JPH0549930A - Methanol reforming catalyst - Google Patents

Methanol reforming catalyst

Info

Publication number
JPH0549930A
JPH0549930A JP3199432A JP19943291A JPH0549930A JP H0549930 A JPH0549930 A JP H0549930A JP 3199432 A JP3199432 A JP 3199432A JP 19943291 A JP19943291 A JP 19943291A JP H0549930 A JPH0549930 A JP H0549930A
Authority
JP
Japan
Prior art keywords
catalyst
zinc oxide
palladium
methanol
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3199432A
Other languages
Japanese (ja)
Inventor
Nobutsune Takezawa
暢恒 竹澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP3199432A priority Critical patent/JPH0549930A/en
Publication of JPH0549930A publication Critical patent/JPH0549930A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To obtain a catalyst for the steam reforming of methanol having high activity, high selectivity and high durability by using zinc oxide as a carrier added with palladium as an active seed. CONSTITUTION:In order to add metal palladium and zinc oxide or a compounds converted to metal palladium and zinc oxide by hydrolysis or baking after hydrolysis in a closely mixed state, for example, a soluble palladium compound is infiltrated in a preliminarily molded porous zinc oxide particle or fine powder and the whole is dried and baked. Or, a suspension of fine zinc oxide or zinc hydroxide and a solution of a soluble palladium compound are mixed and coprecipitated and the precipitate is dried and baked to from a catalyst with zinc oxide content of 10-99.9wt.%. This catalyst has excellent capacity holding high activity and high selectivity in a long-time continuous high temp. reaction for obtaining hydrogen by using methanol or a mixture of methanol and water as a raw material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、メタノール改質用触媒
に関し、更に詳しくは、メタノール及び水を原料として
水素を主成分とする改質ガスを製造するための、高活
性、高選択性且つ耐久性の高いパラジウム系触媒に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a catalyst for reforming methanol, and more particularly to a catalyst for producing a reformed gas containing hydrogen as a main component from methanol and water. The present invention relates to a highly durable palladium catalyst.

【0002】[0002]

【従来の技術】メタノールは触媒の存在下で比較的容易
に水素を主成分とするガスに改質されることは従来から
良く知られている。特に水蒸気改質と呼ばれる水の共存
下における反応により水素含量の高いガスに改質される
ことから、近年燃料電池等に使用する水素の簡便な供給
源として注目を集めている。
2. Description of the Related Art It has been well known that methanol is relatively easily reformed into a gas containing hydrogen as a main component in the presence of a catalyst. In particular, since it is reformed into a gas having a high hydrogen content by a reaction called water vapor reforming in the coexistence of water, it has recently attracted attention as a simple hydrogen source for use in fuel cells and the like.

【0003】メタノールの改質反応は次の2反応からな
る。 CH3OH→CO+2H2−21.7Kcal/mol (1) CH3OH+H2O→CO2+3H2−11.8Kcal/mol (2)
The reforming reaction of methanol consists of the following two reactions. CH 3 OH → CO + 2H 2 −21.7 Kcal / mol (1) CH 3 OH + H 2 O → CO 2 + 3H 2 −11.8 Kcal / mol (2)

【0004】メタノール改質用触媒としては、従来アル
ミナなどの担体に白金、パラジウムなどの白金族金属を
担持した触媒、又は銅、ニッケル、クロム、亜鉛などの
卑金属元素及びその酸化物などを担持した触媒が数多く
提案されている。
As a catalyst for reforming methanol, a catalyst in which a platinum group metal such as platinum or palladium is supported on a carrier such as alumina, or a base metal element such as copper, nickel, chromium or zinc and an oxide thereof are conventionally supported. Many catalysts have been proposed.

【0005】具体的には白金族金属を活性成分とする触
媒が特開昭58−174237号公報、同58−177
153号公報及び同59−199043号公報などに提
案されており、又、ニッケルを主成分とする触媒が特開
昭50−49204号公報、同51−68488号公
報、同51−122102号公報、同57−14403
1号公報及び同58−69716号公報などに提案され
ている。
Specifically, catalysts containing a platinum group metal as an active component are disclosed in JP-A-58-174237 and JP-A-58-177.
Nos. 153 and 59-199043, and catalysts containing nickel as a main component are disclosed in JP-A-50-49204, JP-A-51-68488, JP-A-51-122102, Ibid 57-14403
No. 1 and No. 58-69716.

【0006】しかしながら、白金族金属、ニッケルなど
の銅以外の金属を活性成分とする触媒の存在下では前記
(1)式に従うメタノールの分解反応が主として進行
し、水素の製造という面からは効率的ではないという問
題点がある。
However, in the presence of a catalyst containing a metal other than copper such as platinum group metal and nickel as an active component, the decomposition reaction of methanol according to the above formula (1) mainly proceeds, which is efficient from the viewpoint of hydrogen production. There is a problem that is not.

【0007】メタノールから水素を効率良く製造するの
に都合の良い前記(2)式の反応を効果的に推進する触
媒は従来銅を主成分とする触媒に限定されている。これ
ら銅を基本成分として含有する触媒として例えば次のよ
うな触媒が提案されている。
Conventionally, the catalysts that effectively promote the reaction of the above formula (2), which is convenient for efficiently producing hydrogen from methanol, are limited to the catalysts containing copper as a main component. For example, the following catalysts have been proposed as catalysts containing copper as a basic component.

【0008】酸化銅、酸化クロムを主成分とする触媒
で、更にマンガン、バリウムなどの酸化物を含有する触
媒(特開昭54−11274号公報) 酸化銅、酸化亜鉛を主成分とする触媒で、更に酸化ク
ロムを含有する触媒(特開昭57−174138号公
報)、更に酸化アルミニウム、酸化マンガン、酸化ホウ
素などを含有する触媒(特開昭59−131501号公
報) 酸化銅、酸化ニッケル、酸化アルミニウムを主成分と
する触媒で、更にリチウム、カリウムなどを含有する触
媒(特開平1−224046号公報) 銅/酸化アルミニウムなど、銅を含む2成分系共沈触
媒(N.タケザワら、ケミカルレターズ(Chem.L
ett)、1347頁、1976年)
A catalyst containing copper oxide and chromium oxide as main components, and a catalyst containing oxides such as manganese and barium (JP-A-54-11274). Catalyst containing copper oxide and zinc oxide as main components. , A catalyst containing chromium oxide (JP-A-57-174138), a catalyst containing aluminum oxide, manganese oxide, boron oxide and the like (JP-A-59-131501) copper oxide, nickel oxide, oxidation A catalyst containing aluminum as a main component and further containing lithium, potassium, etc. (Japanese Patent Laid-Open No. 1-224046) Two-component coprecipitation catalyst containing copper such as copper / aluminum oxide (N. Takezawa et al., Chemical Letters (Chem.L
ett), p. 1347, 1976).

【0009】[0009]

【発明が解決しようとする課題】しかしながら、これら
の銅系触媒は、本発明者の知る限りでは低温活性、選択
性などかなり改良されたものも見られるが、耐熱性に問
題があり、長期間の連続運転を実施した場合、連続的に
その活性及び選択性が低下する。この欠点は特に高温の
反応(反応温度250℃程度以上)下で顕著であり比較
的高温下での長時間使用は困難であるなどの問題を残し
ている。
However, as far as the inventors of the present invention are aware, some of these copper-based catalysts are considerably improved in low-temperature activity, selectivity, etc. However, they have problems in heat resistance and are long-term. When the continuous operation of is carried out, its activity and selectivity are continuously reduced. This drawback is particularly remarkable under a reaction at a high temperature (reaction temperature of about 250 ° C. or higher), and it remains difficult to use for a long time at a relatively high temperature.

【0010】本発明の目的は、銅系触媒の問題点を解決
し、高活性、高選択性且つ耐久性の高いメタノールの水
蒸気改質用触媒を提供することにある。
An object of the present invention is to solve the problems of copper-based catalysts and to provide a catalyst for steam reforming of methanol which has high activity, high selectivity and high durability.

【0011】[0011]

【課題を解決するための手段】本発明者はメタノールの
水蒸気改質用触媒について鋭意研究した結果、高活性、
高選択性で長期間に亘り高い安定活性を保持する耐久性
の高い触媒が、驚くべきことに酸化亜鉛を担体としてパ
ラジウムを活性種として含有することにより得られるこ
とを見い出し本発明を完成した。
Means for Solving the Problems As a result of earnest research on a catalyst for steam reforming of methanol, the present inventor has found that
It has been found that a highly durable catalyst having high selectivity and high stability for a long period of time can be obtained by surprisingly containing palladium as an active species with zinc oxide as a carrier, and completed the present invention.

【0012】即ち、本発明は、パラジウム及び酸化亜鉛
からなるメタノール改質用触媒である。本発明の触媒の
本質は明確ではないが、活性成分であるパラジウム金属
が担体である酸化亜鉛と緊密な混合ないし結合状態にあ
り、パラジウム−亜鉛の二成分からなる活性種を生成す
ることで生起しているものと考えられる。そして、この
ような効果はパラジウムと酸化亜鉛との組合せのみで発
現し、酸化亜鉛以外、例えばアルミナに担持したパラジ
ウム触媒では前記(1)式の反応が主体となり、本発明
による触媒のように前記(2)式の反応を選択的に促進
することは出来ない。このような事実は従来全く知られ
ていなかったことである。
That is, the present invention is a methanol reforming catalyst comprising palladium and zinc oxide. Although the essence of the catalyst of the present invention is not clear, it occurs when palladium metal, which is an active ingredient, is in intimately mixed or bound state with zinc oxide, which is a carrier, and an active species composed of two components of palladium-zinc is produced. It is thought that it is doing. Such an effect is exhibited only by the combination of palladium and zinc oxide, and in the case of a palladium catalyst other than zinc oxide, for example, a palladium catalyst supported on alumina, the reaction of the above formula (1) becomes the main component, and the above-mentioned catalyst of the present invention is used. The reaction of the formula (2) cannot be selectively promoted. This fact has never been known before.

【0013】〔発明の具体的説明〕(触媒構成成分) 本発明による触媒の構成成分は、元素としてはパラジウ
ムと亜鉛である。これらの元素の供給源としては、金属
パラジウムと酸化亜鉛又は加水分解及びその後の焼成に
より金属パラジウム又は酸化亜鉛に変換される化合物で
あり、例えば硝酸パラジウム、硝酸亜鉛のような硝酸
塩、硫酸パラジゥム、硫酸亜鉛のような硫酸塩、酢酸パ
ラジウム、酢酸亜鉛のような酢酸塩、塩化パラジウム、
塩化亜鉛のような各種のハロゲン化物等の無機及び有機
酸の塩類、錯塩、キレート化合物、アルコキサイド等の
有機金属化合物がある。
[Detailed Description of the Invention] (Catalyst Constituent) The constituent components of the catalyst according to the present invention are palladium and zinc as elements. Sources of these elements include metallic palladium and zinc oxide, or compounds that are converted to metallic palladium or zinc oxide by hydrolysis and subsequent calcination, such as palladium nitrate, nitrates such as zinc nitrate, palladium sulfate, and sulfuric acid. Sulfates such as zinc, palladium acetate, acetates such as zinc acetate, palladium chloride,
There are salts of inorganic and organic acids such as various halides such as zinc chloride, complex salts, chelate compounds, and organometallic compounds such as alkoxide.

【0014】(触媒の製造)触媒の製法としてはパラジ
ウムと酸化亜鉛が緊密な混合状態で含有させると言う点
をのぞけば従来から用いられている含浸法、沈澱法、共
沈法等と本質的に変わらないどんな方法で製造しても差
し支えない。また、上記の特定金属または金属化合物を
触媒に含有させる方法ないし段階も本発明の目的、効果
が実質的に阻害されない限度において任意である。例え
ば、予め成型した多孔質の酸化亜鉛粒または酸化亜鉛の
微粉に可溶性パラジウム化合物を含浸、乾燥、焼成する
含浸法、或いは微細酸化亜鉛又は水酸化亜鉛の懸濁溶液
と硝酸パラジウムのような可溶性のパラジウム化合物の
溶液を混合・共沈せしめた後、乾燥、焼成する共沈法な
どが挙げられる。また、生成した沈澱はそれ自体成型焼
成し触媒として使用することも、又、これらの混合成分
を更にシリカ、アルミナ等の適当な担体上に担持して使
用することも勿論可能である。
(Production of catalyst) Except for the fact that palladium and zinc oxide are contained in an intimate mixed state, the catalyst production method is essentially the conventionally used impregnation method, precipitation method, coprecipitation method or the like. It can be manufactured by any method that does not change. Further, the method or step of incorporating the above-mentioned specific metal or metal compound into the catalyst is also optional as long as the objects and effects of the present invention are not substantially impaired. For example, a preformed porous zinc oxide particle or fine powder of zinc oxide is impregnated with a soluble palladium compound, dried, and calcined, or a suspension of fine zinc oxide or zinc hydroxide and a soluble zinc compound such as palladium nitrate. Examples include a coprecipitation method in which a solution of a palladium compound is mixed and coprecipitated, and then dried and baked. Further, it is of course possible to use the formed precipitate itself as a catalyst by molding and calcination, or to carry the mixed components thereof on an appropriate carrier such as silica or alumina for use.

【0015】酸化亜鉛は本発明による触媒の一成分を形
成するものであり、その含量は、触媒全量に対して10
〜99.9重量%、好ましくは50〜99.5重量%で
ある。また、本発明による「触媒」は「成型された」も
のである。成型触媒の形状は柱状、錠剤、球状、粒状、
顆粒状、板状などである。
Zinc oxide forms one component of the catalyst according to the present invention, the content of which is 10 based on the total amount of the catalyst.
˜99.9% by weight, preferably 50-99.5% by weight. Also, the "catalyst" according to the present invention is "molded". The shape of the molded catalyst is columnar, tablet, spherical, granular,
Granules, plates, etc.

【0016】(メタノールの水蒸気改質反応)以上のよ
うにして得られた触媒は、メタノールまたはメタノール
と水との混合物を原料として、水素を得ようとする反応
に対して、長時間の連続高温反応において高活性、高選
択性を保持する優れた性能を有するものである。なお、
本発明の特徴を最もよく享受することができるのは、メ
タノールと水を原料とする水蒸気改質反応で、この触媒
を180℃以上、とくに250℃以上で使用する場合で
ある。
(Steam reforming reaction of methanol) The catalyst obtained as described above uses a methanol or a mixture of methanol and water as a raw material, and has a long continuous high temperature for a reaction to obtain hydrogen. It has excellent performance of maintaining high activity and high selectivity in the reaction. In addition,
The characteristics of the present invention can be most enjoyed in a steam reforming reaction using methanol and water as raw materials, when this catalyst is used at 180 ° C or higher, particularly 250 ° C or higher.

【0017】[0017]

【実施例】以下、本発明を実施例を更に具体的に説明す
るが、本発明はこれら実施例により限定されるものでは
ない。
The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.

【0018】実施例1 1)触媒調製 硝酸パラジウム[Pd(NO32]0.54g、硝酸亜
鉛[Zn(NO32・6H2O]2.21gを溶解した
混合水溶液中に水酸化ナトリウム水溶液をpHが10に
なるまで攪拌しながら滴下し沈澱を生成させた。この沈
澱を含む溶液を1時間攪拌を続けた後、8時間静置し、
更に、蒸留水を用い溶液中に硝酸イオンが認められなく
なるまでデカンテーションを繰り返した。その後沈澱を
濾別し、乾燥器中で110℃で16時間乾燥後、空気中
で電気炉で500℃3時間焼成した。この様にして酸化
亜鉛中にPdをほぼ30重量%含有する顆粒状触媒を得
た。
[0018] Example 1 1) Preparation of Catalyst palladium nitrate [Pd (NO 3) 2] 0.54g, hydroxide mixed aqueous solution of zinc nitrate [Zn (NO 3) 2 · 6H 2 O] 2.21g An aqueous solution of sodium was added dropwise with stirring until the pH reached 10, thereby forming a precipitate. The solution containing the precipitate was continuously stirred for 1 hour and then left standing for 8 hours,
Further, decantation was repeated using distilled water until no nitrate ion was found in the solution. Thereafter, the precipitate was filtered off, dried in a dryer at 110 ° C. for 16 hours, and then calcined in air in an electric furnace at 500 ° C. for 3 hours. In this way, a granular catalyst containing approximately 30% by weight of Pd in zinc oxide was obtained.

【0019】2)活性試験 上記の触媒および同様の方法で調製したパラジウム含量
1重量%、15重量%の3種の触媒についてそれぞれ
0.25gを小型反応管に充填しメタノールの水蒸気改
質反応の活性を測定した。CH3OH/H2O:0.24
(モル/モル)、反応温度:220℃、W/F:0.0
025(g・min/cc)での反応条件下における結
果を表1に示す。なお、反応生成物はH2、CO、CO2
であった。又、選択率は全反応中の前記反応式(2)の
割合を指す。
2) Activity test 0.25 g of each of the above catalysts and the three kinds of catalysts having the palladium contents of 1% by weight and 15% by weight prepared by the same method were charged in a small reaction tube, and 0.25 g of the catalyst was used for the steam reforming reaction of methanol. The activity was measured. CH 3 OH / H 2 O: 0.24
(Mol / mol), reaction temperature: 220 ° C., W / F: 0.0
The results under the reaction conditions at 025 (g · min / cc) are shown in Table 1. The reaction products are H 2 , CO, CO 2
Met. The selectivity refers to the ratio of the reaction formula (2) in the whole reaction.

【0020】[0020]

【表1】 表 1 ───────────────────────────────── 触 媒 水素生成速度 選択率 (cc STP/min・g・cat) (%) ───────────────────────────────── Pd( 1wt%) 29.6 99< Pd(15wt%) 44.4 99< Pd(30wt%) 22.0 99< ─────────────────────────────────[Table 1] Table 1 ───────────────────────────────── Catalyst hydrogen production rate selectivity (cc STP / min ・ g ・ cat) (%) ───────────────────────────────── Pd (1wt%) 29.6 99 <Pd (15 wt%) 44.4 99 <Pd (30 wt%) 22.0 99 <───────────────────────────── ─────

【0021】実施例2 実施例1で使用したPd30重量%を含有する触媒を同
様の反応装置、反応温度400℃で5時間反応した後、
実施例1と同様の条件で反応し400℃処理前後の活性
を測定した。その結果、400℃処理前後の活性比は
1.25であり、僅かではあるが活性の上昇が確認され
た。また、選択率は処理前後99%強で変化は認められ
なかった。
Example 2 The catalyst containing 30% by weight of Pd used in Example 1 was reacted for 5 hours at a reaction temperature of 400 ° C. in the same reaction apparatus,
The reaction was performed under the same conditions as in Example 1 and the activity before and after the treatment at 400 ° C. was measured. As a result, the activity ratio before and after treatment at 400 ° C. was 1.25, and a slight increase in activity was confirmed. The selectivity was slightly above 99% before and after the treatment, and no change was observed.

【0022】比較例1 実施例2の実験をほぼ同様の方法で調製した酸化亜鉛を
含有しない触媒で同様の条件で実施した結果を表2に示
す。
Comparative Example 1 Table 2 shows the results obtained by carrying out the experiment of Example 2 under the same conditions with a zinc oxide-free catalyst prepared by a substantially similar method.

【0023】[0023]

【表2】 表 2 ───────────────────────────────── 触 媒 活性変化 選択率 (400℃処理後/処理前) (処理前→処理後) ───────────────────────────────── Pd 0.51 0.08→>0.0 Pd/La23 0.77 13→>9 Pd/ZrO2 0.87 14→>11 ─────────────────────────────────[Table 2] Table 2 ───────────────────────────────── Selectivity of catalyst activity change (after 400 ℃ treatment / Before treatment) (Before treatment → After treatment) ───────────────────────────────── Pd 0.51 0. 08 →> 0.0 Pd / La 2 O 3 0.77 13 →> 9 Pd / ZrO 2 0.87 14 →> 11 ───────────────────── ─────────────

【0024】実施例3 硝酸パラジウム(PdNO3)0.76gを溶解した水
溶液200ml中に酸化亜鉛粉末7.11gを浸漬しロ
ータリーエバポレーター中70℃で十分に乾燥する、乾
燥後電気炉で、空気中500℃、3時間焼成する。この
触媒0.26gを用い実施例1と同様の条件で反応し
た。反応の結果、水素生成速度8.4(cc STP/
min・g・cat)、選択率99%が得られた。ま
た、この触媒を実施例−2と同様に400℃で反応処理
した後の活性は、水素生成速度11.0であり、選択率
には変化が見られなかった。
Example 3 7.11 g of zinc oxide powder was dipped in 200 ml of an aqueous solution in which 0.76 g of palladium nitrate (PdNO 3 ) was dissolved, and sufficiently dried at 70 ° C. in a rotary evaporator. After drying, in an electric furnace, in air. Baking at 500 ° C. for 3 hours. Using 0.26 g of this catalyst, a reaction was carried out under the same conditions as in Example 1. As a result of the reaction, the hydrogen generation rate is 8.4 (cc STP /
min.g.cat) and a selectivity of 99% were obtained. The activity of this catalyst after the reaction treatment at 400 ° C. was the same as in Example-2, that is, the hydrogen generation rate was 11.0, and the selectivity was unchanged.

【0025】比較例2 各種の金属酸化物及びPdに変え硝酸ニッケルを使用し
実施例3と同様の方法で触媒を調製し、同様の条件で反
応を行った結果は表3の通りである。
Comparative Example 2 Table 3 shows the results of preparing a catalyst in the same manner as in Example 3 using nickel nitrate in place of various metal oxides and Pd and carrying out the reaction under the same conditions.

【0026】[0026]

【表3】 表 3 ───────────────────────────────── 触 媒 水素生成速度 選択率 (cc STP/min・g・cat) (%) ───────────────────────────────── Pd/La23 4.2 8 Pd/SiO2 0.95 0 Pd/Nb25 8.4 11 Pd/ZrO2 11.0 20 Pd/Al23 2.5 1.4 Ni/SiO2 0.5 0 Ni/ZnO 1.4 12 ─────────────────────────────────[Table 3] Table 3 ───────────────────────────────── Catalyst hydrogen production rate selectivity (cc STP / min.g.cat) (%) ───────────────────────────────── Pd / La 2 O 3 4. 2 8 Pd / SiO 2 0.95 0 Pd / Nb 2 O 5 8.4 11 Pd / ZrO 2 11.0 20 Pd / Al 2 O 3 2.5 1.4 Ni / SiO 2 0.5 0 Ni / ZnO 1.4 12 ──────────────────────────────────

【0027】[0027]

【発明の効果】本発明による触媒は、メタノールの水蒸
気改質反応において高活性、高選択性で且つ長期間に亘
り高い安定活性を保持する高い耐久性を示す。
Industrial Applicability The catalyst according to the present invention has high activity and high selectivity in the steam reforming reaction of methanol, and exhibits high durability which retains high stable activity for a long period of time.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 パラジウム及び酸化亜鉛からなるメタノ
ール改質用触媒。
1. A catalyst for reforming methanol comprising palladium and zinc oxide.
JP3199432A 1991-08-08 1991-08-08 Methanol reforming catalyst Pending JPH0549930A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3199432A JPH0549930A (en) 1991-08-08 1991-08-08 Methanol reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3199432A JPH0549930A (en) 1991-08-08 1991-08-08 Methanol reforming catalyst

Publications (1)

Publication Number Publication Date
JPH0549930A true JPH0549930A (en) 1993-03-02

Family

ID=16407725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3199432A Pending JPH0549930A (en) 1991-08-08 1991-08-08 Methanol reforming catalyst

Country Status (1)

Country Link
JP (1) JPH0549930A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048261A1 (en) * 1999-02-10 2000-08-17 Kabushiki Kaisha Toshiba Carbon monoxide converting apparatus for fuel cell and generating system of fuel cell
JP2000354764A (en) * 1999-05-22 2000-12-26 Degussa Huels Ag Catalyst for reforming alcohol by steam and manufacturing method and use of the same
WO2005030390A1 (en) * 2003-05-07 2005-04-07 Battelle Memorial Institute Alcohol steam reforming catalysts and methods of alcohol steam reforming
US6930068B2 (en) 1999-12-15 2005-08-16 Nissan Motor Co., Ltd. Methanol reforming catalyst
US7208136B2 (en) 2003-05-16 2007-04-24 Battelle Memorial Institute Alcohol steam reforming catalysts and methods of alcohol steam reforming
JP2008307438A (en) * 2007-06-12 2008-12-25 Casio Comput Co Ltd Catalyst layer, reactor and method for manufacturing this reactor
CN102626625A (en) * 2012-03-14 2012-08-08 中国人民解放军第二炮兵工程学院 Precious metal-doped ZnO nanoscale particles and use of the precious metal-doped ZnO nanoscale particles as photocatalyst for unsymmetrical dimethylhydrazine wastewater degradation
CN103406133A (en) * 2013-08-07 2013-11-27 东华大学 Preparation method of three-dimensional communicated Pd network structure in microchannel
KR20180122233A (en) * 2017-05-02 2018-11-12 국방과학연구소 Methanol steam reforming catalysts, preparation method thereof, and methanol reforming apparatus comprising the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000048261A1 (en) * 1999-02-10 2000-08-17 Kabushiki Kaisha Toshiba Carbon monoxide converting apparatus for fuel cell and generating system of fuel cell
JP2000354764A (en) * 1999-05-22 2000-12-26 Degussa Huels Ag Catalyst for reforming alcohol by steam and manufacturing method and use of the same
US6413449B1 (en) 1999-05-22 2002-07-02 Degussa-Huls Aktiengesellschaft Method of using catalyst for steam reforming of alcohols
JP4653281B2 (en) * 1999-05-22 2011-03-16 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフト Catalyst for steam reforming of alcohol, process for producing the catalyst and use thereof
US6930068B2 (en) 1999-12-15 2005-08-16 Nissan Motor Co., Ltd. Methanol reforming catalyst
WO2005030390A1 (en) * 2003-05-07 2005-04-07 Battelle Memorial Institute Alcohol steam reforming catalysts and methods of alcohol steam reforming
US7208136B2 (en) 2003-05-16 2007-04-24 Battelle Memorial Institute Alcohol steam reforming catalysts and methods of alcohol steam reforming
JP2008307438A (en) * 2007-06-12 2008-12-25 Casio Comput Co Ltd Catalyst layer, reactor and method for manufacturing this reactor
CN102626625A (en) * 2012-03-14 2012-08-08 中国人民解放军第二炮兵工程学院 Precious metal-doped ZnO nanoscale particles and use of the precious metal-doped ZnO nanoscale particles as photocatalyst for unsymmetrical dimethylhydrazine wastewater degradation
CN103406133A (en) * 2013-08-07 2013-11-27 东华大学 Preparation method of three-dimensional communicated Pd network structure in microchannel
KR20180122233A (en) * 2017-05-02 2018-11-12 국방과학연구소 Methanol steam reforming catalysts, preparation method thereof, and methanol reforming apparatus comprising the same

Similar Documents

Publication Publication Date Title
CN102470346A (en) Supported catalyst comprising noble metals for oxidative dehydrogenation or epoxidation
CN111068699B (en) Catalyst suitable for producing acrolein and application thereof
JPH0549930A (en) Methanol reforming catalyst
JP2001114740A (en) Method for producing acrylonitrile
CN104511277A (en) Catalyst for preparing cyclohexanone from cyclohexanol through gas-phase dehydrogenization and preparation method thereof
JP6684669B2 (en) Ammonia decomposition catalyst and method for producing hydrogen-containing gas using this catalyst
JPS6347505B2 (en)
JPH0656722A (en) Production of unsaturated alcohol
WO2007077903A2 (en) Process for producing nitrogen-containing compounds
JPS5817174B2 (en) Manufacturing method of phenol
JP3307976B2 (en) Hydrocarbon steam reforming catalyst
JPS5870839A (en) Catalyst for steam reforming of methanol
CN111068696B (en) Supported acrolein catalyst and application thereof
JPH09221437A (en) Production of ethanol
JP4012965B2 (en) Catalyst for high temperature CO shift reaction
JP4092538B2 (en) Method for producing hydrogen-containing gas
US2861106A (en) Process of preparing aldehydes or ketones by dehydrogenation of alcohols
ES2224323T3 (en) IMPROVED PROCEDURE FOR OBTAINING INSURED CYCLE ETERS.
JPS62176545A (en) Catalyst for reforming methanol
JP2003010684A (en) Catalyst for manufacturing hydrogen and hydrogen manufacturing method
CN103285848B (en) The method of cyclohexanone is prepared in dehydrogenation and its preparation method and application and cyclohexanol dehydrogenation
CN101671243B (en) Method for catalytically oxidizing organic matter by solid superacid and by taking potassium ferrate as oxidizing agent
JP4382353B2 (en) Improved process for the production of unsaturated cyclic ethers
JP2002059005A (en) Methanol modifying catalyst, method for manufacturing the same and methanol modifying method
JPH09136884A (en) Production of unsaturated cyclic ether, and cobalt-containing supported catalyst