチル、n−ペンチル、n−ヘキシル、n−セブチル、またはn−オクチ ルの異性体類、である請求項9の方法。
  17. 17.モノマーの電気化学的に開始された重合から製造される弁別層を含む複合 体膜に、1種またはそれ以上であるが全成分より少ない成分を通過させることを 特徴とするガス混合物の諸成分の分離方法。
  18. 18.ガス混合物が空気であり、そして膜が1.8より大きい酸素/窒素分離係 数をもつ請求項16の方法。
JP3503219A 1990-01-12 1990-11-30 超薄フィルム複合体膜 Pending JPH05503034A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US463767 1990-01-12
US07/463,767 US5198112A (en) 1990-01-12 1990-01-12 Ultrathin-film composite membrane

Publications (1)

Publication Number Publication Date
JPH05503034A true JPH05503034A (ja) 1993-05-27

Family

ID=23841292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3503219A Pending JPH05503034A (ja) 1990-01-12 1990-11-30 超薄フィルム複合体膜

Country Status (7)

Country Link
US (1) US5198112A (ja)
EP (1) EP0510071A4 (ja)
JP (1) JPH05503034A (ja)
KR (1) KR920703192A (ja)
AU (1) AU7148591A (ja)
CA (1) CA2072077A1 (ja)
WO (1) WO1991010501A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5711884A (en) * 1990-08-22 1998-01-27 University Of Pittsburgh Of The Commonwealth System Of Higher Education Method of filtering submicron particles with gel lattice membrane filter
AU6017398A (en) * 1997-01-10 1998-08-03 Ellipsis Corporation Micro and ultrafilters with controlled pore sizes and pore size distribution andmethod for making
US6705152B2 (en) 2000-10-24 2004-03-16 Nanoproducts Corporation Nanostructured ceramic platform for micromachined devices and device arrays
US6613241B1 (en) * 1999-10-29 2003-09-02 California Insitute Of Technology MEMS elements with integrated porous membranes and method of making the same
AU2006267867A1 (en) * 2005-07-14 2007-01-18 Ben Gurion University Of The Negev Research And Development Authority Composite membranes and methods for their preparation
US20100219079A1 (en) * 2006-05-07 2010-09-02 Synkera Technologies, Inc. Methods for making membranes based on anodic aluminum oxide structures
US8210360B2 (en) 2006-05-07 2012-07-03 Synkera Technologies, Inc. Composite membranes and methods for making same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887442A (en) * 1970-11-23 1975-06-03 Scm Corp Polymerization process
US4230463A (en) * 1977-09-13 1980-10-28 Monsanto Company Multicomponent membranes for gas separations
US4559112A (en) * 1983-10-07 1985-12-17 Nippon Telegraph & Telephone Electrically conducting polymer film and method of manufacturing the same
US4630463A (en) * 1984-11-28 1986-12-23 The Boeing Company Rivet driving die and method
JPH0647058B2 (ja) * 1985-03-13 1994-06-22 旭化成工業株式会社 気体選択透過膜

Also Published As

Publication number Publication date
US5198112A (en) 1993-03-30
EP0510071A4 (en) 1992-12-09
WO1991010501A1 (en) 1991-07-25
EP0510071A1 (en) 1992-10-28
AU7148591A (en) 1991-08-05
CA2072077A1 (en) 1991-07-13
KR920703192A (ko) 1992-12-17

Similar Documents

Publication Publication Date Title
Bolt Determination of the charge density of silica sols
Wang et al. Ultrathin covalent organic framework membranes prepared by rapid electrophoretic deposition
CA2409569C (en) Polysulfonamide matrices
Breyer et al. Tensammetry: A Method of Investigating Surface Phenomena by AC Current Measurements
Krasemann et al. Composite membranes with ultrathin separation layer prepared by self-assembly of polyelectrolytes
CN112473372B (zh) 一种导电正渗透膜及其制备方法
Lebedev et al. Effect of electric field on ion transport in nanoporous membranes with conductive surface
Krzyczmonik et al. Honeycomb-structured porous poly (3, 4-ethylenedioxythiophene) composite layers on a gold electrode
JPH05503034A (ja) 超薄フィルム複合体膜
Ying et al. pH effect of coagulation bath on the characteristics of poly (acrylic acid)-grafted and poly (4-vinylpyridine)-grafted poly (vinylidene fluoride) microfiltration membranes
Lebedev et al. Preparation and ionic selectivity of carbon-coated alumina nanofiber membranes
Zhao et al. Transport of copper (II) across stand-alone conducting polypyrrole membranes: the effect of applied potential waveforms
Singh et al. Membrane potential studies on cholesterol liquid membranes
Liu et al. Electrochemical synthesis of ultrathin film composite membranes
Buck et al. Application of glow discharge polymerisation to the preparation of reverse osmosis membranes
Kaplin et al. Electrodeposition of pyrrole into a porous film prepared by microemulsion polymerization
Levine et al. Resistance of the polypyrrole/polyimide composite by electrochemical impedance spectroscopy
Ying et al. Novel Poly (N‐isopropylacrylamide)‐graft‐poly (vinylidene fluoride) Copolymers for Temperature‐Sensitive Microfiltration Membranes
Hoyer et al. Phase-inversion cellulose acetate membranes for suppression of protein interferences in anodic stripping voltammetry
EP0242209B1 (en) Composite membranes
JP4807918B2 (ja) コンポジット膜を調製する方法
Gashi et al. Effect of the modification time of coal with aryldiazonium salts on the performance of cellulose–acetate coal heterogeneous reverse osmosis membranes
JPH0521012B2 (ja)
JPS6349220A (ja) 気体分離膜
Tsivadze et al. Cellulose fabric covered with a PVC coating filled with active carbon and a porous semiconductor layer with conductivity depending on adsorption coverage and solvation